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In recent years a number of generalisations of the famous Banach’s contraction
principle have appeared. Of all these, the generalisation of Ciric [4] (see also
Theorem 1) stands at the top. Of course, Benno Fuchssteiner [1] obtained a lattice
theoretic generalisation of Ciric’s result. While Ciric concentrated on a single oper-
ator, Chi Song Wong [2], [3] dealt with a pair of operators.

Ciric took the control function to be a constant, while Chi Song Wong [3]
allowed the control functions to be upper semi-continuous.

Ciric’s result, as it stands, is not valid if the control function is supposed to be
upper semi-continuous (see Example 3). Now a natural question is, what further
conditions are to be imposed, when the control functions are assumed to be upper
semicontinuous? Section 1 of this paper deals with this question.

In Section 2, we try to obtain Ciric type results for a pair of mappings, from
which certain results of Chi Song Wong follow as corollaries. The $\ovalbox{\tt\small REJECT} rresponding$

version of Ciric’s theorem, for a pair of mappings, of course, is not true (see
Example 5).

In Section 3, a number of examples are provided to give an insight into the
results in Sections 1 and 2.

Throughout this paper, $(X, d)$ stands for a complete metric space.

\S 1. Ciric [4] proved the following theorem.

Theorem 1. Let $0\leq\alpha<1$ and $f:X\rightarrow X$ be such that $ d(fx, fy)\leq\alpha$ max $\{d(x, y)$ ,
$d(x, fx),$ $d(y, fy),$ $d(y, fx),$ $d(x, fy)$} for all $x,$ $y$ in X. Then $f$ has a unique fixed
point and for any $x$ in $X$ , the sequence $\{f^{n}(x)\}$ of iterates converges to the fixed
point.

From this, immediately, follows the

Corollary 2. (Hardy and Rogers [5], Theorem 1). Let $f:X\rightarrow X$ and $a,$ $b,$ $c$

be non-negative real numbers such that
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(i) $a+2b+2c<1$

and
(ii) $d(fx,fy)\leq ad(x, y)+bd(x, fx)+bd(y, fy)+cd(x, fy)+cd(y,fx)$ for all $x$ ,

$y$ in $X$ .
Then $f$ has a unique fixed point.

Remarks. (1) Thus Theorem 1 is a generalisation of Hardy-Rogers Theorem.
Example 1 shows that this is a proper generalisation. Ciric [4] also gave an example
to this effect, but there $X$ is an infinite set.

(2) It can also be shown that (see Example 2) there is a situation where
Theorem 1 guarantees the existence of a fixed point while Chi Song Wong’s Theorem
([3], Theorem 1) does not. See Corollary 5 also for a modified version of Wong’s
Theorem.

(3) Theorem 1 is not true if $\alpha$ is replaced by an upper semi-continuous non-
negative real valued function on $(0, \infty)$ as is evident from Example 3.

However, we have

Theorem 3. Let $\alpha:(0, \infty)\rightarrow[0,1)$ be upper semi-continuous from the right
and $f:X\rightarrow X$ be such that

$d(fx,fy)\leq\alpha(t)$ max $\{d(x, y), d(x, fx), d(y, fy),\frac{1}{2}[d(x, fy)+d(y,fx)]\}$

whenever $x,$ $y\in X$ and $t=d(x, y)>0$ . Then, for any $x$ in $X$ , the sequence $\{f^{n}(x)\}$

of iterates is Cauchy. If further, $\alpha$ is upper semi-continuous, then there exists a
point $z$ in $X$ such that $\{f^{n}(x)\}$ converges to $z$ for all $x$ in $X$ ; consequently, if $f$ has
a fixed point, then $z$ is the unique fixed point of $f$.

Proof. We follow the proof of Theorem 1 of Chi Song Wong [3]. Let $x_{0}\in X$

and $x_{n}=f^{n}(x_{O})$ for $ n=1,2,3,\cdots$ .
We first show that $\{x_{n}\}$ is Cauchy. For this, we may assume that $x_{n}\neq x_{n+1}$

for all $n$ .
Let $t_{n}=d(x_{n-1}, x_{n})$ for $ n=1,2,3,\cdots$ .

Now

$d(x_{n}, x_{n+1})=d(fx_{n-1}, fx_{n})\leq\alpha(t_{n})$ max $\{d(x_{n-1}, x_{n}),$ $d(x_{n}, x_{n+1}),$ $\frac{1}{2}d(x_{n-1}, x_{n+1})\}$

Since $\alpha(t_{n})<1$ , we must have
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$d(x_{n}, x_{n+1})\leq\alpha(t_{n})$ max $\{d(x_{n-1}, x_{n}),$ $\frac{1}{2}d(x_{n-1}, x_{n+1})\}$

$\leq\alpha(t_{n})$ max $\{d(x_{n-1}, x_{n}),$ $\frac{1}{2}[d(x_{n-1}, x_{n})+d(x_{n}, x_{n+1})]\}$

so that $d(x_{n}, x_{n+1})\leq\alpha(t_{n})d(x_{n-1}, x_{n})$ for $n\geq 1$ . Thus

(1) $t_{n+1}\leq\alpha(t_{n})t_{n}$ for $n\geq 1$ ,

so that $\{t_{n}\}$ is a decreasing sequence of positive reals and hence converges, say to
$\beta\geq 0$ .

