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ABSTRACT. Some supplementary results to our previous papers are given.
The outer conjugacy between covariant systems corresponds to the conjugacy
between covariant systems of the crossed products. The integrability of an
action a with _#« properly infinite is characterized by { . 2Q.<(H),a}=
(AR L(H), &) for some projection e in the crossed product ¥ *(., K, a).
Every action (or co-action of a locally compact group) is implemented by a
unitary whenever the von Neumann algebra is properly infinite and standard.
The definition of inner tensor products aj* az of actions a; and a2 and some
related properties are discussed. If « is dual, then (_#£2) N _#C. £ is equiv-
alent to a(.£)Y NF *(a)CH# *(a).

Introduction.

Many of results concerning crossed products of von Neumann algebras by
continuous actions of a locally compact group obtained by Connes and Takesaki
[3], Landstad [8, 9], Nakagami [10, 11], Nakagami and Takesaki [13], Stratila,
Voiclescue and Zsid6 [16], and Takesaki [17, 18] are extended to those for crossed
products of von Neumann algebras by Kac algebras by Enock and Schwartz [4, 6].
In the present paper we shall use their terminologies and give some supplementary
results on crossed products to our previous papers.

In §1 we shall sketch briefly the definitions of a Kac algebra K=M,T,«,¢),
the fundamental operator W of K, a right action a of K on a von Neumann
algebra .#, and a crossed product #*(-#, K, a) or %~ *(@) of - by K in order
to recall notations and basic facts.

In §2 it is shown that a pair of covariant systems are outer conjugate if and
only if a pair of covariant systems of the crossed products together with the dual
right actions are conjugate.

In §3 it is shown that a right action « of a Kac algebra on a von Neumann
algebra .# with .#“ properly infinite is integrable if and only if {-#, & is con-
jugate to a reduction of {-#, & to some projection ¢ in £’ % where A= _AR.ZL(H),
H is the underlying Hilbert space of M, @=(:®0)(@@r) and &= Adigsw+ °&. This




S

142 YOSHIOMI NAKAGAMI

is a generalization of [3, Theorem 3.2.12], [11, Theorems 4.1 and 4.3] and [13,
Theorems II1.3.1 and II1.3.2]

In §4 any right action of a Kac algebra on a properly mﬁmte standard von
Neumann algebra is shown to be unitarily implementable. This yields a partial
answer to a conjecture in [13, Chapter III], that is, every co-action of a locally
compact group on a properly infinite standard von Neumann algebra is unitarily
implementable.

In §5 we shall disscuss inner tensor product a; * @, of actions a, and @,. The
action & of K on —# conjugate to & on %™*(%™*(a), K", &) by Takesaki’s duality
is naturally' interpreted as an inner tensor product of a and the right action I
of the dual Kac algebra K- on -#°(H). This generalizes the fact that for each
action « of a locally compact group G on a von Neumann algebra, &, is of the
form «;®2;, where 2, is the action of G on Z(L*G)) implemented by the left
regular representation of G on L*(G). If d is a co-action of G on a von Neumann
algebra, the § is an inner tensor product of 4 and the co-action 6% of G on
A(LYG)) defined by 54(x)=We(x®1)We.

In §6 the relative commutant property due to Paschke is generalized to the
context of a right action of a Kac algebra and discussed the equivalent conditions

as in [14] by a different method from him.
In §7 a necessary condition for a right action of a Kac algebra to be dual

will be given. The converse is an open question.

§1. Preliminary.

All the contents in this section are taken from the works due to Enock and
Schwartz, [4, 5, 6, 15]. ‘

For a locally compact group G equipped with a right invariant Haar measure
dt we denote by #(G) the von Neumann algebra generated by the right regular
representation #—p(¢f) of G. For the left regular representation ¢—Ai(f) of G, we set
A( f)=§ f@A@®dt for fe L'(G). The duality of G is then contained in the following
diagram: .
LY(G) -2 (G)(=L"(G) for abelian G)
L™(G)—2'(G)x(=L"(5) for abelian G).

This is generalized into Kac algebra context by Takesaki and then by Enock
and Schwartz as the following:
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Let’s recall this procedure more closely. A triplet (M, I, x) consisting of a standard
von Neumann algebra M on a Hilbert space H, an isomorphism I" (Every iso-
morphism in this paper is assumed to be normal and *-preserving) of M into MM
satisfying coproduct condition

1.1 Iy’ =(RI)I",
and an involutive antiisomorphism & of M into itself with
(1.2) ool ok=(k@QkK)I"

is called an involutive Hopf-von Neumann algebra, where o is a symmetric isomor-
phism: 2Qy—yQ@x. We define a product » and an involution o in the predual
M, of M by

(, wxa"y=('(@), ®Q0")
(y 0°)={n(@)*, @)~

for x¢ M and w, ' € M,. Then M, turns out to be an involutive Banach algebra.
A faithful, semi-finite, normal weight ¢ on an involutive Hopf-von Neumann
algebra (M, I', k) is called a Haar weight, if

i) (R (x))=¢(x)l for wxeM,, and
(i) ((RNARY" ) (@) =x(RT"(y*)1R=)) for x,yen,,

where ny={x € M: ¢(x*x)<oc}. Any two Haar weights on an involutive Hopf-von
Neumann algebra are proportional.

Definition 1.1. An involutive Hopf-von Neumann algebra (M, [’,x) with a
Haar weight ¢ is called a Kac algebra and denoted by K=(M, I, &, ).

