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1. Introduction. Let {¢.} be a sequence of i.i.d. random probability measures
on the real line R with the expectation measure F=E$, and the second moment
measure G=FE(¢,x&;). The random renewal measure { for {¢£,} is defined by

C=dot I 61x - #a

The purpose of this note is to show that { satisfies an analogue of Blackwell
type renewal theorem under some natural assumptions on F and G.

In §2 it is shown that { is locally finite a.s. iff F generates a transient
random walk. In §3 we prove the following random renewal theorem: if F
generates a transient random walk and if G is not supported by the diagonal of
R? then 1im {(I+t)=c-i(I) in probability, where I is a bounded interval of length
A(I) and ; ?s a constant. When &,’s are non-random this result reduces to the
well-known classical renewal theorem. Whether the above result holds in the
sense of almost sure convergence or not is an open question.

2. Random renewal measures. Let M denote the set of all locally finite
nonnegative measures ¢ on (R, &), where 2 is the Borel s-algebra of R. The
smallest s-algebra of subsets of M which respect to which every mapping ¢—
#(A), A e £, is measurable is denoted by -#. The subset of M consisting of all
probability measures is denoted by M,;. Obviously M,={¢; #(R)=1}e #. An
M-valued random element { defined on a probability space (2, 5, P) is called a
random measure (r.m.). A r.m. ¢ satisfying P{§e€ M,}=1 is called a random
probability measure (r.p.m.). The expectation measure E{ of a r.m. { is a (not
necessarily locally finite) measure defined by (E{)(A)=E[{(A)], Ae#. If {isa
r.p.m. then E¢e M,. In this case write F; for E§. We have

E S f(t)C(dt)=§ F@(EL)(dt)

for every Baire function f=0, where an integral sign without the limits means
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integration over R. Thus if f is integrable with respect to E{ then fdg is

finite a.s. The second moment measure E¢x() of a r.m. { is a (not necessarily

locally finite) measure on (R, &) X (R, 2) defined by
[ECXOIAXA)=E[{(A)-L(B)], A,Be 2.

If ¢ is a r.p.m. then G:=E(¢x§) is a probability measure.

The convolution £+ of two r.m.’s § and 7.is not a r.m. in general. However
if ¢ and 75 are independent with E¢e M, Ene M and (E£)x(Ey) e M then &xy is a
r.m. satisfying E(§xn)=(E¢)*(Ey). In fact

Elgen(A))=E S§ 1S+ DEds)n(dD)

=§S 1a(s+t)(E&)(ds)(Ex)(dt)
=(ES)«(En(4), Ae=2,

where x4 is the indicator of A. In particular if ¢ and 7 are independent r.p.m.’s
then §xy is a r.p.m. and we have Fi.,=F+F,, Ge.,=G¢xG,. The second equality
follows from

E[é*n(A)-é*v(B)]=EB e<A—s>n<ds>-§ S(B—t)v(dt):}

=EU (EXE)(A—s)X (B—)(yx r;)(dsdt)]
=E[(Ex&*(nxn(AxB)], A,Be<?.

Let {¢,} be a sequence of i.i.d.r.p.m.’s with common distribution P. Let

-]

F=E¢,, G=E(¢,x¢) and U= Y, F™, where F**=4, is the Dirac measure located

n=0

at 0. We call F transient (recurrent) if F generates a transient (recurrent) random
walk. Define the random renewal measure { by

C=6°+,§jl$1* T
Then we have
EC=5°+”§1E($1* cce *en)zao'}‘”ilF"*:U .
The following theorem is an extension of a classical result on the recurrence of

random walks due to Chung and Fuchs [3]. In particular if §n=0x,, where {X,}
is a sequence of i.i.d. random variables and 4, is the Dirac measure at @, then ¢

reduces to the ordinary renewal process: {= ioasn, S,= -2”:1 X;, So=0, and the
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theorem reduces to the well-known result

Theorem 1. If F is recurrent then &(I)=oo a.s. for every neighborhood I of
0. If F is transient then {(I)<oco a.s. for every bounded interval I.