If $\beta>0$, letting $ n\rightarrow\infty$ in (1), we get

$\beta\leq\lim$ $sup\alpha(t_{n})\beta\leq\alpha(\beta)\beta$,

since $\alpha$ is upper semi-continuous from the right, a contradiction. Thus $\beta=0$ .
Assume $\{x_{n}\}$ is not Cauchy. Then $\exists\epsilon>0$ and increasing sequences $\{m_{k}\}$ and

$\{n_{k}\}$ of positive integers, such that

$ d(x_{m_{k}}, x_{n_{k}})\geq\epsilon$ and $d(x_{m_{k}}, x_{n_{k}-1})<\epsilon\forall k$ .
Thus,

$\gamma_{k}\rightarrow\epsilon$ as $ k\rightarrow\infty$ , where $\gamma_{k}=d(x_{m_{k}}, x_{n_{k}})$ .
So we can choose $\{\gamma_{k}\}$ such that $\gamma_{k}\downarrow\epsilon$ . Now

$d(x_{m_{k}+1}, x_{n_{k}+1})\leq\alpha(\gamma_{k})\max\{\gamma_{k},$ $d(x_{m_{k}}, x_{m_{k}+1}),$ $d(x_{n_{k}}, x_{n_{k}+1})$ ,

$\frac{1}{2}[d(x_{m_{k}}, x_{n_{k}+1})+d(x_{n_{k}}, x_{m_{k}+1})]\}$

so that, letting $k\rightarrow\infty,$ $\epsilon\leq\alpha(\epsilon)\epsilon$ , a contradiction. Thus $\{x_{n}\}$ is Cauchy. Since $X$ is
complete, $\exists z\in X\ni f^{n}(x_{0})\rightarrow z$ .

Now suppose $\alpha$ is upper semi-continuous. Let $y_{0}\in X$ and assume that the
sequence $\{y_{n}\}$ of iterates converges to $v$, where $y_{n}=f^{n}(y_{0})$ . Let $\delta_{n}=d(x_{n}, y_{n})$ so
that $\delta_{n}\rightarrow d(z, v)=\delta$ (say). If $z\neq v$, then $x_{n}\neq y_{n}\forall n\geq 0$ so that

$d(x_{n+1}, y_{n+1})\leq\alpha(\delta_{n})$ max $\{d(x_{n}, y_{n}),$ $d(x_{n}, x_{n+1})$ ,

$d(y_{n}, y_{n+1}),$ $\frac{1}{2}[d(x_{n}, y_{n+1})+d(y_{n}, x_{n+1})]\}$

Letting $ n\rightarrow\infty$ and making use of the upper semi-continuity of $\alpha$, we get $\delta\leq\lim$ sup
$\alpha(\delta_{n})\delta\leq\alpha(\delta)\delta$ a contradiction.
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Remark 1. The upper semi-continuity of $\alpha$ in the second part of Theorem 3
can be equivalently replaced by continuity. For, if $\alpha:(0, \infty)\rightarrow[0,1)$ is upper
semi-continuous, then there exists a continuous function $\beta:(0, \infty)\rightarrow[0,1)$ such that
$\alpha(t)\leq\beta(t)$ for all $t$ in $(0, \infty)$ .

Proof. First we observe that an upper semi-continuous function attains its
maximum on a bounded closed interval. Let

$a_{n}=\max\{\alpha(t)|\frac{1}{n+1}\leq t\leq\frac{1}{n}\}$

$b_{n}=\max\{\alpha(t)|n\leq t\leq n+1\}$

$c_{n}=\max\{a_{k}|1\leq k\leq n\}$

and

$d_{n}=\max\{a_{1}, b_{k}|1\leq k\leq n\}$

for $ n=1,2,\cdots$ .
Define $\beta:(0, \infty)\rightarrow[0,1)$ by

$\beta(n+t)=td_{n+1}+(1-t)d_{n}$ if $0\leq t\leq 1,$ $ n=1,2,\cdots$ ,

$\beta(\frac{t}{2}+1-t)=tc_{2}+(1-t)d_{1}$ if $0\leq t\leq 1$

and

$\beta(\frac{t}{n}+\frac{1-t}{n+1})=tc_{n}+(1-t)d_{n+1}$ if $0\leq t\leq 1,$ $ n=2,3,\cdots$ .

