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Introduction. Browder [2], Gohde [3] and Kirk [4] have independently proved
that a nonexpansive self mapping on a weakly compact convex subset of a Banach
space with normal structure has a fixed point. In Section 1 of this paper we define
the concept of normal structure of a bounded convex subset of a locally convex linear
topological space and also the notion of a multivalued mapping of nonexpansive
type on such a space. We then prove a fixed point theorem for such mappings which
include the above mentioned theorem of [2], [3] and [4] and also a theorem of [5]

as special cases. In Section 2 we give another definition of nonexpansive mul-
tivalued mapping and prove a fixed point theorem for such a mapping on a closed
bounded interval of the real line.

\S 1. Throughout this section $(E, \tau)$ will denote a locally convex linear
Hausdorff topological space where the topology $\tau$ is generated by the family [$p_{\alpha}$ :
$\alpha\in I]$ of seminorms on E.

The $\ovalbox{\tt\small REJECT} ncept$ of normal structure of a bounded convex set in a Banach space was
first introduced by Brodskii and Milman [1]. We have introduced below the same
conoept for a bounded convex subset of E.

A point $x$ of a bounded subset $K$ of $E$ is said to be a $p_{\alpha}$-diametral point of $K$

if $\delta(K, \alpha)=\sup\{p_{\alpha}(x-y):y\in K\}$ , where $\delta(K, \alpha)$ is the $p_{a}$-diameter of $K$ , i.e. $\delta(K, \alpha)=$

$sup\{p_{\alpha}(x-y):x, y\in K\}$ . A point $y$ which is not a $p_{\alpha}$-diametral point of $K$ is
called a $p_{\alpha}$-nondiametral point of $K$ .

Demltion 1. A bounded convex subset $K$ of $E$ is said to have normal structure
if every $\ovalbox{\tt\small REJECT} nvex$ subset $B$ of $K$ containing more than one point has at least one $p_{\alpha^{-}}$

nondiametral point of $B$ for each $\alpha\in I$ satisfying $\delta(B, \alpha)>0$ .
Example 1.1. Let $K$ be a convex subset of $E$ such that $K$ is $p_{a}$-compact for each

$\alpha\in I$ . Then $K$ has normal structure.
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For, suppose $K$ does not have normal structure. Then there are a convex
subset $B$ of $K$ containing more than one point and an $\alpha\in I$ with $\delta(B, \alpha)>0$ such
that $B$ does not contain any nondiametral point.

Let $x_{1}\in B$ . Then we can find $x_{2}$ such that $p_{\alpha}(x_{1}-x_{2})=\delta(B, \alpha)$ . Since $B$ is

$co_{O}nvex,\frac{x_{l}+x_{2}}{ingthis2}\in B.Wecanfindx_{3}\in Bsuchthatp_{\alpha}(x_{3}-\frac{x_{1}+x_{2}}{uchthat2})=\delta(B,\alpha)CntirocessweobtaifpointsinBsp_{\alpha}$

$\frac{x_{1}+x_{2}+\cdots+x_{n}}{n})=\delta(B, \alpha)$ . Since $\delta(B, \alpha)=p_{\alpha}(x_{n+1}-\frac{x_{1}+x_{2}+\cdots+x_{n}}{n})\leq\frac{1}{n}\sum_{k=1}^{n}$

$p_{a}(x_{n+1}-x_{k})\leq\delta(B, \alpha)$ , it follows that $p_{\alpha}(x_{n+1}-x_{k})=\delta(B, \alpha)$ for $k=1,2,\ldots,$ $n$ . This
implies that $\{x_{n}\}$ has no $p_{\alpha}$-Cauchy subsequence contradicting the assumption that
$K$ is $p_{\alpha}$-compact.

Example 1.2. Let $K$ be a $\tau$-compact convex subset of $E$ . Then $K$ has normal
structure.

Since $K$ is $\tau$-compact, it is $p_{\alpha}$-compact for each $\alpha\in I$ . Hence $K$ has normal
structure as shown in Example 1.1.

