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1. Introduction. Let $f$ be a function holomorphic in $D=\{|z|<1\}$ with the gap
series expansion

(1.1) $f(z)=\sum_{k=1}^{\infty}a_{k}z^{n_{k}},$ $z\in D$ ,

where for a constant $q>1$ the natural numbers $n_{k},$
$k\geq 1$ , satisfy

(1.2) $n_{k+1}/n_{k}\geq q,$ $k\geq 1$ .
Afunction $g$ in $D$ is called $\alpha$-Bloch $(\alpha>0)$ if $g$ is holomorphic in $D$ and if

$\sup_{z\epsilon}(1-|z|)^{\alpha}|g^{\prime}(z)|<\infty$ ;

the family of all $\alpha$-Bloch functions is denoted by $B^{\alpha}$ . A Bloch function [6] is pre-
cisely a l-Bloch function. Let $B_{0}^{\alpha}(\alpha>0)$ be the family of $g$ holomorphic in $D$ such
that

$\lim_{|z|\rightarrow 1}(1-|z|)^{a}|g^{\prime}(z)|=0$ .
It is easy to observe that $B_{0}^{\alpha}\subset B^{\alpha}$ .

Our main result in the present paper is

Theorem 1. Let $f$ be a holomorphic function in $D$ with (1.1) and (1.2). Then
for $\alpha>0$, the following two propositions hold.
(I) $f\in B^{\alpha}$ if and only if
(1.3)

$\lim_{k\rightarrow\infty}\sup|a_{k}|n_{k}^{1-\alpha}<\infty$ .

(II) $f\in B_{0}^{\alpha}$ if and only if
(1.4)

$\lim_{k\rightarrow\infty}|a_{k}|n_{k}^{1-\alpha}=0$ .

Theorem 1(I) in the case $\alpha=1$ is known; for the proof one should combine
[5, Theorem 1] with [5, Theorem 2 (iii)]; note that the latter half of [8, Theorem] is
identical with [5, Theorem 2 (iii)].
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In Sections 3 and 4 we shall propose some applications of Theorem 1 (II) in
the case $\alpha=1$ .

The present work arises from the communications with Professor Peter A.
Lappan to whom I wish to express my cordial thanks.

2. Proof of Theorem 1. We begin with

Lemma. Let $g(z)=\sum_{n=0}^{\infty}b_{n}z^{n}$ be holomorphic in D. If $g\in B^{\alpha}(g\in B_{0}^{\alpha}$ , respec-

tively) for $\alpha>0$, then

$\lim_{n\rightarrow}\sup_{\infty}|b_{n}|n^{1-\alpha}<\infty$ ($\lim_{n\rightarrow\infty}|b_{n}|n^{1-\alpha}=0$, resp.).

As a special case we obtain [5, Theorem 1] that $\{b_{n}\}$ is bounded if $g\in B^{1}$ .
For the proof of Lemma we first note that $(1-n^{-1})^{1-n}\rightarrow e$ as $ n\rightarrow\infty$ . Assume

that $g\in B^{a}$ . By the Cauchy formula one obtains for $n\geq 1$ ,

$|b_{n}|=|(2\pi in)^{-1}\int_{0}^{2\pi}g^{\prime}(re^{\iota\theta})r^{1-n}e^{i(1-n)\theta}d\theta|\leq C_{1}n^{-1}(1-r)^{-\alpha}r^{1-n}$

for all $0<r<1$ ; hereafter $C_{k}(k=1,\ldots, 7)$ denote positive constants. For $n>1$ and
for $r=1-n^{-1}$ we thus obtain

$|b_{n}|\leq C_{1}n^{\alpha-1}(1-n^{-1})^{1-n}$ ,

whence

$\lim_{n\rightarrow}\sup_{\infty}|b_{n}|n^{1-\alpha}<\infty$ .

The proof for the case $g\in B_{0}^{\alpha}$ is similar to the above with a few modifications.
In view of Lemma the rest we should prove in Theorem 1 is the “if” parts in

(I) and (II). We first consider the case (I). First of all we notice by

$\frac{1}{(1-|z|)^{1+\alpha}}=\sum_{n=0}^{\infty}A_{n}|z|^{n}$ , $A_{n}\sim\Gamma(1+\alpha)^{-1}n^{\alpha}$ ,

that

(2.1) $\sum_{n=0}^{\infty}(n+1)^{\alpha}|z|^{n}\leq\frac{C_{2}}{(1-|z|)^{1+a}}$ , $z\in D$ .