Then $\beta$ serves the purpose.
However, if $\alpha:(0, \infty)\rightarrow[0,1)$ is upper semi-continuous from the right, then

there may not exist a continuous function $\beta:(0, \infty)\rightarrow[0,1)$ such that $\alpha\leq\beta$ . For
example, take $\alpha(t)=t$ if $0<t<1$ and $\alpha(t)=\frac{1}{2}$ if $t\geq 1$ .

Remark 2. The hypothesis of Theorem 3 does not guarantee the existence of
a fixed point. In fact, Example 4 shows that $f$ may not have a fixed point even if $X$

is a compact convex subset of a Banach space and even if we take into consideration
the maximum over the first three terms only.

However, a slight strengthening of the hypothesis of Theorem 3 ensures the
existence of a fixed point. In fact, we have the following

Theorem 4. Let $\alpha:(0, \infty)\rightarrow[0,1)$ be upper semi-continuous from the right,
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$a:[0, \infty)\rightarrow(0,1),$ $ b:[0, \infty$) $\rightarrow(0,1)$ be continuous at $0$ and $a(t)+b(t)=1\forall t\in[0$,
$\infty)$ and $f:X\rightarrow X$ be such that

(I) $d(fx,fy)\leq\alpha(t)$ max $\{d(x, y),$ $a(t)d(x,fx)+b(t)d(y,fy)$ ,

$b(t)d(x, fx)+a(t)d(y, fy),$ $\frac{1}{2}[d(x, fy)+d(y, fx)]\}$

whenever $x,$ $y\in X$ and $t=d(x, y)>0$ . Then $f$ has a unique fixed point and for any
$x$ in $X$ , the sequence $\{f^{n}(x)\}$ of iterates converges to the fixed point.

Proof. Let $x_{0}\in X$ . Then from Theorem 3, it follows that the sequence $\{x_{n}\}$ ,
where $x_{n}=f^{n}(x_{0})$ , is Cauchy. Since $X$ is $\ovalbox{\tt\small REJECT} mplete,$ $\exists z\in X$ such that $\{x_{n}\}\ovalbox{\tt\small REJECT} nverges$

to $z$ . Let $t_{n}=d(x_{n}, z)$ for $ n=1,2,3,\cdots$ .
If $x_{n}=z$ for infinitely many $n$ , then $fz=z$ . So we may assume that $\exists N$ such

that $x$. $\neq z$ for $n\geq N$ .
For $n\rightarrow N$ , consider

$d(x_{n+1},fz)=d(fx_{n},fz)\leq\alpha(t_{n})$ max $\{d(x_{n}, z),$ $[a(t_{n})d(x_{n}, x_{n+1})+b(t_{n})d(z,fz)]$ ,

$[b(t_{n})d(x_{n}, x_{n+1})+a(t_{n})d(z, fz)],\frac{1}{2}[d(x_{n}, fz)+d(z, x_{n+1})]\}$ .

Since $\alpha(t_{n})<1$ , by taking limits as $ n\rightarrow\infty$ , we obtain $d(z,fz)\leq\max\{a(0),$ $b(O),$ $\frac{1}{2}\}$

$d(z,fz)$ so that $fz=z$ .
The uniqueness part is obvious.

Remark. From the proof of Theorem 4, it follows that for $f$ satisfying (I) with
$\alpha(t)$ replaced by 1, if the sequence of iterates converges then the limit is a fixed point.

Corollary 5. (Chi Song Wong [3], Theorem 1) Let $\alpha_{i}$ : $(0, \infty)\rightarrow[0,1)$ (for

$i=1,2,3,4,5)$ be upper semi-continuous from the right and $\sum_{i=1}^{5}\alpha_{i}(t)<1$ for any $t$ .
Let $f:X\rightarrow X$ be such that

$d(fx, fy)\leq\alpha_{1}(t)d(x, y)+\alpha_{2}(t)d(x,fx)+\alpha_{3}(t)d(y, fy)+\alpha_{4}(t)d(x, fy)+\alpha_{5}(t)d(y,fx)\backslash $

whenever $x,$ $y\in X$ and $t=d(x, y)>0$ .
Then $f$ has a unique fixed point.

Note. In this corollary we may suppose that $\alpha_{2}=\alpha_{3}$ and $\alpha_{4}=\alpha_{5}$ .
Remark. Thus Theorem 4 is a generalisation of Wong’s Theorem. That it

is a proper generalisation is evident from Example 2.
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\S 2. In this section, we prove some theorems on the existence of fixed point
for a pair of mappings.

For a pair of mappings, we have the following analogue of Theorem 4.