For any bounded subset $K$ of $E$ and $x\in K$ let

$\gamma_{x}(K, \alpha)=\sup\{p_{\alpha}(x-y):y\in K\}$ ,
$\gamma(K, \alpha)=\inf\{\gamma_{x}(K, \alpha):x\in K\}$ ,

and

$C(K, \alpha)=\{x\in K:\gamma.(K, \alpha)=\gamma(K, \alpha)\}$ .

Lemma l.1. LetK beanonempty weakly compact convex subset of E. Then
$C(K, \alpha)$ is a nonempty closed convex subset of $K$ for each $\alpha\in I$ .

Proof. For each positive integer $n$ and $x\in K$, let $K_{n}(x, \alpha)=\{$

$\gamma(K, \alpha)+\frac{1}{n}\}$ . Obviously $K_{n}(x, \alpha)$ is nonempty, convex and $p_{\alpha^{-}}c1$

$ y\in K:p_{\alpha}(x-y)\leq$

osed. Let $C_{n}(\alpha)=$

$\cap K.(x, \alpha)$ . Clearly $C_{n}(\alpha)$ is convex and $p_{\alpha}$-closed and hence $\tau$-closed. $C_{n}(\alpha)$ is

$a1sononemy.Indeed,the.reisaz\in Ksuchthat\gamma_{z}(K,\alpha)\leq\gamma(K,\alpha)+\frac{1}{n,=}i.e.p_{\alpha}.(.z-x)x\in K\leq\gamma(K,\alpha)+\frac{pt1}{n}fora11x\in KHencez\in C_{n}(\alpha).Nowsince\{C_{n}(\alpha):n1,2,.\}isa$

decreasing sequence of $\tau$-closed (hence weakly closed because each $C_{n}(\alpha)$ is convex),
convex subsets of the weakly compact set $K$ , it follows that $\cap C_{n}(\alpha)$ is nonempty,
$\tau$-closed and convex. We complete the proof by noting $tha^{n}tC(K, \alpha)=\bigcap_{n}C_{n}(\alpha)$ .

Lemma 1.2. Let $K$ be as in Lemma 1.1. In addition assume that $K$ has
normal structure. Then $\delta(C(K, \alpha),$ $\alpha$) $<\delta(K, \alpha)$ whenever $\delta(K, \alpha)>0$ .
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Proof. Sinoe $K$ has normal structure, there is a point $x\in K$ such that $\gamma_{x}(K, \alpha)$

$<\delta(K, \alpha)$ . If $u,$ $v\in C(K, \alpha)$ then $p_{\alpha}(u-v)\leq\gamma_{u}(K, \alpha)=\gamma(K, \alpha)$ . Hence $\delta(C(K, \alpha)$ ,
$\alpha)\leq\gamma(K, \alpha)\leq\gamma_{x}(K, \alpha)<\delta(K, \alpha)$ .

Definition 1.2. Let $K$ be a subset of $E$ . A multivalued (or a single valued)

mapping $f:K\rightarrow 2^{K}$ (nonempty subsets of $K$) is said to be nonexpansive type on $K$

if $f$ satisfies either of the following conditions:
(a) for each $\alpha\in I$ , there are nonnegative real numbers $a_{1}(\alpha),$ $a_{2}(\alpha),$ $a_{3}(\alpha)$

with $a_{1}(\alpha)+a_{2}(\alpha)+a_{3}(\alpha)\leq 1$ such that for all $x,$ $y\in K$ ,
$p_{\alpha}(u-v)\leq a_{1}(\alpha)p_{\alpha}(x-y)+a_{2}(\alpha)p_{\alpha}(x-v)+a_{3}(\alpha)p_{\alpha}(y-u)$ whenever $u\in f(x)$

and $v\in f(y)$ ;
(b) given $\chi\in K$ and $u\in f(x)$, for each $v\in f(y),$ $y\in K$ and each $\alpha\in I$ , there

exists $v^{\prime}(\alpha)\in f(y)$ such that $p_{\alpha}(u-v)\leq p_{\alpha}(x-v^{\prime}(\alpha))$ ;
(c) given $x\in K$ and a real number $\epsilon>0$, there exists for each $\alpha\in I$ a real

number $\delta(\alpha)\geq\epsilon$ such that $ p_{\alpha}(u-v)\leq\epsilon$ whenever $u\in f(x),$ $v\in f(y),$ $y\in K$

and $p_{\alpha}(x-y)\leq\delta(\alpha)$ .
Theorem 1.1. Let $K$ be a nonempty weakly compact convex subset of $E$ .

