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ABSTRACT: In this paper, some fixed point theorems are proved for multi-mappings
defined on uniform spaces. These employ suitable continuity conditions and require
certain sets to be nonempty. Some well known results for point-valued mappings in-
cluding Banach’s contraction principle are contained as special cases of the results obtained
here.

Given a multi-mapping and a point-valued mapping defined on a Hausdorff locally
convex space, conditions are sought, that yield a fixed point for the sum of two mappings.
Certain theorems of Krasnoselskii-type are obtained. These contain some known results
for point-valued mappings.

1. Introduction

A multi-mapping $T$ on a set $X$ is a correspondence such that $T(x)$ is a subset
of $X$ for each $x\in X$ ; and a fixed point of $T$ is a point $x$ satisfying $x\in T(x)$ . In
this paper, we extend the principal fixed point result (Theorems 2.1 and 2.4) of
Wong [10] for point valued mappings on uniform spaces to multi-mappings. These
yield certain interesting corollaries which are employed to obtain fixed point theorems
of Krasnoselskii-type (cf. [1], p. 26) for multi-mappings on locally convex spaces.
These contain as special cases some recent results of Cain Jr., and Nashed [2] for
point-valued mappings.

2. Fixed points in uniform spaces

Let (X, $\mathcal{U}$) be a uniform space. For the terminology of uniform spaces, we
refer the reader to Kelley [5]. Let $\mathcal{B}$ denote the base for $\mathcal{U}$ consisting of all closed
symmetric entourages. Let $2^{X}$ (resp. Cpt(X)) denote the family of nonempty closed
(resp. compact) subsets of $X$ . Let $T:X\rightarrow 2^{X}$ be a multi-mapping. Given $ U\in\%$ ,
let

$U_{T}=\{x\in X;x\in U[T(x)]\}$ and
$U_{\acute{T}}=$ {$x\in X:(x,$ $y)\in U$ for all $y\in T(x)$}.

The families { $ U_{T}\times U_{T}\cup\Delta$ :U\in %} and $\{U_{\acute{T}}\times U_{T}^{\prime}\cup\Delta:U\in l\}nstitute$ bases for
uniformities on X. (Here $\Delta$ denotes the diagonal of $X\times X$). We denote these
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uniformities by $\mathcal{U}_{T},$ $q_{T}^{\prime}$ respectively.
Given $U\in q$ let

$0=\{(A, B)\in 2^{X}\times 2^{X} : A\times B\subset U\}\cup\Delta$

and
$0=$ {$(A,$ $B)\in 2^{X}x2^{X}$ : $A\subset U[B]$ and $B\subset U[A]$ }.

The families
$\{O:U\in \mathcal{U}\},$ $\{U:U\in l\}$

constitute bases for uniformities on $2^{X}$ . We denote these uniformities by $\hat{\alpha},$ $\ovalbox{\tt\small REJECT}$

respectively. Let $\mathcal{D}=\{d_{i}: i\in I\}$ be a family of uniformly continuous pseudometrics
on $X$ such that the family $\{B(i, \epsilon);i\in I, \epsilon>0\}$ , where $B(i, \epsilon)=\{(x, y):d_{i}(x, y)<\epsilon\}$

is a base for $\mathcal{U}$ . Such a family $\mathcal{D}$ is called an augmented associated family for the
uniformity $q$ . It is well known that for each uniformity on $X$ , there exists an
augmented associated family 9 (cf. Thron [9], p. 177). For each $i\in I$ and $A,$ $ B\in$

$2^{X}$ , let
$\delta_{\ell}(A, B)=\sup\{d_{i}(a, b):a\in A, b\in B\}$ and

$D_{i}(A, B)=\max\{\sup_{a\in Ab}\inf_{\in B}d_{\ell}(a, b),$ $\sup_{be}inf^{d_{i}(a,b)\}}$ .
Let

$ B(i, \epsilon)=\{(A, B)\in 2^{X}\times 2^{X} : \delta_{i}(A, B)<\epsilon\}\cup\Delta$

$B(i, \epsilon)=\{(A, B)\in 2^{X}\times 2^{X}: D_{i}(A, B)<\epsilon\}$

and let
$\hat{\mathcal{B}}=\{B(i, \epsilon):i\in I, \epsilon>0\}$ ,
$\ovalbox{\tt\small REJECT}=\{B(i, \epsilon):i\in I, \epsilon>0\}$ .