Through the GNS construction {r4, 94, 74} of M with respect to ¢, M is iden-
tified with 74(M): (M, H}={xs(M), $s}. The intersection as=n, nn$ is a left Hilbert
algebra. Every Kac algebra K=(M, I, x,$) has the fundamental operator W=
W(K), i.e. a unitary W on HRQH with '

Wiss(@@y) =ns0s(lH)(xR1)) , @, YyEng.
Then W satisfies I'(z)= W(1Qx)W™* and associativity condition
1.3) Adigwm(W*QL)=(W*Q@1(«Ro)}(W*R1)
[5, Proposition 3.1.7]. The bounded linear operator A(we,,¢,) on H defined by

(1A (@ey, e,)72) = (W (£:Q71)|€:R72)
gives a mapping of M, into <(H) with A(w+eo')=2(0)i(e’) and i(0°)=2(0)*. We
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denote the von Neumann algebra generated by A(M,) by M. Then 2 is an iso-
morphism of M, into M and We MQM. Let J and J be the modular unitary
involutions of M and M, respectively. Then

(1.4) JRNWIRH)=W* .

Let -7, be the left ideal of M, generated by w , for & peaj and A,=5;N 3.
Then A, is an involutive subalgebra of M,. For each we M, we set

lolls=sup {KKe*, o}|: lzlls <1, zeng}  (lzls=lns@I)
and L={w e M,: |o];<c}. Let a be a mapping of <, into H given by
alwe,)=E7", & peaq;. |
Then b=a(4,) is a left Hilbert algebra with respect to é product and an involution:

a(w)a(e)=a(w+o')
a(0)i=a(0°) .

Let # be the left representation of b on H. Then
ft(a(w)) =A(w)

by identifying {#(b), 9;} with {M, H} and #(6)’’=M, where ¢ is the canonical
weight on #(b)”’ with respect to 5. Then 7}(A(w))=a(w). The mapping I" of M into
M®&M defined by

F@)=a(W*)(1Qu)a(W)
is a coproduct on M. The mapping # defined by

R@)=Jx"]

is an involutive antiisomorphism of M into itself. Then we have A(wor)=£(A(«w))
and x(A4(®))=A4(®) for M,. The quadruple K =M, T,¢#, #) turns out to be a Kac
algebra, called the dual of K. The fundamental operator W(K") is o(W*) and
K=K"".

The commutant of a Kac algebra K=(M, I', x, ¢) is constructed from
I'(x)=Ad;gsoI>Ad;(z) , xeM ,
& (x)=Adyoro Ady(x) , xeM
¢'(x)=9(Jx]) , zeM,,
and denoted by K'=WM',I",x',$). The fundamental operator W(K') is
(JRNWUJRJ) and K=K".
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The reflection K° of K is defined by K’=(M, oI, x, ¢ox). The fundamental
operator W(K°) is (JQHW(JRJ) and K=K®. Moreover, we have K=K,
K"=K", K=K~ and K" =K.

Lemma 1.2. If W is the fundamental operator of a Kac algebra K= M, T, x, @),
then

Q) (JRNHa(W*) J&® J) is the fundamental operator of K~'.

(i) Adigew)(@(W)R1)=(a(W)R1)(:Qa)(e(W)R]) .

Proof. (i) Since W(K )=¢(W™*) and J is the modular unitary involution of
M, we have W(K™")=(fRNe(W*)JR)).
(i) The fundamental operator V= W(K"') satisfies the associativity condition
1.3):
1.5) Adigr(V*QD=(V*QD(Ra)(V*R]1) .
Applying Adjgie; to both sides, we have (ii). Q.E.D.
Here we consider examples of a Kac algebra.

Example 1.3. Let a¢ be the action of G on L”(G), i.e. the coproduct on L*(G)
with (acf)(s, £)=f(st), £ the involutive antiisomorphism of L*(G) into itself with
(f)O=f¢") and p5 the faithful semi-finite mormal weight on L(G) with pe(f)=
S f(OA&)dt. Then

K={L°°(G)’ ag, K, ﬂé}

is a Kac algebra whose fundamental operator W(K) is Ws*, where (Wgé)(s, f)=
A(s)'2&(s, s't) for € L*(GxG). In this case

K'=K;

K’'=(L"G), ag, k, ps) , WK )=Ws;
where pe=pior, (aGf)(s, )=1(ts) and (Wet)(s, t)=£(s, ts). Of course, pe(f)= S f@at.
Let 8, be the co-action of G on Z2'(G), i.e. the coproduct on &#'(G) with 3¢(A(f))=
A()®A(#), & the involutive antiisomorphism of <2'(G) into itself with RQA@))=A()*

and ¢5 the faithful semi-finite normal weight on 2'(G) with gs(A(f)*A(/)=|fliz
for fe Z(G). Then

K =(#'G), 0,6, 4%, WE=Vs:
where (Ve8)(s, £)=4(1)'2&(t s, ). Moreover,

K™ =(#(G), 8,k ¢s), WE H=Vg;
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where 0d¢(o(t)) =p(t)Qo(?), E(P(t)‘):zo'(t)*, Pe(e() (=] flls for fe Z(G) and
(Veb)(s, H)=4(st, 1) -
Example 1.4. If K=(#(G), dg, £, ¢¢) and W(K)=V}5, then we have

K'=(2'(G), 05,8, 95), WEK)=Ve;

K’'=K ;
K™ =(L"G), 2o, 6, 1), WE =W ;
K '=K"=K":

K=K"=(L"G), a¢, 5, ), WE " )=Ws*,

Now we shall generalize the action and the crossed product into Kac algebra
context as the following:

Definition 1.5. A 7ight action « of a Kac algebra K=(M,I’,x,¢) on a von
Neumann algebra .# is an isomorphism of .# into .#£®@M satisfying

(1.6) (@@c)ea=(cQ)oa .