Theorem 6. Let $\alpha:(0, \infty)\rightarrow[0,1)$ be upper semi-continuous, $ a:[0, \infty$ ) $\rightarrow$

$(0,1),$ $ b:[0, \infty$) $\rightarrow(0,1)$ be continuous at $0$ and $a(t)+b(t)=1\forall t\in[0, \infty)$ and $f$ :
$X\rightarrow X,$ $g:X\rightarrow X$ be such that

(I) $d(fx, gy)\leq\alpha(t)$ max $\{d(x, y),$ $[a(t)d(x,fx)+b(t)d(y, gy)]$ ,

$[b(t)d(x,fx)+a(t)d(y, gy)],$ $\frac{1}{2}[d(x, gy)+d(y, fx)]\}$

whenever $x,$ $y\in X$ and $t=d(x, y)>0$ .
Then eitherf org hasafixed point. Iffurther,

$d(fx, gx)\leq\max\{[a(0)d(x,fx)+b(O)d(x, gx)]$ ,

$[b(O)d(x,fx)+a(O)d(x, gx)],\frac{1}{2}[d(x,fx)+d(x, gx)]\}$

for all $x$ in $X$ , then each of $f,$ $g$ has a unique fixed point and these points coincide.

Proof. Let $x_{0}\in X,$ $x_{2\cdot+1}=fx_{2n}$ and $x_{2n+2}=gx_{2n+1}$ for $ n=0,1,2,\cdots$ . We may
assume that $x_{n}\neq x_{n+1}$ for any $n$ . Let $t_{n}=d(x_{n}, x_{n+1})$ . Then $d(x_{2n}, x_{2n+1})=d(fx_{2n}$ ,
$gx_{2n-1})$ and using (I), we get

$d(x_{2n}, x_{2n+1})\leq\alpha(t_{2n-1})d(x_{2n-1}, x_{2n})$ .
Similarly

$d(x_{2n+1}, x_{2n+2})\leq\alpha(t_{2n})d(x_{2n}, x_{2n+1})$

so that

$i_{n}\leq\alpha(t_{n-1})t_{n-1}$ for $ n=1,2,\cdots$ .
Now, by the upper semi-continuity of $\alpha$, as in Theorem 3, it follows that $t_{n}\downarrow 0$ .

Suppose $\{x_{n}\}$ is not Cauchy. Then there exist $\epsilon>0$ and subsequences $\{m_{k}\}$ and
$\{n_{k}\}$ of the sequence of positive integers such that $ d(x_{m_{k}}, x_{n_{k}})\rightarrow\epsilon$ .

Let $A=$ { $k|m_{k}$ and $n_{k}$ are even}, $B=$ {$k|m_{k}$ and $n_{k}$ are odd}, $C=\{k|m_{k}$ is even
$andn_{k}$ is odd} andD $=$ { $k|m_{k}isoddandn_{k}$ is even}. Then, at least one of A, $B,$ $C,$ $D$

is infinite.
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Assume $A$ is infinite. Then, by considering $d(x_{m_{k}+1}, x_{n_{k}})=d(fx_{m_{k}}, gx_{n_{k}-1})$ ,
making use of (I) and letting $ k\rightarrow\infty$ , we get $\epsilon\leq\alpha(\epsilon)\epsilon$ a contradiction, so that $A$ can not
be infinite.

Similarly $B,$ $C,$ $D$ can not be infinite, consequently $\{x_{n}\}$ is Cauchy. Let $x_{n}\rightarrow z$ .
Then $x_{n}\neq z$ for infinitely many $n$ . If $x_{2n}\neq z$ for infinitely many $n$ , then, by con-
sidering $d(x_{2n+1}, gz)=d(fx_{2n}, gz)$ , making use of (I) and letting $ n\rightarrow\infty$ , we get, $gz=z$ .
Similarly, if $x_{2n+1}\neq z$ for infinitely many $n$ , then $fz=z$ .

The second part of the theorem is obvious.

Corollary 7. (Chi Song Wong [3], Theorem 2). Let $\alpha_{i}$ : $(0, \infty)\rightarrow[0,1)$ for
$i=1,2,3$ be upper semi-continuous and $\alpha_{1}(t)+2\alpha_{2}(t)+2\alpha_{3}(t)<1\forall t$ . Let $f:X\rightarrow X$,
$g:X\rightarrow X$ be such that

$d(fx, gy)\leq\alpha_{1}(t)d(x, y)+\alpha_{2}(t)[d(x, fx)+d(y, gy)]+\alpha_{3}(t)[d(x, gy)+(y,fx)]$

whenever $x,$ $y\in X$ and $t=d(x, y)>0$ . Then either $f$ or $g$ has a fixed point.
From Theorem 6, we have also the following

Corollary 8. Let $0\leq\alpha<\frac{1}{2}$ , $f:X\rightarrow X,$ $g:X\rightarrow X$ be such that $ d(fx, gy)\leq$

$\alpha$ max $\{d(x,fx), d(y, gy), d(x, gy), d(y, fx)\}$ for all $x,$ $y$ in X. Then either
$f$ or $g$ has a fixed point.