Assume that $K$ has normal structure. Then for each multivalued mapping $f$ of
nonexpansive type on $K$ , there is a point $x\in K$ such that $f(x)=\{x\}$ where $\{x\}$ denotes
the set consisting of the single point $x$ .

Proof. By using weak compactness of $K$ and Zorn’s lemma we can find a
minimal nonempty $\tau$-closed convex subset $F$ of $K$ such that $f(F)\subseteq F$ (Cf. [2]).

We assert that $F$ is a set consisting of a single point, by showing that $\delta(F, \alpha)=0$

for each $\alpha\in I$ . If possible, let us suppose that $\delta(F, \alpha)>0$ for some $\alpha\in I$ . Since $F$

is weakly $\ovalbox{\tt\small REJECT} mpact$ , by Lemma 1.1, $C(F, \alpha)$ is a nonempty, $\tau$-closed convex subset
of $F$ . We now prove that $f(C(F, \alpha))\subseteq C(F, \alpha)$ . To this end let $u\in f(C(F, \alpha))$

[here we note that $f(A)=\cup f(x)$ for any subset $A$ of $K$]. Then there is a point
$x\in A$

$x\in C(F, \alpha)$ such that $u\in f(x)$ . Let $S=\{y\in F:p_{\alpha}(u-y)\leq\gamma(F, \alpha)\}$ . Clearly $S$ is
nonempty, convex and $p_{\alpha}$-closed and hence $\tau$-closed. Also $f(S)\subseteq S$ . Let $y\in f(S)$ .
Then there is a $z\in S\subseteq F$ such that $y\in f(z)$ . If $f$ satisfies (a), then

$p_{\alpha}(u-y)\leq a_{1}(\alpha)p_{\alpha}(x-z)+a_{2}(\alpha)p_{\alpha}(x-y)+a_{3}(\alpha)p_{\alpha}(z-u)$

$\leq a_{1}(\alpha)\gamma(F, \alpha)+a_{2}(\alpha)\gamma(F, \alpha)+a_{3}(\alpha)\gamma(F, \alpha)\leq\gamma(F, \alpha)$

because $z\in S\subseteq F,$ $x\in C(F, \alpha)$ and $u,$ $y\in F$ . Hence $y\in S$ in this case. If $f$ satisfies
(b), then there is a $v^{\prime}(\alpha)\in f(z)\subseteq F$ such that $p_{\alpha}(u-y)\leq p_{\alpha}(x-v^{\prime}(\alpha))\leq\gamma(F, \alpha)$ since
$x\in C(F, \alpha)$ and $v^{\prime}(\alpha)\in F$ . Thus $y\in S$ in this case, too. Finally if $f$ satisfies (c),
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there is a $\delta(\alpha)\geq\gamma(F, \alpha)$ such that $p_{\alpha}(u-y)\leq\gamma(F, \alpha)$ whenever $u\in f(x),$ $y\in f(z)$ and
$p_{\alpha}(x-z)\leq\delta(\alpha)$ . Now since for all $z\in F,$ $p_{\alpha}(x-z)\leq\gamma(F, \alpha)\leq\delta(\alpha)$ , we have $p_{\alpha}(u-y)$

$\leq\gamma(F, \alpha)$ . Thus $y\in S$ in this case also. Hence, we conclude that $f(S)\subseteq S$ . Thus
$S=F$ by the minimality of $F$ .