Definition 1.6. Let a be a right action of K on -# The crossed product
¥ (A, K,a) or #*(@) of -# by K with respect to a is the von Neumann
algebra generated by a(.#) and CRQM'.

"The dual action & of « is a right action of K~ on the crossed product % *(«)
defined by

(1.7) a(x)=Adgigriwriesd (@Q1) ,
[4, IL.6. Proposition]. The Takesaki’s duality is given by
(@, K™, 8), §=(ARLAH), &,
where & is the dual action of & and & is the right action of K on - £Q.<(H)
defined by
1.8 (@)= Adigo i °((Q0)°(a@c) () ,

[4, 1I1.8. Theoreme; 6, Theoreme IV.3].
Throughout this paper we denote the underlying Hilbert spaces of M and . #
by H and §, respectively.

§2. Outer conjugacy of actions.

In this section we shall show that the study of outer conjugate classes of
covariant systems is reduced to that of conjugate classes of the dual right actions
acting on the crossed products.
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Let « be a right action of a Kac algebra K=(M, [",*,$) on a von Neumann
algebra -#. A unitary ue #Q@M is called an a-cocycle, if

-@n ‘ (@1)(2@e)(w) = (R (%) .

Denote the trivial right action of K on .# by ¢&, ie. ¢ (®)=2Q1 for ze £
If a=c;f, then every a-cocycle u satisfies the associativity condition

2.2) - (#®1)((R0)(uR1)= ()W) ,

and vice versa.

A pair of right actions a; of Kac algebras K;=(M;, I';, £;, ¢;) on von Neumann
algebras - #; is said to be outer conjugate, if there exist isomorphisms z of #;
onto .#; and ¥ of K, onto K, such that

azont(x) =RV ) Aduca(x) , x € A
for some a,-cocycle u € #£;®@M,. This is written in the form
{‘/th Klv 0‘1}"’{-/[2; Kz; az} or a2~a1(7f, w! u) .
In case of ¥=1®]1, a, and a, are said to be conjugate and denoted by
{A, K, a\}={A;, K;, a5} .

Proposition 2.1. If a; (=1, 2) are right actions of K; on #;, then the following
two conditions are equivalent:

@) (A, K, ai}~{A;, K,, as}

(ii) {W*(al)) 1 ’, &1};{ W*(az)’ K;\,’ &2}

Lemma 2.2. Let V denote the fundamental operator (JQJo(W*(JRJ) of K™,
If a is a right action of K on A and & is the dual right of K™~ on % (), then

2.3) ((Re®0)°(aQ)(ARQ V) =(1RV*RNUAR1IRQa(V")) .
Proof. Since the dual right action & is implemented by an ¢(Z{®*’ —cocycle

1JTRINW*(JJ®JI) as [LT), we have
((®c®0)°(@R)AR V™) = (c®:R0)° Adig. 170s5w+rierine: ((R:Ra(1QJV*R]) .
To prove it suffices to show
(c®0)° Adyrg1° ((Ra)N(V*QD=(V*QD(IRQa(V") ,

where U=(JJQJHW(J®JJ). This will be done as the following. Since W*=
(JRNWJR]J) and
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ARU*)(o(VHIRL(IQU)
=(1RJJRJNARW*(1RJIR]])
(JRIRNHNWRNJRJR)HARTIQINIRW)ARTIRT T
=(1RJ/RJNIURW*)(JRJRQ/NWRDJRJRN)IQW)IRTIRJT))
=1RJJRINIARW*)(W*RLARW)(1RJIR )

. =ARJIRINW*RD{((Ra)W*QDIARJIRIS) , by [1.3),
=(JRJRNUIRJRN)W*D{(@a)(W*QUN QIR ) JRJRJ)
={JRJRNWRD{(RNWRIJR SR/
=@(VHRD(Ra)(e(VHRI) ,

it follows that
(¢®0)° Adyr@:1°(¢®0)(V*R1) ={(:Ra)(U* Q1N V*RL)(:Qa)(UR1)
=(@E@)(ARQU*)(¢(V*)QNIARU))

=R ((6(V*)R1)(:®0)(a(V*)®1))
=(V*QDARa(V*)) . Q.E.D.

Now we shall go inta the proof of our proposition.

Proof of [Proposition 2.1. (i)=(ii): By [4, II.8. Proposition].

(ii)=(i): Since {4, K;, a;}={a(-#)), K;,:QI';}, we have only to show that
{ay(#), Ky, (@I} is outer conjugate to {ay(-#;), K;, c®I's}. Let x (resp. ¥) be
the isomorphism of % *(a;) (resp. Ki') onto % *(a;) (resp. K') such that
(*@¥)o&1=as°n. Let W; be the fundamental operators of K; and V; the funda-
mental operators (JR/o(W;)(JRJ) of K;'. Then V; implements ;. Since
W;e M;QM;, we have V,;e Mi®M; and

1®Vie ™ @)®M; (j=1,2).
Here we set
w1=(7r®¥")(1® V1) and W2=1® Vz .
Then w; and w, belong to % *(a))@M,. Since
(®c®0) (G R} (W) = ((®tR0) (& R¢)o (xR AR Vi)
=(c®t®0) (z QT RT) (&1 Re)(1Q V¥)
=rQ¥F Q¥)(:®c®0)° (A1 R)ARQ VL")

=@Q¥RT)(IRVI'RNURIRQe(V"), by Lemma 2.2,
= (Wi ®NIR1IRa(V;"))

and
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(R R0) o (@:R0) W) = (Rt R0)° (AR )AR V')
=(1Q ViR (IR1RQe(V3))

=W R(1RLIRe(V3)) ,
it follows that

(Rt R 7)o (A Re)wh we) =wiw,R1 .