However, Corollary 8 is not true if $\alpha=\frac{1}{2}$ as is evident from Examples 5 and 6.
But there are situations, where $f$ or $g$ has a fixed point if $0<\alpha<1$ and some con-
traction inequality is satisfied. In fact, we have the following

Theorem 9. Let $0\leq\alpha<1,$ $f:X\rightarrow X,$ $g;X\rightarrow X$ be such that

(I) $ d(fx, gy)\leq\alpha$ max $\{d(x, y),$ $d(x, fx),$ $d(y, gy),$ $\frac{1}{2}[d(x, gy)+d(y, fx)]\}$

whenever $x,$ $y\in X$ and $x\neq y$ .
Then eitherf org hasafixed point. Iffurther,

$ d(fx, gx)\leq\alpha$ max $\{d(x,fx), d(x, gx)\}$ $\forall x\in X$ ,

then each of $f$ and $g$ has a unique fixed point, these fixed points coincide and for
any $x_{0}\in X$ , the sequence $\{x_{n}\}$ (where $x_{2n+1}=f(x_{2n})$ and $x_{2n+2}=g(x_{2n+1})$ for $n=$

$0,1,2,\cdots)$ of iterates converges to the common fixed point.
In fact, Theorem 9 can be improved as follows;
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Theorem 10. Let $f:X\rightarrow X,$ $g:X\rightarrow X$ be such that whenever $x$ and $y$ are
distinct elements of $X$ ,

(I) $d(fx, gy)\leq\max\{\alpha d(x, y), \alpha d(x, fx), \alpha d(y, gy), ad(x, gy)+bd(y, fx)\}$

whenever $x,$ $y\in X$ and $x\neq y$ , where $0\leq\alpha<1,$ $a\geq 0,$ $b\geq 0,$ $a+b<1$ , and $\alpha$ .
max $\{\frac{a}{1-}$

a , $\frac{b}{1-b}\}<1$ . Then at least one of $f$ and $g$ has a fixed point. Iffurther,

(I) holds for all $x,$ $y$ in $X$ , then each of $f$ and $g$ has a unique fixed point and these
fixed points coincide and for any $x_{0}\in X$ , the sequence $\{x_{n}\}$ of iterates converges to
the common fixed point.

Proof. Let $x_{0}\in X,$ $x_{2n+1}=f(x_{2n})$ and $x_{2n+2}=g(x_{2n+1})$ for $ n=0,1,2,\cdots$ . We
may assume that $x_{n}\neq x_{n+1}$ for any $n$ . Consider

$d(x_{2n+1}, x_{2n})=d(fx_{2n}, gx_{2n-1})$

$\leq\max\{\alpha d(x_{2n-1}, x_{2n}), \alpha d(x_{2n}, x_{2n+1}), bd(x_{2n-1}, x_{2n+1})\}$ .
Since $0\leq\alpha<1$ , we must have

$d(x_{2n+1}, x_{2n})\leq\max\{\alpha d(x_{2n-1}, x_{2n}), bd(x_{2n-1}, x_{2n+1})\}$

and hence

(II) $d(x_{2n}, x_{2n+1})\leq\max\{\alpha,$ $\frac{b}{1-b}\}d(x_{2n-1}, x_{2n})$ .

Similarly, we can show that

(III) $d(x_{2n+1}, x_{2n+2})\leq\max\{\alpha,$ $\frac{a}{1-a}\}d(x_{2n}, x_{2n+1})$ .

Let

$c=(\max\{\alpha,$ $\frac{a}{1-a}\})\cdot(\max\{\alpha,$ $\frac{b}{1-b}\})$ . Then $0\leq c<1$ .

From (II) and (III)

$d(x_{2n}, x_{2n+1})\leq cd(x_{2n-2}, x_{2n-1})$

and

$d(x_{2n+1}, x_{2n+2})\leq cd(x_{2n-1}, x_{2n})$ for $ n=1,2,\cdots$ .
Hence

$d(x_{tn}, x_{2n+1})\leq c^{n}d(x_{0}, x_{1})$ and $d(x_{2n+1}, x_{2n+2})\leq c^{n}d(x_{1}, x_{2})$
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for $ n=1,2,\cdots$ . Consequently $\{x_{n}\}$ is Cauchy. Since $X$ is complete, $\{x_{n}\}$ converges,
say, to $z$ . Proceeding as in Theorem 6, it can be seen that either $fz=z$ or $gz=z$ .
The second part of the theorem is obvious.

From Theorem 9, we have the following

Corollary 11. Let $0\leq\alpha<\frac{1}{2}$ and $f:X\rightarrow X,$ $g:X\rightarrow X$ be such that

$ d(fx, gy)\leq\alpha$ max $\{d(x, y), d(x,fx), d(y, gy), d(x, gy), d(y, fx)\}$

for distinct $x,$ $y$ in X. Then either $f$ or $g$ has a fixed point. Further, if the in-
equality holds when $x=y$ also, then both $f$ and $g$ have uniquefixed points and these
fixed points coincide.