It is easily verified that the families es, $\ovalbox{\tt\small REJECT}$ constitute bases for uniformities on $2^{X}$

that are uniformly equivalent to the uniformities $\hat{\mathcal{U}}$ , ev respectively.

Theorem 2.1. Let (X, %) be a nonempty complete unform space. Suppose
that $T:(X, \mathcal{U}_{T})\rightarrow(2^{X},\hat{\mathcal{U}})$ is uniformly continuous and satisfies (i) $x\neq y$ and $T(x)$ ,
$T(y)$ are not singleton sets imply $T(x)\neq T(y)$ ; (ii) $U_{T}$ is a nonempty closed subset
of $X$ for each $ U\in$ va.

Then $T$ has a fixed point. Furthermore, if $X$ is Hausdorff, then the fixed
point is unique.

Proof. We consider the family $\mathscr{F}=\{U_{T}: U\in g\}$ . By hypothesis, ,9 is a
family of nonempty closed sets with finite intersection property. We assert that
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$\mathscr{F}$ contains small sets. Let $W\in \mathcal{U}$ . Pick up $U\in \mathcal{B}$ such that $U\circ U\circ U\subset W$. Since
$T:(X, \%_{T})\rightarrow(2^{X},\hat{\mathcal{U}})$ is uniformly continuous, there is a $V\in \mathcal{B}$ such that $(u, v)\in V_{T}$

$\times V_{T}\cup\Delta$ implies $(T(u), T(v))\in U$ . Let $H=U\cap V$. Then $H_{T}\in \mathscr{F}$ . Let $x,$ $y\in H_{T}$ .
Then $(x, z_{x})\in H,$ $(y, z_{y})\in Hforsomez_{x}\in T(x)andz_{y}\in T(y)$ . Sinoe $(x, y)\in V_{T}\times V_{T}$ ,

$(T(x), T(y))\in O$ and hence $(z., z_{y})\in U$ . Thus $(x, y)\in H\circ U\circ H\subset W$ Therefore,
$H_{T}\times H_{T}\subset W$ and $\mathscr{F}$ contains small sets. Since (X, $\mathcal{U}$) is complete, $\cap \mathscr{F}\neq\emptyset$ . Let
$x\in\cap \mathscr{F}$ . Then $x\in\cap\{U[T(x)]:U\in \mathcal{B}\}=\overline{T(x})=T(x)$ and $x$ is a fixed point of $T$.
Now suppose that $X$ is Hausdorff and let $u,$ $v$ be fixed points of $T$. Given $V\in \mathcal{B}$ ,

there is a $U\in \mathcal{B}$ such that $(T(x), T(y))\in V$ whenever $(x, y)\in U_{T}\times U_{T}\cup\Delta$ . Since
$(u, v)\in U_{T}\times U_{T}$, one has $(u, v)\in V$ for each $V\in \mathcal{B}$ . Therefore $(u, v)\in\cap \mathcal{B}=\Delta$ .
Hence $u=v$ and the proof is complete.

Theorem 2.1 generalizes a point valued result of Wong ([8], p. 97) to multi-
mappings.

It is easily seen that $T:(X, \mathcal{U})\rightarrow(2^{X},\hat{\mathcal{U}})$ is uniformly continuous if and only if
for each $i\in I$ and $\epsilon>0$, there is a $j\in I$ and $\delta(\epsilon)>0$ such that $x,$ $y\in X$ and

$d_{j}(x, T(x))+d_{j}(y, T(y))<\delta(\epsilon)$

imply either $T(x)=T(y)$ or $\delta_{i}(T(x), T(y))<\epsilon$ . (Here $d_{j}(x, T(x))=\inf\{d_{j}(x, y):y\in T$

$(x)\})$ .
We denote the class of multi-mappings $T;X\rightarrow Cpt(X)$ satisfying the above

criterion by $\hat{\mathcal{D}}(X)$ . An easy application of Theorem 2.1 yields:

Theorem 2.2. Let $X$ be a nonempty complete uniform space. Suppose $T\in\hat{\mathcal{D}}$