It then follows from (1.3) that

$|zf^{\prime}(z)|=|\sum_{k=1}^{\infty}a_{k}n_{k}z^{n_{k}}|\leq C_{3}\sum_{k=1}^{\infty}n_{k}^{\alpha}|z|^{n_{k}}$ ,

whence, on making use of the Cauchy product, one obtains
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$\frac{|zf^{\prime}(z)|}{1-|z|}\leq C_{3}\sum_{n=1}^{\infty}(\sum_{n_{k\leq\hslash}}n_{k}^{\alpha})|z|^{n}$ .

Let $K=\max\{k;n_{k}\leq n\}$ . Then,

(2.2) $n^{-\alpha}\sum_{n_{k}\leq n}n_{k}^{\alpha}=(\frac{n_{K}}{n})^{a}[1+(\frac{n_{K-1}}{n_{K}})^{\alpha}+\cdots+(\frac{n_{1}}{n_{K}})^{\alpha}]$

$\leq 1+q^{-\alpha}+q^{-2\alpha}+\cdots=\frac{q^{\alpha}}{q^{\alpha}-1}=C_{4}$ .

Therefore,

$\frac{|zf^{\prime}(z)|}{1-|z|}\leq C_{5}\sum_{n=1}^{\infty}n^{a}|z|^{n}=C_{5}|z|\sum_{n=0}^{\infty}(n+1)^{\alpha}|z|^{n}$

$\leq\frac{C_{6}|z|}{(1-|z|)^{1+\alpha}}$ for $z\in D$ ,

by (2.1), whence $f\in B^{\alpha}$ . We prove next the “if” part of (II). Given $\epsilon>0$ we may
find $k_{0}\geq 2$ such that

$|a_{k}|n_{k}^{1-\alpha}<\epsilon$ for all $k\geq k_{0}$ .
Set

$P(z)=|z|^{-1}\sum_{k=1}^{k_{0}-1}|a_{k}|n_{k}|z|^{n_{k}}$ ,

so that $P$ is bounded on $D$ . Then, there exists $0<r<1$ such that

(2.3) $(1-|z|)^{\alpha}P(z)<\epsilon$ for $r<|z|<1$ .
Now,

$|zf^{\prime}(z)|\leq\sum_{k=1}^{\infty}|a_{k}|n_{k}|z|^{n_{k}}\leq|z|P(z)+\epsilon\sum_{k=k_{0}}^{\infty}n_{k}^{\alpha}|z|^{n_{k}}$ ,

so that

$\frac{|zf^{\prime}(z)|}{1-|z|}\leq\frac{|z|P(z)}{1-|z|}+\epsilon\sum_{n=1}^{\infty}( \sum_{n_{k}\leq n,k\geq k_{0}}n_{k}^{\alpha})|z|^{n}$ .

It then follows from (2.2), together with (2.1), that

(2.4) $\frac{|zf(z)|}{1-|z|}\leq\frac{|z|P(z)}{1-|z|}+\frac{\epsilon C_{7}|z|}{(1-|z|)^{1+\alpha}}$

Combining (2.4) with (2.3) one obtains

$(1-|z|)^{\alpha}|f^{\prime}(z)|\leq(1+C_{7})\epsilon$, $r<|z|<1$ ,
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which proves that $f\in B_{0}^{\alpha}$ .

3. Fatou points. We begin with a corollary of Theorem 1.

Corollary. Let $f$ be holomorphic in $D$ with (1.1) and (1.2). Assume that

$\sum_{k=1}^{\infty}|a_{k}|^{2}=\infty$ and $\lim_{k\rightarrow\infty}|a_{k}|=0$ .

Then, $f\in B_{0}^{1}$ and $f$ has not finite radial limit at almost every point of the circle
$\Gamma=\{|z|=1\}$ .

Lappan proved the special case $n_{k}=q^{k}$ and $a_{k}=k^{-1/2}$ .
For the proof of Corollary we first note that (1.4) with $\alpha=1$ holds because

$|a_{k}|\rightarrow 0$ . It follows from the theorems of G. H. Hardy and J. E. Littlewood and of
A. Zygmund (see, for instance, [4, Theorem A and Theorem $B]$) that $f$ has not finite
radial limit at almost every point of $\Gamma$ .

