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0. Introduction. Let $\tilde{M}$ be a Riemannian manifold of dimension $n(n\geqq 3)$ and
$M$ a hypersurface of $\tilde{M}$ with smooth boundary $\partial M$ such that $\overline{M}=M\cup\partial M$ is com-
pact. Let $X$ be a vector field in $\tilde{M}$ which is transversal to $\overline{M}$. Let $\epsilon$ be a posi-

tive number such that the map $\Phi:\overline{M}\times(-\epsilon, \epsilon)\rightarrow\tilde{M}$ defined by $\Phi(m, t)=\varphi_{t}(m)$ ,
$(m, t)\in\overline{M}\times(-\epsilon, \epsilon)$ , is imbedding where $\{\varphi_{\ell}\}$ denotes the local l-parameter subgroup

of local transformations generated by $X$. We consider the following problem:

Let $f$ be a given real-valued smooth function on $\partial M$ such that $|f|<\epsilon$ . Then

find a minimal hypersurface of $\tilde{M}$ whose boundary is $\partial S_{f}:=\Phi(\{(m, f(m))\in\partial M\times$

$(-\epsilon, \epsilon);m\in\partial M\})$ .
We put $F=$ {$ u\in C^{2}(\overline{M});|u|<\epsilon$ in $M,$ $u=f$ on $\partial M$} and for a $u\in F$ we let $S(u)=$

$\Phi(\{(m, u(m));m\in M\}),$ $\Sigma_{f}=\{S(u);u\in F\}$ . In $\Sigma_{f}$ we want to find a minimal hyper-

surface of $\tilde{M}$ with given boundary $\partial S_{f}$ . Let $S(u),$ $u\in F$, be a minimal hypersurface

of $\tilde{M}$. Then we see that $u$ is a solution of a quasilinear elliptic partial differential
equation of second order in $M$. Therefore our problem stated above can be re-
duced to the Dirichlet problem for a quasilinear elliptic partial differential equation

of second order in $M$.
In this paper we study our problem for the case where $\tilde{M}$ is a simply connected

space form and $\overline{M}$ is contained in a hyperplane of $\tilde{M}$ and moreover $X$ is a Killing

vector field normal to $\overline{M}$. In Section 1, we give a minimal surface equation (see

(1.8)) in a Riemannian manifold $M$ with boundary $\partial M$. In order to find a solution
of the Dirichlet problem for the minimal surface equations, we aPply the method

used in Serrin’s paper [9]. In Section 2, we prove the maximum principle for

solutions of the minimal surface equation (1.8). Supposing that the mean curvature
(with respect to the inward direction) of boundary $\partial M$ is non-negative, in Section
3, we give gradient estimates on $\partial M$ for solutions of the Dirichlet problem for
equation (1.8). In Section 4, we study the minimal surface equation (4.2) in a
Riemannian manifold represented by an isothermal coordinate system. Applying
the results due to Serrin [9], we obtain global gradient estimates for solutions of
the Dirichlet problem for equation (4.2). In virtue of the estimates for solutions
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of the minimal surface equations obtained in Sections 2, 3 and 4, we can solve
the Dirichlet problem for the minimal surface equation (4.2). Our problem stated
above will be solved in Section 5 (see Theorem 5.1).

Throughout this paper we assume that Riemannian manifolds and apparatus
on them are of class $C^{\infty}$ and that manifolds are connected, unless otherwise stated.

1. Let $\overline{M}$ be a compact $n(\geqq 2)$ dimensional Riemannian manifold with boundary
$\partial M$ and interior $M$. We denote by $C^{k}(\overline{M})$ the set of real-valued functions of class
$C^{k}$ on $\overline{M}$ where $k$ is a non-negative integer. Let $\rho$ be a given positive valued
function in $C^{s}(\overline{M})$ . We now consider a Riemannian manifold $\tilde{M}:=M\times(-\epsilon, \epsilon)$ ,
$ 0<\epsilon\leqq\infty$ , whose line element is expressed by

(1.1) $ds^{2}=\sum_{\ell.j=1}^{\prime}g_{ij}dx_{i}dx_{j}+\rho dt^{2}$

where $g_{ij}(1\leqq i, j\leqq n)$ is the Riemannian metric of $\overline{M}$. We shall denote by $\langle, \rangle$

the Riemannian metric tensor of $\tilde{M}$ defined above.
Let $(U, (x_{1}, \cdots, x_{n}))^{*}k$ a local coordinate system about a point of $\overline{M}$ and let

$g_{ij}=\langle\partial/\partial x_{i}, \partial/\partial x_{j}\rangle,$ $1\leqq i,$ $j\leqq n$ . For a $u\in C^{2}(\overline{M})$ we put