This implies wiw, € as(-#2;)@M, by [6, Théoréme IV.2]. Since I'; is implemented
by a unitary w;, we have

(Wi w1 (R R0) Wi ws)= Wi ws®1) Aduse: (R R0) Wi w:®1)
= (W @{(:®:®0)(wi QNH(: @)W, @D} (w:R1) ,

Since (ViQL(Ro)( ViR =(RI';)(V}) by we have
W QD (R @) wiR1)=( R )w]) ,

and hence
(wrw2®1)(f®pz®‘)(wrwz)=(‘®‘®Fz)(wrwz) .

This means that w¥w, is an ((®I's)-cocycle in a;(-#£;)QM; and so {ay(-#;), K, ¢RI's}
is outer conjugate to {ay(-#3), K;, Adus}. Since {a (), K1, «®I',} is conjugate to
{as(-#), K, Ady;}, it follows that {a(-#)), K., «®I;} is outer conjugate to {a;(-#3),
K., (QI;}. Q.E.D.

Corollary 2.3. (a) Let «; be actions of G on A;. It is necessary and suf-
ficient for {A1X .G, &1} ={A#;X o,G, &} that {A#;, a1} is outer conjugate to { A, as}.

(b) Let 8; be co-actions of G on 5. It is necessary and sufficient Sfor
{A1%3,G, 8} ={A5X4,G, 8} that (A7, 81} is outer conjugate to {A3, s}

§ 3. Integrable actions.

For a right action « of a Kac algebra K=(M,I',x,¢) on a von Neumann
algebra -#, we can define a faithful normal .#“-valued weight &, on A by
(Rg)oa, i.e.

(Eul), 0)=(0@P) (&) , wEA, € Ax.

When &, is semi-finite, i.e. {x € A £, (x*x) exists} is s-weakly dense in ., the
right action a is said to be integrable, [6, Definition I1.3] The following theorem
is a generalization of [3, 11, 13], whose proof will proceed similarly as [13].

Theorem 3.1. Assume the separability of underlying Hilbert spaces H of M
and § of A. If A*={ze A a(x)=xQ1} is properly infinite, then the following
three conditions are equivalent:
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(1) a is integrable. Co
(ii) For any non zero projection fe . A#°RC there exists a non zero ye
ARL(H) such that y=fyf and

3.1) a(yY)=1R®s(W)URXD) . (@=(RQ0)°(a®x))
(i) {2, a}={#, &), for some projection ec A%,
where j:/@Z(H) and & is defined by [1.8).

Before entering the proof it should be noted that if a is integrable, so is the
restriction a° of « to -#, for any non zero projection e in . #°.

Proof. (i)—(ii): As our assertion is true within a conjugate class, we may
assume that .# is standard. Suppose that a is integrable. There exists a faithful
semi-finite normal weight ¢ on .# which is 4 '-relatively invariant:

@GR (a(x)=px)d™, xe A, ;
(PQwin/ag)(a(y™)(@R1))
=(Qui-1/4er)(¥*@Da@) , wm,yeny, EeDAYnd™Y,

where 4 is the modular operator of (M, #}, [6, Théoréme II1.4]. The integrability
assures the existence of a non zero element zeny. Fix a non zero element d € ny.
If ajeny and z;en, for j=1,2,...,n, then

IZ @ apzils<ldlls]| T 2:Ra;] 404
by universal property of tensor product, so that
1= ¢(d*a,-)77¢®¢(a(z)(a;j®l))Il$®'¢=((; ¢(d*ai)wj)¢'(§ ¢(d*ak)‘xk)*®¢)(a(z*z))

=(Eale"2), (T $(d*a)2)d(T $(d” @)m)*y
=[Za"2)|l| 2 4 *a)wilg
<|Zu2*2) ]3] = 2iQasllges

Therefore a bounded linear operator y on $RH is well defined by

3.2 - Yees(Z 2iQa) =3 $(d*a)nsesa(2)(®;Q1)) .

Since n, is dense in 4 and z+0, we have a(2)(x®1)+0 for some z € ng. There-
fore y+0. If y'e . #’, then

a(2)(y'z®1)= (¥’ Q)a(2)(x®1)

and hence y commutes with y'®1. Thus y e £RL(H).
It remains to show that y satisfies [3.1). Since « is integrable and # is

v
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standard, there is an ¢ ‘®’-cocycle u € ZL($)QM implementing a:
(3.3) u(p@)@4 *py@)=nyesla(@)(1®a) , xmENy, @ENINny.,
[6, Corollaire III.19]. Then @=(:Ro)-(a®:) satisfies

a(yY)=Ad @ a1 (¥R1) , AS /®$(H) .

Here we set 0=¢Q¢Q¢. For any xen, and a, beny;, we have

a(y)7.@x@1(1aRb)
={((R) UL} YR (9ses(xRa)RI " *94®) , by (3.3),
=¢(d*a) (c®0)(%R1) (s04(@(2)(®RL)RI " *ng()) , by (3.2),
=¢(d*@)n.(@(a(2)(xR)IR1IRY)) , by (3.3),
=¢(d*a)7.({(:®0)° ((RI')(@(2))}a&(x®1)(1Q1RD)) .