Now $\gamma_{u}(F, \alpha)=\sup\{p_{\alpha}(u-y):y\in F\}=\sup\{p_{\alpha}(u-y):y\in S\}\leq\gamma(F, \alpha)$ . Noting
that $u\in F$, we obtain that $\gamma_{u}(F, \alpha)=\gamma(F, \alpha)$ , i.e. $u\in C(F, \alpha)$ . Hence $ f(C(F, \alpha))\subseteq$

$C(F, \alpha)$ as was to be shown. But then, $F=C(F, \alpha)$ by the minimality of F. Since
$\delta(F, \alpha)>0$, it is impossible in view of our Lemma 1.2. Thus we have shown that
$\delta(F, \alpha)=0$ for all $\alpha\in I$ . Since $E$ is Hausdorff, $F$ is a set consisting of a single point
$\{x\}$ , say. Whence $f(x)=\{x\}$ .

Remark. (i) If $E$ is a Banach space with $\Vert\cdot\Vert$ and $f$ is single valued and satisfies
(a) with $a_{2}(\Vert\cdot\Vert)=a_{3}(\Vert\cdot\Vert)=0$, then above theorem reduces to the result of Browder
[2], Gohde [3] and Kirk [4].

(ii) If $E$ is a Banach space with norm $\Vert\cdot\Vert,$ $f$ is singlevalued and $C(K, \Vert\cdot\Vert)$ is
a single point, then the above theorem reduces to a theorem of Wong [5].

The following corollary shows how a multivalued mapping of nonexpansive
type can arise and an application of Theorem 1.1 gives rise to a common fixed
point theorem.

Corollary 1.1. Let $E$ and $K$ be as in Theorem 1. Let $\{f_{\gamma} : \gamma\in J\}$ be a family
of single valued mappings on $K$ (i.e. $f_{\gamma}$ is a mapping of $K$ into itself for each $\gamma\in J$)

satisfying either of the following conditions:
(i) for each $\alpha\in I$, there $vre$ nonnegative numbers $a_{1}(\alpha),$ $a_{2}(\alpha),$ $a_{3}(\alpha)$ with

$a_{1}(\alpha)+a_{2}(\alpha)+a_{3}(\alpha)\leq 1$ such that for all $x,$ $y\in K$ and all $\gamma,$
$\delta\in J$,

$p_{\alpha}(f_{\gamma}(x)-f_{\delta}(y))\leq a_{1}(\alpha)p_{a}(x-y)+a_{2}(\alpha)p_{\alpha}(x-f_{\delta}(y))+a_{3}(\alpha)p_{\alpha}(y-f_{\gamma}(x))$ ;

(ii) given $x\in K,$ $\alpha\in I,$ $\gamma\in J$, there exists for each pair $(y\in K, \delta\in J)$ a $\delta^{\prime}\in J$ such
that

$p_{\alpha}(f_{\gamma}(x)-f_{\delta}(y))\leq p_{\alpha}(x-f_{\delta},(y))$ .
Then the $fan\dot{u}ly\{f_{\gamma} : \gamma\in J\}$ has a commonfixedpoint.

Proof. We define the multivalued mapping $f:K\rightarrow 2^{K}$ by $f(x)=\{f_{\gamma}(x);\gamma\in J\}=$

$\bigcup_{\gamma eJ}f_{\gamma}(x),$

$x\in K$ . We can easily verify that if $\{f_{\gamma}: \gamma\in J\}$ satisfies (i), then $f$ is non-
expansive type of (a) in Definition 1.2 and if $\{f_{\gamma}: \gamma\in J\}$ satisfies (ii), then $f$ is non-
expansive type of (b) in Definition 1.2. Hence by Theorem 1.1 in either case there
is a point $x\in K$ such that $f(x)=\{x\}$ . This implies that $x$ is a common fixed point of
$\{f_{\gamma}: \gamma\in J\}$ .
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\S 2. In this section we give another definition of nonexpansive multivalued
mapping which, in single valued case, coincides with the usual definition of non-
expansive mapping.

Definition 2.1. Let $C$ be a subset of a metric space (X, $\rho$). A multivalued
mapping $f:C\rightarrow 2^{C}$ (nonempty subsets of $C$) is said to be nonexpanisve if given $\chi$ and
$u\in f(x)$ there is a $v_{y}\in f(y)$ for each $y\in C$ , such that $\rho(u, v_{y})\leq\rho(x, y)$ .