Theorem 12. Let $0\leq\alpha<1$ , $a$ and $b$ be non-negative numbers such that $a+$

$b<1$ ,

(I) $\alpha|a-b|<1-(a+b)$

and $f:X\rightarrow X,$ $g;X\rightarrow X$ be such that whenever $x,$ $y$ are distinct elements in $X$

(II) $ d(fx, gy)\leq\alpha$ max $\{d(x, y), d(x, fx), d(y, gy)\}$

$+(1-\alpha)[ad(x, gy)+bd(y,fx)]$ .
Then at least one of$f$ and $g$ has a fixed point. Iffurther, (II) holds for all $x,$ $y$ in
$X$ , then the sequence of iterates, for any $x_{0}$ in $X$ , converges to the common fixed
point of $f$ and $g$ .

Proof. Let $x_{0}\in X,$ $x_{2n+1}=fx_{2n}$ and $x_{2n+2}=gx_{2n+1}$ for $ n=0,1,2,\cdots$ . We may
assume that $x_{n}\neq x_{n+1}$ for any $n$ . Now,

$ d(x_{2n+1}, x_{2n+2})=d(fx_{2n}, gx_{2n+1})\leq\alpha$ max $\{d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2})\}$

$+(1-\alpha)ad(x_{2n}, x_{2n+2})$

$\Rightarrow d(x_{2n+1}, x_{2n+2})\leq\max\{\alpha d(x_{2n}, x_{2n+1})+(1-\alpha)ad(x_{2n}, x_{2n+2})$ ,

$ad(x_{2n}, x_{2n+2})\}$

$\Rightarrow d(x_{2n+1}, x_{2n+2})\leq\beta d(x_{2n}, x_{2n+1})$ , where $\beta=\max\{\frac{\alpha+(1-\alpha)a}{1-(1-\alpha)a},$ $\frac{a}{1-a}\}$ .
Similarly

$d(x_{2n}, x_{2n+1})\leq\gamma d(x_{2n-1}, x_{2n})$ , where $\gamma=\max\{\frac{\alpha+(1-\alpha)b}{1-(1-\alpha)b},$ $\frac{b}{1-b}\}$ ,

for $ n=1,2,\cdots$ .
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Let $ c=\beta\gamma$ .
If $a,$ $b\in[0,$ $\frac{1}{2})$ , then $\beta<1$ and $\gamma<1$ so that $0\leq c<1$ .

If max $\{a, b\}\geq\frac{1}{2}$ then, since $\frac{\alpha+(1-\alpha)x}{1-(1-\alpha)x}\leq\frac{x}{1-x}\Leftrightarrow\frac{1}{2}\leq x\forall x\in[0,1$ ), it
follows from (I) that $0\leq c<1$ .

The rest of the proof follows as in Theorem 10.

Corollary 13. Let $f:X\rightarrow X,$ $g;X\rightarrow X$ be such that for all $x,$ $y$ in $X$

$d(fx, gy)\leq a_{1}d(x, y)+a_{2}d(x, fx)+a_{3}d(y,fy)+a_{4}d(x, gy)+a_{5}d(y,fx)$

where $a_{i}\geq 0\forall i,\sum_{\ell=1}^{5}a_{i}<1$ and

(I) $|a_{4}-a_{5}|(a_{1}+a_{2}+a_{3})<1-\sum_{i=1}^{5}a_{i}$ .

Then $f$ and $g$ have a unique common fixedpoint.

Proof. Take $\alpha=a_{1}+a_{2}+a_{3},$ $a=\frac{a_{4}}{1-\alpha}$ and $b=\frac{a_{5}}{1-\alpha}$ in Theorem 12.

Remark. (i) When, $a_{4}=a_{5},$ $(I)$ in Corollary 13 is trivially satisfied. Con-
sequently, a part of Wong’s Theorem ([2], Theorem 1) follows from the above.

(ii) When $a_{1}+a_{2}+a_{3}+2$ max $\{a_{4}, a_{5}\}=1,$ $(I)$ in Corollary 13 is satisfied.

Theorem 14. Let $0\leq\alpha<1,f:X\rightarrow X$ and $g:X\rightarrow X$ be such that

(I) $ d(fx, gy)\leq\alpha$ max $\{d(x, y), d(x, gy), d(y,fx)\}$ $\forall x,$ $y$ in $X$

and let one of $f$ and $g$ have a fixed point. Then each of $f$ and $g$ has a fixed point
and these fixed points coincide. Moreover, for any $x_{0}$ in $X$ , the sequence $\{x_{n}\}$ of
iterates where $x_{2n+1}=fx_{2n}$ and $x_{2n+2}=gx_{2n+1}$ for $ n=1,2,\cdots$ , converges to the
common fixed point.