The fundamental operator W=W(K) of K was defined by Wuygs(a®b)=
7s0s(I"(D)(@®1)), and s0 o(W)ns04(bRa)=7nse4(0-I"(0)(1Qa)). Therefore

$(d”* a)9a({(c®0) ((RI)(@(2))} (xR (1R1RH))
=¢(d*a)1Ro(W))n.((a(2) 1) @&(zR1)(1Q1Rb)) )
=(1Qe(M) YR .(@xRD(1Ra@b) , by [B.2)
Consequently, we have &(y)=(1Xas(W))(y¥R1).

(i)=(iii): Put A =ARQL(H) and a=(:Ro)o(a®r). Let S ‘be the set of all
ye A with [3.I). Since &@=Ad;g,w+ & we have a right action 8 of K on A QF,
defined by

B=Ad,(:Q:Q0)°(aRr)
v=(R:R0)1R1R1Re1+1Rs(W*)Rez) ,

where F; is a I,-factor and e;; are the matrix units. Therefore 3] x;;Qe;; € (ARF,)*

if and only if
xlle‘jar x]’;ej, w21€j, xzze./{a

Condition (ii) implies that the central support of 1®1®e;; in (./»?®F2)‘a is
majorized by the central support of 1Q1®e,; in (-ZQF,)’. Since £ is properly
infinite, 1Q1®e. is also properly infinite in (ZRF;)’. Since 1Q1Re;; is o-finite
in (AZQF,)*, it follows that

1Q1Qen<1Q1Re:z:

in (#Q®F,)?. Thus there exists an isometry we._?, because u®e; € (AQF:)
implies v € .#. Put e=uu*. Then eec #%, which yields condition (iii).
(iii)=(i): Since & is integrable [6, Proposition II. 4], so is & for any projection
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ee #%, Therefore & is integrable by (iii). If p is a minimal projection in £ (H),
then 1®Qpe #£* and &@'®® is integrable on #g,. Since {-#; a}={. A, @hg,, « is
integrable on #. Q.E.D.

§4. Unitary implementability of action

The unitary implementability of a co-action of a locally compaet group on a
von Neumann algebra is our conjecture is [13, Chapter III]. It is already known
that any right action of a Kac algebra on a standard von Neumann algebra is
unitarily implementable if it is integrable, [6, 13]. Our aim is to remove this
assumption for properly infinite von Neumann algebras.

Theorem 4.1. Assume that 4 is standard and spatially isomorphic to
ARL(H). A right action a of a Kac algebra K=(M,I",x,¢) on A is imple-
mented by an ¢ ‘®-cocycle ue L(H)QM so that

a(z)=u(z@u* , xe A,

The following lemma is an immediate consequence of the associativity con-
dition [(1.3) of W.

Lemma 4.2. The unitary 1Q¢(W) is an &-cocycle.

Proof. Put @=(®oa)-(a®:). Then 1Qao(W™*) is an &-cocycle in A R-L(H)QM
by [4, III. 6. Proposition]. Since &=Adigow* °&, it follows that

(1Qe(W)R1)(@R)(1Qa(W)) ={(@R:)(1Qe(W)}(1Re(W)R1)
=(®RIN(1Qa(W)) .
This means that 1Q¢(W) is an &-cocycle in ARFL(H)QM. Q.E.D.

Proof of Since {#*(¥ ™*(a), K", &), K,&} is conjugate to
(A QL (H), K, &} by Takesaki’s duality, &= Adigew+°(t®0)o(a®¢) is integrable
[6, Proposition II.4]. Since .# in standard and spatially isomorphic to
ARL(H) by assumption, & is implemented by a unitary v in L(ORQH)QM
with the associativity condition
“4.1) (w1 ((®:R®0)(v®1)= (R QI")(v) ,
by [6, Corollaire III. 19]. That is

Adigo i+ °((R0)o(aQ0)(2)=Ady(x®1), xe ARL(H)
and hence, with y € <£(H),

Adigw i@ »(1Q1QY)=1R1Qy .
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This means that (1Q W)(¢®o)(v) belongs to L (ORQH)RC. As 1Q®¢(W) and v are
elements in L(ORQH)RM, there is a unitary # in -L(Y)Q@M such that
(1QW)(Qo)(v)=uR1 .
For any x € . #, we have
a(2)R1=(a@:)(2R1)= Ad.&1°(¢Q0)(2®1R1)
=Ad\e:(zQ@1Q1) = (#(zQ)u")R1

and so a(x)=u(x@1)u* for xe .
Finally we shall show that » satisfies the associativity condition. By direct
computation we have

(6@ QN (1P« ((Q:R@a)(1QuR1)}
={(c Q@) (#Q1RN}:®:®0)°((Re&)(#R1R1)
={(c®eQ)((1Q WRD)(c@o &) (vQ1))}

(1R ®0)° ((RoQ)(1Q WRL)(:Ro®:)(v&Q1))
=(1Qe(W)QD@RD(«@:Qe)(((@a(W)Q1)(v&1))
={1®e(W)RL(@R)(«Qe( W)} rR1)(:Q: Qo) (v&1)
={(@RNARQe(WHH®RI')(v) , by ILemma 4.2 and (4.1},
=(Q:QI)((1Qa(W))2)
=(c @ @I')*(c®0)(u®1)
=(Qc@I")>(e®:)(1&Qx%)
=(0Qc®0)° («QRIN(1Qu)

and hence (#®1)(cR0a)(#R1)=(:RI")(%). Q.E.D.