Let $f$ be meromorphic in $D$ , let $F(f)$ be the set of all Fatou points [3, p. 21] of
$f$, and let $F^{*}(f)$ be the set of $\zeta\in F(f)$ where $f$ has a finite angular limit. Then $F(f\rangle-$

$F^{*}(f)$ is of Lebesgue measure zero. Since $f$ is pole-free in a terminal part of each
angular domain at $\zeta\in F^{*}(f)$ it follows from the Cauchy formula for $f^{\prime}$ that $F^{*}(f)$

$\subset F^{\prime}(f)$ , where $F^{\prime}(f)$ is the set of $\zeta\in\Gamma$ where $(1-|z|)|f^{\prime}(z)|$ has zero as the angular
limit.

Consider now $f$ in Corollary. Then $ F^{\prime}(f)=\Gamma$ and $F^{*}(f)$ is of measure zero,
in other words, the set $F^{\prime}(f)-F^{*}(f)$ is metrically very large.

4. Conformal and semiconformal points. Let $S$ be the family of all functions
holomorphic and univalent in $D$ . Then $f\in S$ is called $nformal$ at $\zeta\in\Gamma$ if $f$ has the
angular limit $ f(\zeta)\neq\infty$ at $\zeta$ and if the function

arg $[(f(\zeta)-f(z))/(\zeta-z)]$

of $z$ has a finite angular limit at $\zeta$[$7$ , p. 303]. We call $f\in S$ semiconformal at $\zeta\in\Gamma$

if the radial limit $ f^{*}(\zeta)\neq\infty$ (being also the angular limit) exists and if the function

$(f^{*}(\zeta)-f(z))/((\zeta-z)f^{\prime}(z))$

of $z$ has the angular limit one at $\zeta$ ; see [2] and [10]. We denote by $\#(f)(\wp_{s}(f)$ ,
resp.) the set of all conformal (semiconformal, resp.) points of $f\in S$ . It is known
that $\mathscr{C}(f)\subset\wp_{s}(f)$ . J. L. Walsh and D. Gaier [9, p. 85] essentially proved that there
exists $f\in S$ such that $1\in \mathscr{C}_{s}(f)-\mathscr{C}(f)$ . A natural question, therefore, arises: How
$largemaybetheset\mathscr{C}_{s}(f)-\mathscr{C}(f)forf\in S$? We shall show
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Theorem 2. There exists $g\in S$ such that $\mathscr{C}_{s}(g)=\Gamma$ and $\mathscr{C}(g)$ is of measure
zero.

Proof. Consider $f\in B_{0}^{1}$ of Corollary in Section 3. We may assume, on
dividing $f$ by a suitable positive constant, that

(4.1) $\sup_{z\in D}(1-|z|^{2})|f^{\prime}(z)|<1$ .

Set

$g(z)=\int_{0}^{z}$ exp $[i(f(w)-f(O))]dw$ , $z\in D$ ,

so that $g(O)=g^{\prime}(0)-1=0$ . First of all it follows from (4.1), together with [1,

Corollary 4.1, p. 36] and $|g^{\prime\prime}/g^{\prime}|=|f^{\prime}|$ , that $g\in S$ . It is known [10, Lemma 1] that
$\zeta\in \mathscr{C}_{s}(g)$ if and only if the angular limit of $(1-|z|)|g^{\prime\prime}(z)/g^{\prime}(z)|(=(1-|z|)|f^{\prime}(z)|)$ at
$\zeta$ is zero. Therefore, $\Gamma=\mathscr{C}_{s}(g)$ . On the other hand, it is known [11, Theorem 2,
p. 121] that $\zeta\in \mathscr{C}(g)$ if and only if arg $g^{\prime}={\rm Re}(f-f(O))$ has a finite angular limit at
$\zeta$ . It then follows from Plessner’s theorem [3, Theorem 8.2, p. 147], applied to. $f-f(O)$ , that

$\mathscr{C}(g)-F^{*}(f)$

is of measure zero. Since $F^{*}(f)$ is of measure zero, it follows that $\wp(g)$ is of measure
zero.

Remark. It is easy to see that $g$ may be extended one-to-one quasiconformally
to the whole extended plane.
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