(X) and satisfies:
(i) $x\neq y$ and $T(x),$ $T(y)$ are not singleton sets imply $T(x)\neq T(y)$ ;
(ii) The set $\{x\in X;d_{i}(x, T(x))\leq\epsilon\}$ is nonempty and closed for each $i\in I$

and $\epsilon>0$ .
Then $T$ has a fixed point which is unique if $X$ is Hausdorff.
Corollary 2.3. Let $T:X\rightarrow Cpt(X)$ and suppose that (i) For each $i\in I$ , there

is a constant $k_{i},$ $0\leq k_{i}<1$ , such that given $x,$ $y\in X$ arbitrarily with $T(x)\neq T(y)$

implies
$\delta_{i}(T(x), T(y))\leq k_{i}d_{i}(x, y)$ ;

(ii) $x\neq y$ and $T(x),$ $T(y)$ are not singleton sets imply $T(x)\neq T(y)$ .
Then $T$ has a fixed point which is unique if $X$ is Hausdorff.
Proof. Let $x,$ $y\in X$ . Then

$d_{i}(x, y)\leq d_{i}(x, T(x))+\delta_{i}(T(x), T(y))+d_{i}(y, T(y))$ .
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Thus either $T(x)=T(y)$ or

$\delta_{i}(T(x), T(y))\leq\frac{k_{\ell}}{1-k_{i}}d_{i}(x, T(x))+d_{i}(y, T(y))$ .

Hence $T\in\hat{\mathcal{D}}(X)$ . Let $x_{0}\in X$ and $x_{1}\in T(x_{0})$ . Pick up $x_{2}\in T(x_{1})$ . Then eitgher
$T(x_{0})=T(x_{1})ord_{i}(x_{1}, x_{2})\leq k_{\ell}d_{i}(x_{0}, x_{1})$ . In the former case, $x_{1}isa$ fixed point of T
Proceeding thus, one obtains a sequence $\{x_{n}\}$ satisfying: $x_{n}\in T(x_{n-1})$ and $d_{i}(x_{n}$ ,
$x_{n-1})\leq k_{i}^{n-1}d_{i}(x_{0}, x_{1})$ . Henoe the set $\{x\in X:d_{i}(x, T(x))\leq\epsilon\}$ is nonempty for each
$i\in I$ and $\epsilon>0$ ; it is also closed. This follows from the continuity of $x\rightarrow d_{i}(x, T(x))$

which can be easily established from the hypothesis.

Theorem 2.4. Let (X, $\mathcal{U}$) be a nonempty complete unform space. Suppose
$T:(X, \mathcal{U}_{T}^{\prime})\rightarrow(2^{X}, \phi)$ is uniformly continuous and that $U_{\acute{T}}$ is a nonempty closed
subset of $X$ for each $U\in \mathcal{B}$ . Then $T$ has a fixed point.

The proof of Theorem 2.4 is similar to that of Theorem 2.1 and hence is omitted.

Remark. If $X$ is Hausdorff then $\cap\{U_{T}^{\prime} : U\in \mathcal{B}\}$ contains a unique point $u$

such that $T(u)=u$ . However, in general, the uniqueness of fixed points is not
ensured.

It is easily seen that $T:(X, \mathcal{U}_{\acute{T}})\rightarrow(2^{X}, \Phi)$ is uniformly continuous if and only
if for each $i\in I$ and $\epsilon>0$, there is a $j\in I$ and $\delta(\epsilon)>0$ such that $x,$ $y\in X$ and $\delta_{j}(x, T(x))$

$+\delta_{j}(y, T(y))<\delta(\epsilon)$ imply $ D_{i}(T(x), T(y))<\epsilon$ . (Here $\delta_{j}(x, T(x))=\sup\{d_{j}(x, y):y\in$

$T(x)\})$ . We denote the class of multi-mappings $T:X\rightarrow 2^{X}$ satisfying the above cri-
terion by @’ (X). From Theorem 2.4, we easily obtain:

Theorem 2.5. Let $X$ be a nonempty complete uniform space. Suppose $T\in\ovalbox{\tt\small REJECT}^{\prime}$

(X) and satisfies:
The set $\{x\in X:\delta_{i}(x, T(x))\leq\epsilon\}$ is nonempty and closed for each $i\in I$ and
$\epsilon>0$ . Then $T$ has a fixed point.