Corollary 4.3. Let 6 be a co-action of a lacally compact group G on a von
Neumann algebra {4, ). If A" is properly infinite and standard, then o is
unitarily implementable, i.e. d(x)=w*@@Lw for some unitary we L (NRQZ(G)
with (w®1)(Qa)(w&1)=(:QRdc)(w).

§5. Inner tensor product of actions.

Given two actions a’(j=1,2) of locally compact groups G; on -, we can
construct an action a'xa’:
(s, t) € G X Gy—arRai

of a locally compact group G;XG; on #,Q-#;, that is, an isomorphism ((Qoe®c)o
(@'®a’) of AR, into A,RQ-A2;,Q (G, XG,) satisfying [1.6). When G,=G,(=G),
we can construct another action a'xa®:

te GHai®ai
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of G on #Q-#;. We shall generalize these tensor products to the Kac algebra

context.
Let K; _(M,,I’,,m,, #;) be Kac algebras. For any right actions «, of K; on
4, and a; of K, on - #;, the isomorphism ~

(.1) - axXay=(QoQ¢) (@ Ras)

of AR, into (ARQ-A)QMQ@M,) turns out to be a right action of the Kac
algebra K;QK; on - #,®-#;, [15, Chapitre VI], which will be called the outer
tensor product of a, and a;,. When K,=K,(=K), we can construct an inner tensor
product of a;, and a,, i.e. a right action ¢f K on -#,®-#, as follows: For any
¢ ‘®?-cocycle # implementing a, we set

(5.2) a1%, 0= Adigu° (¢Q0)° (2, Q) .
It is easy to see that a,*,, is a right action of K on -#,®.-#;. Indeed,

((al*ua2)®!) (aty*yats)
= Ad1zue1°((Q0Q1)° (@: Q1) ° Adigu° (¢®0) (a1 Q)
= Ad1gu@1°(tQIR¢)° Ad1218u° (R @) (41 Qe @r) o (1 R)e)
=Ad @w@r 18u°((Q0Q1) ((®:®0) e ((RI'RQc)o(:®:) , by [2.2),
=Ad.@@r agu ° (@R ((Qa)°(a:¢)
=(c@tQI")o Adigu°(¢@0)°(a:1R)
=(cQQI")o(ar*us) ,
where the fourth equality follows from

(5.3) ((®0Q0)°(:@:@0) Q' Q) = (cQRI")(¢:Q0) .

Therefore a,*,a, is one of the candidates of inner tensor product. However, it is
desirable to define it independently from a given ¢ ‘®?.cocycle » implementing a..
Notice that {-#;, K, a,} is conjugate to {a,(-:), K, (@I} and «@I" is implemented
by a unitary 1QV*, where V=W(K"’). As 1QV*e L (9:.QH)QM satisfies the
associativity condition by [Lemma 1.2, the isomorphism a;*,gy+ (¢(®I") is a right
action of K on #,@a,(-#;) by [5.2). Therefore

(a1*(1®V')(‘®F))(%®a2(%))C%@“z(“’fz)®M-
This inclusion assures the following definition.

Definition 5.1. For any right actions a; and «;, of K on -#; and - #;, re-
spectively, we denote

(5.4) 0’1*“2:(¢®az_1®f)°(a’1*(1®V')(l®F))°(‘®0‘x) ’
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which is called the inner tensor product of «; and a,.

It is immediate from the definition that
(5.5) ((@a; @) o (axaz)= Adgrgv+ (tQ:@0)o (a1 X a3) ,
which connects inner and outer tensor products.

Proposition 5.2. If a, and a, are right actions of K on -+, and A, respeé-
tively, then a,xa, is a right action of K on #,Q-#,. If x € #,, then (axa)(1Qxz)=
1Rax(x).

Proof. We set isomorphism 8,, 8 and 7 by

8 1=Ad1®1®V‘®1° (¢®cQ0R1) e ((RoeR:Qt)o Ad 12107+
B=P81°(a:@c®:®¢)° (@t @0) (R @) (0, @Datz)

and
7=(Rt@RQI")° Ad\g19v+° (tR:R0) (R @) (a;Qaz) .
Then we have
o (@) @0)o (@ysats) = ((®ati *®e®c)o f
and

((Re@I)o(arraz)=((Ras QcRe)or .
It suffices to show S=y. Since (a®z)o(z®é)(V*®1)=1®V*, we have
B1=Adig1gv+@1°((Rr Q)0 Adig1818v+° ((RI@c®r)
( y = Adig1ev@1° Adigi® 001 @11 ° ((Q @) o (¢QRoe @) -
Since -
B=p1°(c®:@:Q)°(tQ:@@¢) o {((@1 Q) cax1) Qx2}
=81°((®:@c®0) (R @oQr) (R Re@)1) > (1 Qxz)
and since
((@Rc®0Q))° (R Rc 1) ° (¢ R R R0) ° (¢RcRo@1) (¢RI R Re)
=(QQQI") > (¢Rc®0) (R )
by [(5.3), it follows that
.3=Ad1®1®(v*®1)u®a)(V‘®1)°(t®l®l®r)°(f®¢®0)°(l®d®l)°(a’1®‘12)
=(c Q@) o Adigigv+ (R @) (: Q@) o (1@ t2)
=7 ‘
where the second equality follows from Q.E.D.
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Remark. If M is abelian, then a;*a;=a,*,a;. Indeed, if M is abelian, then
a;(x)Q@y®1 commutes with ((XRe@R)(1Q1Ra(V)) for all x€ 4 and y € ;, and

hence
- @)@ax(y)=Adig1gu ((RoQ0)° Adigigs v (@) (0 ()@YX]) -
Therefore
Adigigv+ (¢Q:®0)° (:Q0Qr)° (01 Q) (zRY)
=Adigigv+ Adugus 1@191)°((Q:Q0) (¢ Qo ) (a1 (2) DY 1)