Proof. The second half is immediate. In fact if F is transient then E¢(I)=
U(I) < oo and therefore {(I)<oco a.s. for bounded I. To show the first half let
{X.} be a sequence of i.i.d. random variables uniformly distributed over [0, 1]
and independent of {¢,}. Define a sequence {Y,} of random variables by Y,=
sup {y; &x(—o0, ¥]=X,}. Then we have easily

PY,<y}=E[¢(—o0, ylI=F(—o0, 9] .
Thus {Y,} is a sequence of i.i.d. random variables with common distribution F.
Let T,= kZ_;OY,,, T,=0. It is easy to see that
P{Tn € Alfx, &sy - ‘}=$1* s *Sn(A) a.s.

and therefore

UA)=P( T or,(Alés, &, -} as.

for every Ae . If F is recurrent then i}oérn(I)=oo a.s. and therefore {(I)=oo
a.s. for every neighborhood I of 0.

3. A random renewal theorem. Throughout the rest suppose F is transient.
Write ¢ for \ tF(dt) if this integral exists. Let D={(x, z); x € R} be the diagonal
of R* and let M, denote the set of all degenerate probability measures on R.
Then the second moment measure G of a r.p.m. ¢ is supported by D iff P{{ e M;=1.

Theorem 2. Suppose that F is transient non-arithmetic. If G=G¢, is not
supported by D then

(1‘) lim LI+ t)=c-A(I) in probability

t—o0

for every bounded interval I, where 2 is the Lebesgue measure, c=p"t if O<p<oo
and ¢=0 otherwise. When c¢>0 the above condition on G is necessary for ().

Proof. The last statement is obvious since if 0<pg<co and if G is supported
by D then &, is written as §,=0x, where {X,.} is a sequence of i.i.d. random
variables. In this case it is obvious that {= Z 0s,, Sa= Z X, does not satisfy (1).

Let I be a bounded interval. It is Well-known [4 5] that if F is transient
non-arithmetic then
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(2) }im U(It)=£im EC(L)=c-2(I) ,

where I;=I+¢. When ¢=0 this implies (1). Suppose ¢>0. In order to prove
(1) it suffices to show :

(3) | lim E[L(L)")=c"-2(0)",
bécause (2) and (3) imply that |
lim E[{(F)—cA(D) =
At first we show the following relation:
(4) E[C(])’]———ZS UJ- )V xds)—V(Jx ])

for every bounded interval J, where V=‘§IG“*. In fact

E[XU)

II

3 5 ElG o si) 6 o w))]

J=0

2 E[E[&rx -« §5(])-&1x « - xE(DIEy, - -+, &]]

0SSk
= Z Eler - &))']

=2 3 Elgis - 6J)-un - o8uF ()]
— 5 Elews - 48,0

=2 5 | 6" uxsor i an— g 6ux

=2 S VUXJ-0U@)—VUX]) .

Il

The assumption on G implies

(5) lim V(e X J)=0

for bounded J (see [2). On the other hand since G generates a transient random
walk on R* we have by a thearem of Bickel and Yahav [T] that

(6) lim V{(z, y); max (z, y) € L}=c(I) .
Since }im VI, xR):}im U(l;)=cA(I) and since V is invariant under the permutation
of coordinates, it follows from (5) and (6) that

(7) lim V(I X (—oo, h=cA(D/2 .
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Let {m.}:>o be the family of measures defined by my(A)=V(I, X (—A)), Aec .
Then {m,} is uniformly bounded and by (5) tlim m:(A)=0 for compact A. Thus

for every bounded measurable g vanishing at +oo we have
lim S 0(t—9) V(L ds)=lim S g(s)ym(ds)=0..

The function A()=U(l,)—ci(I)1.(¢), where 1, is the indicator of [0, o), is bounded
and vanishes at infinity. Therefore it follows from (7) that

lim S UWL,_) VL x ds)

tme
=lim S B(t—9) VL ds)+lim D VX (=0, 1)
=2 .

In view of (4) and (5) this proves (3) and therefore the theorem.
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