Corollary 2.6. Let $T:X\rightarrow 2^{X}$ and suppose thatfor each $i\in I$ , there is aconstant
$k_{i},$ $0\leq k_{i}<1$ , such that given $x,$ $y\in X$ arbitrarily either $T(x)=T(y)$ or $\delta_{\ell}(T(x)$ ,
$T(y))\leq k_{i}d_{i}(x, y)$ . Then $T$ has a fixed point.

Proof. It is easily observed that under the given hypothesis $\delta_{i}(T(x), T(y))\leq$

$\delta_{i}(x, T(x))+\delta_{\ell}(y, T(y))$ holds for $x,$ $y\in X$ satisfying $T(x)=T(y)$ and $\delta_{\ell}(T(x), T(y))$

$\leq\frac{k_{\ell}}{1-k_{\ell}}\delta_{i}(x, T(x))+\delta_{\ell}(y, T(y))$ holds for $x,$ $y\in X$ satisfying $T(x)\neq T(y)$ . Hence
$T\in\ovalbox{\tt\small REJECT}^{\prime}(X)$ . Let $x_{0}\in X$ and $x_{1}\in T(x_{0})$ . Pick up $x_{2}\in T(x_{1})$ . Then either $T(x_{0})=$

$T(x_{1})$ or $\delta_{i}(x_{1}, T(x_{1}))\leq\delta_{\ell}(T(x_{0}), T(x_{1}))\leq k_{\ell}d_{i}(x_{0}, x_{1})$ . We can inductively obtain
$\{x_{n}\}$ such that $x_{n}\in T(x_{n-1})$ and $\delta_{i}(x_{n}, T(x_{n}))\leq k_{i}^{n}d_{i}(x_{0}, x_{1})$ . Therefore the set
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$\{x\in X:\delta_{\ell}(x, T(x))\leq\epsilon\}$ is nonempty for each $i\in I$ and $\epsilon>0$ ; it is also closed. This
follows from the continuity of the function $x\rightarrow\delta_{\ell}(x, T(x))$ which results from the
inequality

$|\delta_{i}(x, T(x))-\delta_{i}(y, T(y))|\leqq 2d_{i}(x, y)$

which is easily seen to hold for all $x,$ $y\in X$ .
We recall that a mapping $T:X\rightarrow 2^{X}$ is said to be upper semi continuous (u.s. $c.$)

if $T^{-1}(K)=\{x\in X:T(x)\cap K\neq\emptyset\}$ is a closed set for each closed subset $K$ of $X$ .
It is easily verified that if $X$ is a compact uniform space then $T$ is u.s. $c$ . if and only
if for each net $x_{\lambda}\rightarrow x_{0}$ and a net $y_{\lambda}\in T(x_{\lambda})$ such that $y_{\lambda}\rightarrow y_{0}$ , one has $y_{0}\in T(x_{0})$ .
The following result is essentially known (cf. Ky Fan [3], p. 128). We recall it here
in the present setting for the sake of completeness.

Theorem 2.7. Let (X, %) be a nonempty compact uniform space. Suppose
that $T$ satisfies:

(1) $T;X\rightarrow 2^{X}$ is u.s.c.;
(2) For each $ U\in$ es, $ U_{T}\neq\emptyset$ .
Then $T$ has a fixed point.

Proof. We consider the family $\mathscr{F}=\{F_{T} : U\in \mathcal{B}\}$ of nonempty closed sets.
Evidently, it has finite intersection property. Since $X$ is compact, one $has\cap \mathcal{F}\neq\emptyset$ .
Let $x\in\cap \mathscr{F}$ . We partially order the family $\{U(x):U\in g\}$ of neighbourhoods of
$x$ by the reversed set inclusion. Pick up We $\mathcal{B}$ such that $W(x)$ is in this family.
Let $U\in g$ be such that $U\circ U\subset W$ Since $x\in\overline{U}_{T}$ , there is $y_{W}\in U_{T}$ and $z_{W}\in Ty_{W}$

such that $(x, y_{W})\in U,$ $(y_{W}, z_{W})\in U$ and consequently $(x, z_{W})\in W$. The nets $y_{W}$