=Ad13u21°(tQQ0)° Adigup1°((Qo@e) (a1 () QYR1)
=((Qa:Q¢)o Adigu° ((Ra)(a1(2)QY) -

Corollary 5.3. If a;j(j=1,2,3) are right actions of K on #;, then

(al*uaz)*vasr‘a’l*(utvl(az*vaa) )
where uxv=_1AQRv)(¢X0o)(uX1).
Example 5.4. If « is an action of G on -#, then {(-#£X.G)X:G, &} is con-
jugate to { £ R-L(L*(G)), &} by Takesaki’s duality, [9, 10, 16]. The action & is

of the form axi, i.e. &=a;®1,, where 2 is the action of G on Z(L*G)) defined
by Ax)=2)zAt)*.

Example 5.5. If ¢ is a co-action of G on ., then {(#"X;G)X;G, 5} is con-
jugate to { " ®R-L(L*G)),d}. The co-action § is of the form dxy,0s, where o5 is
the co-action of G on Z(L*G)) defined by d5(x)=Adw4(x®1).

Example 5.6. If a is a right action of a Kac algebra K=(M, I, x,¢) on A,
then &=ax*,w+1', where K~ =(M, L&, #). Indeed, the fundamental operator of K
is a(W™).

It should be noted that a*a, is not symmetric, i.e. {#£® ;, K, a;*a,} is not
necessarily conjugate to {#£® #, K, axxa;}. However, if we set

7;=(cQ®o Q1) (¢QRcQ0)° Adsgr1eve ((@a;Qe) ,
then, by Definition 5.1,
az*“1=7f;1°7'°771°(a1*¢12) ’
where 7=(@®¢)°(tQRt® ) (6@:R¢)° (R R)e).

Proposition 5.7. Let a;j(j=1,2) be right actions of K on #;. If a, is integrable,
then the inner tensor product a,*xa, is also integrable.

Proof. Let &, and £,,.., be the faithful normal operator valued weight on
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A, and AQA; defined by ((Rg)ea, and ((R:®¢)e(a1*az), respectively. Let
Ga,={2 € A2 Zo (2% ) exists} and Go,ua,={Y € AR A2} Lo, (y™y) exists). If z € qay,
then

& a1ray(1Q2" 2) = (( Q@) o (@r+a2) 1Qz ™)
=(R®9)°((Raz)(1RQx*x) , by [Proposition 5.2}
=(Q%.,)(1Qz*x) ,

and s0 C®a,Chaea,. Since a, is integrable, so is a,*a;. Q.E.D.

Proposition 5.8. If a;(j=1, 2) are right actions of K on -#; and N j=F ¥ (a;),
then
{F (AR A, arxas), (arxaz) }Z{A (t.r, @) (A1 _4)} »

where G is the symmetric isomorphism of M'®-; onto QM and A is the
von Neumann subalgebra of SR 4; generated by o\(#A)RQa(A:) and
((®o@NCRCRAd i (M'®C))

Proof. We set
7= (:®0Q¢)° ((R:®0)° Adigrgve ((Ra:Q)) .

Then we have

| ro(@sa) B @)= ax(@)®r(s) , 75 € A
by and
(5.5 fr(1®1®y)=(e®0®z)°(e®t®a)oAd1®1®v(1®1®1®y)A

=(Qe@)1IRIRQAd, v\(¥®1) , yeM'.
The conjugacy is immediate from the following:
(TR} o (@rxas) (ot kas(: Q) = (TR (@1 +t2(2:@%2) D1)
=at3() R2(%2) Q1= (¢, ®F) e (@1 &e-,) (X1(%) Qx(25))

and

(TR0 o (a1 xa) (1Q1RY) = (r@) 1L (y))
= ((RIR:Rr) o ((RR0oRr) > Adig1ever IQIRIR(¥)) , by [5.5)
=(tQoQcR1¢) (¢QR:Ro @) e Adig10vei° Adigig1esi®s s wH1i®7) (1IR1IRXNRYR1) .

Since We M®M, it follows that
VeM'®M and  (JJQIHW*JIQINHeM'@M' .
Therefore, the right hand side equals to
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(t®@:Q0)° (R @oRr) e Adigir@ri0rd werders °Ad1®1®V®1(1®1®1®!l®1)
=(cQo®c®)1)° (¢ R QoQ)1)* ((Re@1) > Ady210v(1R1R1R)y)
=(t®:®!®0)°(e®t®0®6)°(&1®t®e)°(t®0®t)°(z®e®ﬂ)°‘Ad1®1®v(1®1®1®1!) "
=(t.4,R5)° (1R 1) 7(1RQ1RQy) . o Q.E.D.

Corollary 5.9. If 65(j=1,2) are co-actions of G on S; and A;= 47X ;;G, then.

(A QA Xs20,G, G0} ={A, (5, @1},  teG,

where A is the von Neumann subalgebra of A,Q-#, generated by 6,(47)R0:(H7)
and ((Qo®)(CRCRas(L*(G))). |

§6. Relative commutant property.

We shall generalize Paschke’s results on relative commutant property to
the context on crossed products by Kac algebras. The proof will owe mainly to
Takesaki’s duality. ‘

Theorem 6.1. Let a be a dual right action of K~ on . v

() () NF*)=Faier if and only if (A% N A=Z,.