Remark. This definition can obviously be extended in locally $\ovalbox{\tt\small REJECT} nvex$ spaces
in terms of seminorms.

Example 2.1. Let $\{f_{\alpha}: \alpha\in I\}$ be a family of single valued nonexpansive self
mappings on a subset $C$ of a metric space (X, p) [i.e. for each $\alpha\in I,$ $f_{a}$ : $C\rightarrow C$ and
$\rho(f_{\alpha}(x), f_{\alpha}(y))\leq\rho(x, y)$ for all $x,$ $y\in C$]. Then the multivalued mapping $f:C\rightarrow 2^{C}$

defined by $f(x)=\{f_{\alpha}(x):\alpha\in I\}(=\bigcup_{\alpha eI}f_{\alpha}(x)),$
$x\in C$ is clearly nonexpansive in the

sense of our Definition 2.1.
We do not as yet know if a fixed point theorem similar to our Theorem 1.1 or

the theorem of [2], [3] and [4] can be proved in general for such a nonexpansive
mapping on a weakly $\ovalbox{\tt\small REJECT} mpact$ subset (with normal structure) of a Banach space.
However, we prove the following fixed point theorem on the subsets of the real line R.

Theorem2.1. LetC beaclosed, convex and bounded subset(i.e. aclosed and
bounded interva $t$) of the real line. Let $f$ be a nonexpansive (in the sense of Defi-
nition 2.1) multivalued mapping on $C$ with closed and convex subsets of $C$ as values
(i.e. $f(x)$ is closed and convex for each $x\in C.$) Then there is a point $x_{0}\in C$ such
that $x_{0}\in f(x_{0})$ .

Proof. Since $C$ is compact, by using Zom’s lemma we can find a minimal
nonempty closed bounded convex set $K\subseteq C$ such that $f(K)\subseteq K$ , where as before,

$f(K)=\bigcup_{xeK}f(x)$ , see [2]. Noting that $K$ is a closed bounded interval, say $[a, b]$ ,

let $z$ be the midpoint (centre) and $r$ the radius of $K$, i.e. $r=|z-a|=|z-b|$ . Let
$N=N(f(z), r)=$ {$y\in K:|y-x|\leq r$ for some $x\in f(z)$}. Since $f(z)$ and $K$ are convex,
it follows that $N$ is convex. $N$ is also closed. Indeed, if $y_{n}\in N,$ $ n=1,2,\cdots$ and
$y_{n}\rightarrow y$ , we can $findx_{n}\in f(z),$ $ n=1,2,\ldots$ such that $|y_{n}-x_{n}|\leq r$ . Sincef$(z)$ is compact,
we can select a subsequence $\{x_{n_{i}}\}$ of $\{x_{n}\}$ such that $x_{n_{\ell}}\rightarrow x\in f(z)$ . Now from the
triangle inequality

$|y-x|\leq|y-y_{n_{t}}|+|y_{\hslash\ell}-x_{n_{t}}|+|x_{n_{t}}-x|$ ,
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it follows that $|y-x|\leq r$ . Thus $x\in N$ and $N$ is, therefore, closed. We show that
$f(N)\subseteq N$ . If $y\in f(N)$ , then there is a $\omega\in N\subseteq K$ such that $y\in f(\omega)$ . Now since $f$

is nonexpansive, there is a $u\in f(z)$ such that $|u-y|\leq|z-\omega|\leq r,$ $z$ being the centre
of $K$ and $\omega$ being in $K$ . Hence $y\in N$ . Thus by the minimality of $K$ , we have
$K=N=[a, b]$ . Hence $z\in f(z)$ . For if $z\not\in f(z)$ , then since $f(z)$ is a closed and convex
subset of $K=N=[a, b]$ , it follows that either (i) $f(z)\subset[a, z)$ , or (ii) $f(z)\subset(z, b$].
Clearly in case (i) $b\not\in N$ and in case (ii) $a\not\in N$ . Thus in either case $N\neq K$ which is
a $\ovalbox{\tt\small REJECT} ntradiction$ .
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