and $z_{W}$ converge to $x$ . Since $z_{W}\in Ty_{W}$ and $T$ is u.s. $c$ . we have $x\in T(x)$ .
In caseX isa $mpactuniformspace,$ $wenotethatifT(X, \emptyset)\rightarrow(2^{X}, \ovalbox{\tt\small REJECT})$ is uni-

formly continuous, then it is u.s. $c.$ . This follows from the remark preceding Theorem
2.7. Again it is easily observed that $T:(X, \mathcal{U})\rightarrow(2^{X}, \Phi)$ is uniformly continuous
if and only if for each $i\in I$ and $\epsilon>0$ , there is $j\in I$ and $\delta(\epsilon)>0$ such that $D_{i}(T(x), T(y))$

$<\epsilon$ whenever $d_{j}(x, y)<\delta(\epsilon)$ . Denote the class of multi-mappings $T:X\rightarrow 2^{X}$

satisfying this condition by $b(X)$ .

Corollary 2.8. Let $X$ be a nonempty compact unform space. Suppose
$T\in\ovalbox{\tt\small REJECT}(X)$ and satisfies:
The set $\{x\in X:d_{\ell}(x, T(x))<\epsilon\}$ is nonempty for each $i\in I$ and $\epsilon>0$ . Then $T$ has
a fixed point.

Corollary 2.9. Let $X$ be a nonempty compact uniform space. Suppose
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thatfor each $i\in I$ , there is a constant $k_{i},$ $0\leq k_{i}\leq 1$ such that $D_{i}(T(x), T(y))\leq k_{i}d_{i}(x, y)$

for all $x,$ $y\in X$ . Then $T$ has a fixed point.

Proof. Evidently $\tau\in b(X)$ . By using a technique due to Nadler (cf. [8],
p. 479) one obtains a sequence $\{x_{n}\}$ satisfying $x_{n}\in T(x_{n-1})$ and

$d_{i}(x_{n}, x_{n+1})\leq k_{i}^{n}d_{i}(x_{0}, x_{1})+nk_{i}^{n}$ for $ n=1,2,3,\cdots$ .
Thus the set $\{x\in X:d_{i}(x, T(x))<\epsilon\}$ is nonempty for each $i\in I$ and $\epsilon>0$ and this
completes the proof.

3. Fixed Points in locally convex spaces

Let (X, $\ovalbox{\tt\small REJECT}^{-}$ ) be a locally convex linear topological space. Let $p=\{p_{\ell}: i\in I\}$

be a family of semi-norms on $X$ such that the family $\Lambda^{\prime}=\{V(i, r);i\in I, r>0\}$ , where
$V(i, r)=\{x:p_{\ell}(x)<r\}$ , is a neighbourhood base for ,9‘. Such a family $p$ is called
an augmented associated family for the topology ,9“. It is well known (cf. Kothe
[6], p. 203) that for each locally convex topology on a linear space $X$ , there exists
an augmented associated family $p$ . For each $i\in I$, let $d_{\ell}$ denote the pseudometric
on $X$ corresponding to $p_{\ell}$ and let $\delta_{i},$ $D_{\ell}$ be as in \S 2.

The next two Theorems are Krasnosekskii-type (cf. [1] p. 26) theorems for
multi-mappings.

Theorem 3.1. Suppose $X$ is Hausdorff and let $K$ be a nonempty complete
convex subset of X. Suppose $T:K\times K\rightarrow 2^{K}$ is a multi-mapping and $A;K\rightarrow X$

is a continuous mapping satisfying:
(i) for each $i\in I$, there is a constant $k_{i},$ $0\leq k_{i}<1$ such that given $x,$

$x^{\prime}$ ,
$y\in K,$ $x\neq x^{\prime}$ implies

$\delta_{i}(T(x, y),$ $T(x^{\prime}, y))\leq k_{i}p_{i}(x-x^{\prime})$ ;

and
(ii) $A(K)$ is contained in a compact set and for each $i\in I,$ $x,$ $y,$ $y^{\prime}\in K$

$y\neq y^{\prime}$ implies

$\delta_{i}(T(x, y),$ $T(x, y^{\prime}))\leq p_{i}(Ay-Ay^{\prime})$ .
Then there is a point $\overline{x}\in K$ such that $\overline{x}\in T(\overline{x},\overline{x})$ .
Proof. For each fixed $y\in K$ , we consider the mapping $T$ given by $I(x)=$

$T(x, y)$ . By Corollary 2.6 if (i) is satisfied, $T$ has a fixed point. Let Fy be the fixed
point set for each $y\in K$ . Define $P:K\rightarrow K$ as $Py=z$ for some $z\in Fy$ .

