YOKOHAMA MATHEMATICAL
JOURNAL VoL. 28, 1980

GAP SERIES AND «-BLOCH FUNCTIONS

By
SHINJI YAMASHITA

(Received July 1, 1979)

1. Introduction. Let f be a function holomorphic in D={|z| <1} with the gap
series expansion

(L.1) f(z)= él az", zeD,

where for a constant q>1 the natural numbers n, k> 1, satisfy

(1.2) Meyr/me>q, k=1,

A function g in D is called a-Bloch (a>0) if g is holomorphic in D and if
sup (1-|z])*lg'(2)l < 0 ;

the family of all a-Bloch functions is denoted by B*. A Bloch function [6] is pre-

cisely a 1-Bloch function. Let Bg(a>0) be the family of g holomorphic in D such
that

]zh;t_l}l (1-=1zD%lg’(2)]=0.
It is easy to observe that B = B>
Our main result in the present paper is

Theorem 1. Let f be a holomorphic function in D with (1.1) and (1.2). Then
for a>0, the following two propositions hold.
(M) feB*if and only if

(1.3) I{im sup |g,|ni~%*<o0.
(1) feB§ if and only if
(1.4) klim la,ini=2=0.

Theorem 1(I) in the case a=1 is known; for the proof one should combine

(5, Theorem 1] with [5, Theorem 2 (iii)]; note that the latter half of [8, Theorem] is
identical with [5, Theorem 2 (iii)].
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In Sections 3 and 4 we shall propose some applications of D) in
the case a=1.

The present work arises from the communications with Professor Peter A.
Lappan to whom I wish to express my cordial thanks.

2. Proof of Theorem 1. We begin with

Lemma. Let g(z)= iob,,z" be holomorphic in D. If ge B*g e Bg, respec-
tively) for >0, then
limsup |b,|nt~*<oc0 (lim |b,|nt~*=0, resp.).
As a special case we obtain [5, Theorem i] that {b,} is bounded if ge B!.

For the proof of we first note that (1—n"1)1""—e as n—>0c0. Assume
that g € B*>. By the Cauchy formula one obtains for n>1,

2x »
|by) = |(2rin) ! g g (rel9)ri=nei1=m04f| < C,n=1(1—r)=#1=n
o _
for all 0<r<1; hereafter C(k=1,..., 7) denote positive constants. For n>1 and
for r=1—n"! we thus obtain

byl <Cyn*~ (1 =n71)t7,
whence
limsup |b,jnt~*< o0 .
n—>eo
The proof for the case g € Bg is similar to the above with a few modifications.

In view of the rest we should prove in [Theorem 1 is the ‘‘if” parts in
(D) and (II). We first consider the case (I). First of all we notice by

(1—|L|)1+°‘ = Z, Azl A,~T(1+0)1n*,
that |
3 C
@ %2
(2.1) 3 1+ Dlel" < oy z€D.

It then follows from that
00 0
1zf'(2)| =] kgﬁ a2 < Cy k; nglz[",

whence, on making use of the Cauchy product, one obtains
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LAl <c, $ (5 mlzl.

n= nx<n

Let K=max {k; n,<n}. Then,

a a . a
2.2 ne a=(n_K [1+<_nx_—l> ++<ll_1. ]
(2.2) , nkZS"'lk n ng ng
- —2a T q¢ =
<l+g*+q 22+ pr. Cs.
Therefore,

1D 2o, iz =Cylz] 3 (n+ 12"
1—|z| n=1 n=0

__Gelzl
(1—|z[)t*=

by whence fe B>. We prove next the ““if”” part of (I). Given ¢>0 we may
find ko >2 such that

< for zeD,

lani—2<e forall k>k,.

Set

ko—1
PO=Iz S layinglzi,

so that P is bounded on D. Then, there exists 0<r<1 such that
(2.3) _ (1 —|z)*P(z)<e for r<jz|<l1.