Proof. Suppose $fx=x$ . Then

$ d(x, gx)=d(fx, gx)\leq\alpha$ max $\{d(x, gx), d(x,fx)\}=\alpha d(x, gx)$

so that $gx=x$ .
If$fx=x$ and $gy=y$, then

$ d(x, y)=d(fx, gy)\leq\alpha$ max $\{d(x, y), d(x, gy), d(y,fx)\}=\alpha d(x, y)$

so that $x=y$ . Thus the first part of the theorem is proved. Let $x$ be the common
fixed point of $f$ and $g$ . Then
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$ d(x, x_{2n})=d(fx, gx_{2n-1})\leq\alpha$ max $\{d(x, x_{2n-1}), d(x, x_{2n})\}$

so that

$d(x, x_{2n})\leq\alpha d(x, x_{2n-1})$ .
Similarly,

$d(x, x_{2n+1})\leq\alpha d(x, x_{2},)$ since $gx=x$ .
Thus

$d(x, x_{n})\leq\alpha d(x, x_{n-1})$ for $ n=1,2,\cdots$ .
Hence $\{x_{n}\}$ converges to $x$ .

Remark. The first part of the conclusion in Theorem 14 is valid even if, in the
place of (I), we suppose

$ d(fx, gy)\leq\alpha$ max $\{d(x, y), d(x,fx), d(y, gy), d(x, gy), d(y, fx)\}$ .
But the second part of the conclusion need not be true even when the maximum is
considered over the last four only (see Example 7).

The following Theorem is easy to prove.

Theorem15. Let $\alpha:X\times X\rightarrow[0,1$) and $f;X\rightarrow X,$ $g:X\rightarrow X$ be such that
$d(fx, gy)\leq\alpha(x, y)d(fx, y)$ for all $x,$ $y$ in X. Then $f$ is a constant map and $g$ has a
unique fixed point which is necessarily the common fixed point of$f$ and $g$ .

Remark. The above Theorem may be viewed as a generalisation of the example
preceeding Corollary 3 of Wong [2].

We conclude this section with the following

Problem. What can we say about the existence of common fixed points of $f$

and $g$ when they satisfy

$ d(fx, gy)\leq\alpha$ max $\{d(x, gy), d(y, fx)\}$

for all $x,$ $y$ in $X$ and for some $\alpha\in(0,1)$?

\S 3. Examples
1. Let $X=\{1,2,3,4\},$ $d(1,2)=d(1,3)=1,$ $d(1,4)=\frac{3}{2},$ $d(2,3)=d(2,4)=d(3,4)=$

$2,$ $f:X\rightarrow Xbegivenbyf1=1,$ $f2=4,$ $f3=4andf4=1$ . (Clearlyf hasa fixed
point)

Then .
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$d(fx, fy)\leq\frac{3}{4}$ max $\{d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)\}$

for all $x,$ $y$ in $X$ .
But there can not exist non-negative constants $a,$ $b,$ $c$ such that $a+2b+2c$

$\leq 1$ and

$d(fx, fy)\leq ad(x, y)+bd(x, fx)+bd(y,fy)+cd(x,fy)+cd(y, fx)$

for all $x,$ $y$ in X.
For, if such $a,$ $b,$ $c$ exist, then

$d(1,4)=d(f1, f2)\leq ad(1,2)+bd(1,1)+bd(2,4)+cd(1,4)+cd(2,1)$

so that

$\frac{3}{2}\leq a1+bO+b2+c\frac{3}{2}+c1$

$=(a+2b+2c)+\frac{c}{2}\leq 1+\frac{c}{2}\leq 1+\frac{1}{4}$ .

This is a $\ovalbox{\tt\small REJECT} ntradiction$ .
2. Let $X=\{1,2,3,4,5\},$ $d(1,2)=d(1,3)=d(3,5)=\frac{13}{8}$ , $d(1,4)=\frac{3}{2}$ , $d(1,5)=$

$d(2,4)=\frac{7}{4},$ $d(2,3)=d(4,5)=1,$ $d(2,5)=\frac{15}{8}$

and $d(3,4)=2,$ $f:X\rightarrow X$ be given by $f1=1,$ $f2=4,$ $f3=4,$ $f4=1$ and $f5=2$ .
(Clearly $f$ has afixed point).