We show that $P;K\rightarrow K$ is continuous. Let $i\in I$ , then we have for $z_{1}\neq z_{2}$ :
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$p_{i}(z_{1}-z_{2})\leq\delta_{i}(T(z_{1}, u),$ $T(z_{2}, v)$ for $z_{1}\in Fu,$ $z_{2}\in Fu$

$\leq\delta_{i}(T(z_{1}, u),$ $T(z_{1}, v))+\delta_{i}(T(z_{1}, v),$ $T(z_{2}, v))$

$\leq p_{\ell}(Au-Av)+k_{i}p_{i}(z_{1}-z_{2})$ .
Thus

(3.1) $p_{i}(z_{1}-z_{2})\leq\frac{1}{1-k_{\ell}}p_{\ell}(Au-Av)$ .

This establishes that $P$ is continuous. We assert that $P(K)$ is contained in a compact
set. Let $\{Px_{r}\}$ be a net in $P(K)$ . Since $A(K)$ is contained in a compact set, $\{Ax_{r}\}$

hasa $nvergentsubnet\{Ax_{r}^{\prime}\}$ . Thus $\{Ax_{r}^{\prime}\}$ isaCauchy net, and by (3.1) so also is
$\{Px_{r}^{\prime}\}$ . Hence $P(K)$ is contained in a compact set. By a Singbal’s version of
of Schauder-Tychonoff theorem (cf. Bonsall [1], p. 169), $P$ has a fixed point $\overline{x}$ in
$K$ and

$\overline{x}=P\overline{x}\in T(P\overline{x},\overline{x})=T(\overline{x},\overline{x})$ .
Theorem 3.2. Let $X$ be Hausdorff and $K$ be a nonempty complete convex

subset of X. Let $T:K\rightarrow 2^{X}$ and $S:K\rightarrow X$ be mappings such that $T(x)+Sy\subset K$

for each pair, $x,$ $y\in K$ . Assume that Tand $S$ satisfy the following conditions:
(i) for each $i\in I$ , there is a constant $k_{\ell},$ $0\leq k_{i}<1$ , such that given $x,$ $y\in K$

arbitrarily $x\neq y$ implies $\delta_{i}(T(x), T(y))\leq k_{i}p_{\ell}(x-y)$ ;
(ii) for each $x,$ $y,$ $y^{\prime}\in K$ either $Sy=Sy^{\prime}$ or $\delta_{i}(T(x)+Sy, T(x)+Sy)\leq p_{\ell}(Sy$

$-Sy^{\prime})$ ;
(iii) $S$ is continuous and $S(K)$ is contained in a compact set.
Then there is a point $\overline{x}$ in $K$ such that $\overline{x}\in T(\overline{x})+S\overline{x}$ .
Proof. Define for $x,$ $y\in K,$ $T(x, y)=T(x)+Sy$ . By using the same argument

as in the previous Theorem, for each $y\in K$ take $Py\in Fy$ , the fixed point set $r-$

responding to $y$ . We show that $P;K\rightarrow K$ is continuous. For $Su\neq Sv$ and $Pu\neq Pv$

one can easily establish

$p_{i}(Pu-Pv)\leq\frac{1}{1-k_{i}}p_{i}(Su-Sv)$ , for $i\in I$ .

Suppose $Su=Sv$ but $pu\neq Pv$ .
Then

$p_{\ell}(pu-pv)\leq\delta_{i}(T(pu)+Su, T(pv)+Sv)$

$\leq\delta_{i}(T(pu), T(pv))$

$\leq k_{i}p_{i}(pu-pv)$ ,
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a contradiction.
Hence $Su=Sv$ implies $Pu=Pv$ . Therefore, $P:K\rightarrow K$ is continuous.

Now the proof of the Theorem can be completed in exactly the same manner
as in the previous theorem.
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