Now,

Z'@)I< X ladmlzl™<|z|P(z)+e 3 nflzl™,
= =ko

so that
lzf"(2)| _ |z|P(2) < ),
I=lz] < 1-1z T2 %, Dl
kzko
It then follows from together with [2.1), that
|zf" (2)] |z] P(z) eC,|z|
2.4) I=lz <=z T U=lzht="

Combining [2.4) with [(2.3) one obtains
A=2D*f' @I<A+Cpe, r<iz|<1,
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which proves that fe Bg.

3. Fatou points. We begin with a corollary of Theorem 1.
Corollary. Let f be holomorphic in D with (1.1) and (1.2). Assume that

Q0
Y lag)*=00 and lim|a,|=0
k=1 k=00

Then, fe B} and f has not finite radial limit at almost every point of the circle
r={|z|=1}. |

Lappan proved the special case n=q* and a,=k"1/2, "

For the proof of y| we first note that [(1.4) w1th a=1 holds because
la,]—0. It follows from the theorems of G. H. Hardy and J. E. Littlewood and of
A. Zygmund (see, for instance, [4, Theorem A and Theorem B]) that f has not finite
radial limit at almost every point of I.

Let f be meromorphic in D, let F(f) be the set of all Fatou points [3, p. 21] of
£, and let F*(f) be the set of { € F(f) where f has a finite angular limit. Then F(f)-
F*(f) is of Lebesgue measure zero. Since f is pole-free in a terminal part of each
angular domain at { € F*(f) it follows from the Cauchy formula for f’ that F*(f)
cF'(f), where F'(f) is the set of { e I' where (1 —|z|)| f'(z)| has zero as the angular
limit.

Consider now f in [Corollary} Then F'(f)=I and F*(f) is of measure zero,
in other words, the set F'(f)-F*(f) is metrically very large.

4. Conformal and semiconformal points. Let S be the family of all functions
holomorphic and univalent in D. Then fe S is called conformal at { e I' if f has the
angular limit f({)# co at { and if the function

arg [(f(O)—f(2)/(—2)]

of z has a finite angular limit at {[7, p. 303]. We call fe S semiconformalat {erI
if the radial limit f*({)# co (being also the angular limit) exists and if the function

(f*O—S@INE-2)f"(2)

of z has the angular limit one at {; see and [10]. We denote by €(f) (¢,(f),
resp.) the set of all conformal (semiconformal, resp.) points of fe S. It is known
that €(f)<¥€(f). J.L. Walsh and D. Gaier [9, p. 85] essentially proved that there
exists fe S such that 1e €(f)—¥¢(f). A natural question, therefore, arises: How
large may be the set €(f)—€(f) for fe S? We shall show
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Theorem 2. There exists g€ S such that €(g)=I and ¥(g) is of measure
zero.

Proof. Consider fe B} of in Section 3. We may assume, on
dividing f by a suitable positive constant, that

.1 sup (1—[219) |/ (2] <.

Set
9= (" exp [i(7(w)-f@)ldw, zeD,

so that g(0)=g’(0)—1=0. First of all it follows from together with [1,
Corollary 4.1, p. 36] and |g”/g’|=|f’|, that ge S. It is known [10, Lemma 1] that
{ e ¥ (g) if and only if the angular limit of (1—|z|)|g"(2)/9'(D)I(=(1—Iz])|f'(2)|) at
{ is zero. Therefore, '=%,g). On the other hand, it is known [11, Theorem 2,
p. 121] that { € €(g) if and only if arg g’=Re(f—f(0)) has a finite angular limit at
{. It then follows from Plessner’s theorem [3, Theorem 8.2, p. 147], applied to

« f—£(0), that
€(g)—F*(f)

is of measure zero. Since F*(f) is of measure zero, it follows that €(g) is of measure
zero.

Remark. It is easy to see that g may be extended one-to-one quasiconformally
to the whole extended plane.
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