Then

$d(fx,fy)\leq\frac{14}{15}\max\{d(x, y),$ $\frac{1}{2}[d(x, fx)+d(y, fy)],$ $\frac{1}{2}[d(x,fy)+d(y,fx)]\}$

for all $x,$ $y$ in $X$ .
But there do not exist non-negative real valued functions $a,$ $b,$ $c$ on $(0, \infty)$

such that

(i) $a(t)+2b(t)+2c(t)<1$ for each $t$ in $(0, \infty)$

and

(ii) $d(fx, fy)\leq a(t)d(x, y)+b(t)[d(x, fx)+d(y,fy)]$

$+c(t)[d(x,fy)+d(y,fx)]$

whenever $x,$ $y\in X$ and $t=d(x, y)>0$ .
For, if such functions $a,$ $b,$ $c$ exist, for $t_{0}=\frac{13}{8}$ we have
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$\frac{3}{2}=d(1,4)=d(f1, f2)\leq\frac{13}{8}a(t_{0})+\frac{7}{4}b(t_{0})+\frac{25}{8}c(t_{0})$

and

$\frac{7}{4}=d(4,2)=d(f3, f5)\leq\frac{13}{8}a(t_{0})+\frac{31}{8}b(t_{0})+2c(t_{0})$

which, when added and simplified, yield

$26\leq 26a(t_{0})+45b(t_{0})+41c(t_{0})$

so that

$26<26[a(t_{0})+2b(t_{0})+2c(t_{0})]<26$ .
This is a contradiction.

3. Let $ X=[1, \infty$) with the usual metric, $f:X\rightarrow X$ be given by $fx=2x$ .
Define $\alpha:(0, \infty)\rightarrow(0,1)$ by $\alpha(t)=\frac{2t}{1+2t}$

Then, clearly, $\alpha$ is continuous, and

$|fx-fy|\leq\alpha(t)$ max $\{|x-y|, |x-fx|, |y-fy|, |x-fy|, |y-fx|\}$

whenever $x,$ $y\in X$ and $t=|x-y|>0$, but $f$ has no fixed point.
4. Let $X=[0,1]$ with the usual metric,

$f:[0,1]\rightarrow[0,1]$ be given by $f(x)=\left\{\begin{array}{ll}\frac{x}{2} & if 0<x\leq 1\\1 & if x=0\end{array}\right.$

and

$\alpha:(0, \infty)\rightarrow(0,1)$ be defined by $\alpha(t)=\left\{\begin{array}{ll}1-\frac{t}{2} & if 0<t\leq 1\\\frac{1}{2} & if 1<t<\infty\end{array}\right.$

Then, clearly $\alpha$ is continuous monotonically decreasing, and $|fx-fy|\leq\alpha(t)$ .
max $\{|x-y|, |x-fx|, |y-fy|\}$ whenever $x,$ $y\in X$ and $t=|x-y|>0$ , but $f$ has no
fixed point.

5. Let $X=\{1,2,3,4\},$ $d(1,2)=d(3,4)=2,$ $d(1,3)=d(1,4)=d(2,3)=d(2,4)=1$

Define $f:X\rightarrow X$ by $f1=f4=2$ and $f2=f3=1$

and $g:X\rightarrow X$ by $g1=g3=4$ and $g2=g4=3$ .

Then
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$d(fx, gy)\leq\frac{1}{2}$ max $\{d(x,fx), d(y, gy), d(x, gy), d(y,fx)\}$ $\forall x,$ $y$ in $X$

but neither $f$ nor $g$ has a fixed point.

6. Let $X=\{1,2,3,4\},$ $d(1,2)=d(3,4)=2;d(1,3)=d(2,4)=1;d(1,4)=d(2,3)=\frac{3}{2}$ .

Define $f:X\rightarrow X$ by $f1=f4=2;f2=f3=1$ ,

$g:X\rightarrow X$ by $g1=g3=4;g2=g4=3$ .

Then

$d(fx, gy)\leq\frac{3}{4}$ max $\{d(x,fx), d(x, gy), d(y, fx)\}$ $\forall x,$ $y\in X$ .

Also

$d(fx, gy)\leq\frac{3}{4}\max\{d(x,fx), d(y, gy), d(x, gy)\}$ $\forall x,$ $y\in X$ .

But neither $f$ nor $g$ has a fixed point.

7. Let $X=\{1,2,3,4,5\};d(1,2)=d(1,4)=d(2,5)=d(3,5)=1$ ;

$d(1,5)=d(2,3)=\frac{3}{2}$ ; $d(4,5)=\frac{7}{4}$ ; $d(3,4)=\frac{15}{8}$ ; $d(1,3)=d(2,4)=2$ .

Define

$f:X\rightarrow X$ by $f1=2,$ $f2=f4=f5=5,$ $f3=4$

and

$g;X\rightarrow X$ by $g1=g2=3,$ $g3=g5=5,$ $g4=1$ .
Then $f$ and $g$ have a common fixed point,

$d(fx, gy)\leq\frac{15}{16}$ max $\{(d(x, fx), d(y, gy), d(x, gy), d(y, fx)\}$

for all $x,$ $y$ in $X$ , but neither the sequence $\{x_{n}\}$ nor the sequence $\{y,\}$ of iterates
corresponding to the point $x_{0}=1=y_{0}$ converges,

where $x_{2n+1}=fx_{2n},$ $x_{2n+2}=gx_{2n+1}$ ,

$y_{2n+1}=gy_{2n}$ and $y_{2n+2}=fy_{2n+1}$ for $ n=0,1,2,\cdots$ .
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