(i) a(A2)NZ*a)=Fpra if and only if (AN A=F .

Proof. As our theorem is true up to conjugacy, we may assufne 'that 4 is

standard. If « is dual, there exists a right action 8 of K on a von Neumann
algebra {-#,, 8 such that

(A K™, a)={#*(A,K,8), K", B} .

(If {4, K, B} is conjugate to {47, K, B;}, then {#™*(8), K™, f} is conjugate to
{#*B), K"',B.}.) We may assume that 8 is implemented by a unitary ue
L(R)QM with the associativity condition [2.2). If ¢ is a faithful, semi-finite,
normal weight on .4~ and ¢ is the dual weight ¢o87"-%3 on %"*(g), then the
modular unitary involution is given by |

Ji=u(Jy@J)(=T)
and J#Z™*B)J=2"*B), (6, Corollaire IV.8]. Here we recall Takesaki’s duality
[6, Théoréme IV. 3] and the fixed point property of dual action [6, Théoréme IV. 2].
Then
6.1) {(W*(a), K, &}={+" QL (H), K,B}
and
6.2) (A QRLH)=#() .
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Now we shall go into the proof of our statements (i) and (ii).
(i) According to and the condition a(-#)" N % *(a)= .. is equi-
valent to

W*(ﬁ)’n(/@f([{)):%y,(p, .
Applying Ad; to both sides, we find that is equivalent to
W(ﬂ)ﬂw"‘(/f/'(@g(m)w: Caat ) »
which is equivalent to («#%)'N.#=%, by
(ii) By the same reason as.(i), a(-#) N Z *(@)= . is equivalent to
W*(,B)’n(/@.?(H)):K R (H)
Applying Adj, we have
7B Nw* (A QL H)w=w"(%,QCw ,
which is equivalent to (£%)'N A#=% ,a. Q.E.D.
In what follows, a is said to satisfy the property (R) or the property (R), if
it satisfies
a(A) NI *)=Fai_e)
or
a'(./é’)'r] W*(a): Etia) »
respectively.
Corollary 6.2. Let A#=_#RFL(H). If the property (R) (or (R)) holds for
(A, K,a}, so does for (A, K, &}.
Proof. If (R) is true for {-#, K, a}, then (R) is true for {# *(a), K, &} by
ii. Therefore (R) is true for {-#, K,a} by Theorem 6.1.i. The
similar argument does hold for (R). Q.E.D.

Theorem 6.3. Assume that the underlying Hilbert spaces are separable. Let
a be an integrable right action of K on #.

)] a(‘/l)’n W*(a)':gu(x) implzes (./fa),ﬂ M =F ,.

(i) a(A2) N F*Q)=Cyra) implies (AN A=F 4.

Proof. (i) If the property (R) is true for {-#, K, a}, then it is true for
(A, K, &). Since & is dual, (R) for {-#, &} implies
(6.3) (j&),ﬂj= g_;
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by Theorem 6.1. As « is integrable, {-#,&@}~{.#, &}, for some projection ¢ in
A% by Theorem 3.1, condition implies o
(AN(A)=(F2). and (AY)=(A)*
and hence, by above conjugacy,
(./t? E)' N M =F 7
Consequently, we have (#£%)'N.#£=%,.
(ii) By the same reason as above, the property (I?) for {-#, a} implies
(./f_ ‘;), N M= S &
by [Theorem 6l1. Therefore the integrability of a implies
(AN A=F a7,
which means
(AN A=F . . Q.E.D.
§7. On a dual action.

In this section we shall given a necessary condition for a right action of a
Kac algebra to be dual.

Proposition 7.1. If 8 is a right action of a Kac algebra K~ on a von Neu-
mann algebra V" such that

(7.1) (A K, By={# (A, K, a), K™, &}

for some covariant system {#, K, a}, then there is an ¢S ®-cocycle ue 4" QM such
that

(7.2) B(w)=(u@1)(1Qe(V")) , (B=(®0)-(BR1)) ,
where
V=(RNs(W*)(JRJ) .
Proof. As V is the fundamental operator of K ', it satisfies
(7.3) (V* Q@) V*Q@1) = Adiov(V*QD=(QI)(V*"),

the uhitary U=1,QV™* is an ¢ “9® cocycle: (UR)(Rc®Re)(UR1)=(:RQ)U).
Since Ve M'@M, we have Ue Z*@)@M. In order to show

7.4 (c®:®0)°(@@)(V)=(URDHUR1IRQa(V"Y)) ,

it suffices to check
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(7.5) (c®0)° Ad sigriwrieine (@) (V*@D=(V*@L(1®d(V™)
The associativity condition (7.3) implies
(VRDUSVIV*QN=1RQV)(cQo)(VR]) .
Put j=J®J®J. Since (JR))=V(JRQJ)V*, if we apply Ad; to both sides, we have
JVRNJAQVHFV*QL=(1R® V")) (V*R1) .
Applying (¢:®0)°(s@®¢) to both sides, we have
Adgn Femenh(V*QD=(V*Q11Re(V")

Since (JR)o(VYIQN)=TIQINYW*(JJ®J)), this yields and hence (7.4).
Our assumption gives us an isomorphism = of 2~ *(a) onto .#~ such that

Bor=(r®:)od. Setting u=(x®:)(U), we find that  is an ¢ ®-cocycle in A& QM

satisfying by equation [(7.4). Q.E.D.

When B is an action or a co-action of a locally compact group, the converse
of the above proposition does hold as shown in [8, 10, 13, 16].

Problem 7.2. Does the converse of Proposition 7.1 hold?
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