$u_{i}=\partial u/\partial x_{i}$ , $u_{ij}=\partial^{2}u/\partial x_{i}\partial x_{j}$ , $Du=(u_{1}, \cdots, u_{n})$

and for a vector $p=(p_{1}, \cdots, p_{n})\in R^{n}$ we put

$p^{i}=\sum_{j=1}g^{ij}p_{\dot{f}}$ , $||p||=(\sum_{i,\dot{g}=1}^{n}g^{ij}p_{i}p_{j})^{1/2}$

where $g^{ij}$ is the $(i, j)\cdot component$ of the inverse matrix of $(g_{ij})$ .
Now for a $u\in C^{2}(M)$ such that $|u|<\epsilon$ in $M$ let $S$ be a non-parametric hyper-

surface in $\tilde{M}$ defined by

(1.2) $S=\{(m, u(m))\in\tilde{M};m\in M\}$ .
Let $(U, (x_{1}, \cdots, x.))$ be a local coordinate system of $M$. We put $X_{i}=\partial/\partial x_{i}+u_{i}\partial/\partial t$,
$1\leqq i\leqq n$ . Then $X_{1},$ $\cdots$ , $X_{n}$ are linearly independent tangent vector fields on $S$.
We set

(1.3) $\tilde{g}_{ij}=g_{ij}+\rho u_{i}u_{j}$ , $1\leqq i,$ $j\leqq n$ .
Let $\eta$ be a unit normal vector Peld to $S$ given by

(1.4) $\eta=\frac{1}{\sqrt{G}}\{\sum_{i=1}^{n}(-\rho u^{i})\partial/\partial x_{i}+\partial/\partial t\}$

$*$ Throughout this paper, we always assume that all local coordinate neighborhoods
are homeomorphic to an open unit ball in the Euclidean space.
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where

(1.5) $G=\rho(1+\rho||Du||^{2})$ .
Then the mean curvature $\mathscr{F}$ of $S$ with respect to $\eta$ is defined by

(1.6) $\ovalbox{\tt\small REJECT}=_{\overline{n}}\sum_{t,j=1}\tilde{g}^{i\dot{g}}\langle\nabla_{X_{i}}X_{j}, \eta\rangle$

1 $\hslash$

where $V$ stands for the Riemannian connection of $\tilde{M}$ and $\overline{g}^{ij}$ is the $(i, j)$-component

of the inverse matrix of $(\tilde{g}_{ij})$ which is given by

(1.7) $\tilde{g}^{ij}=g^{ij}-(\rho u^{i}u^{j})/(1+\rho||Du||^{2})$ .
From (1.6) we see that $\ovalbox{\tt\small REJECT}$ is a continuous function on S. $S$ is said to be minimal

if $\ovalbox{\tt\small REJECT}$ is identically zero. Suppose now $S$ is minimal, then by (1.6) we see that $u$

is a solution of the following quasilinear elliptic partial differential equation of

second order:
(1.8) $\mathcal{L}(u)=\sum_{i,j=1}^{n}A_{ij}(x, Du)u_{ij}-B(x, Du)\equiv 0$

where
$A_{ij}(x, p)=(1+\rho||p||^{2})g^{ij}-\rho p^{i}p^{j}$

(1.9)
$ B(x, p)=\sum_{i,j,k=1}^{n}\{(1+\rho||p||^{2})g^{ij}-\rho p^{i}p^{\dot{f}}\}\Gamma_{ij}^{k}p_{k}-(\sum_{k=1}^{n}\rho_{k}p^{k})/2\rho$

where $\Gamma_{ij}^{k}$ denotes the Christoffel’s symbol with respect to $g_{ij}$ . The operator $\mathcal{L}$

defined by (1.8) is independent of the choice of local coordinate systems. From

now on we will call equation (1.8) the minimal surface equation in $M$.
Though we get equation (1.8) under the condition $|u|<\epsilon$ in $M$, but the operator

$\mathcal{L}$ defined by (1.8) can be defined for all $u\in C^{2}(M)$ .
In the following sections we will use the notations defined in this section

without any statement.

2. Let $\overline{M}$ be a compact n-dimensional Riemannian manifold with boundary

$\partial M$ and interior $M,$ $n\geqq 2$ .
Lemma 2.1. Let $u,$ $v$ be functions in $C^{2}(M)nC^{0}(\overline{M})$ satisfying $\mathcal{L}(u)=0$ and

$\mathcal{L}(v)\leqq 0(\mathcal{L}(v)\geqq 0)$ in M. Suppose that $u\leqq v(u\geqq v)$ on $\partial M$. Then $u\leqq v(u\geqq v)$

in $M$.
Proof. Let $w=u-v$ and $k=\sup w$ . Supposing $\mathcal{L}(v)\leqq 0$ in $M$ and $u\leqq v$ on

$\partial M$, we shall show $u\leqq v$ in M. $Sup^{K}pose$ for contradiction that $k$ is positive. Then

there exists a point of $M$ at which $w$ takes its maximum value $k$ . Put $M^{\prime}=$

$\{m\in M;w(m)=k\}$ . Let $m$ be a point of $M^{\prime}$ and let $(U, (x_{1}, \cdots , x_{*}))$ be a local

coordinate system about $m$ such that $U\subset M$. Since $\mathcal{L}(u)=0$ and $\mathcal{L}(v)\leqq 0$ on $U$,
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subtracting the latter from the former and applying the mean value theorem, we get

$\sum_{i.j=1}a_{ij}(x)w_{ij}+\sum_{\ell=1}^{n}a_{i}(x)w_{i}\geqq 0$

where $a_{ij}(x)=A_{ij}(x, Du(x))$ and $a_{i}$ is a continuous function on $U,$ $1\leqq i\leqq n$ . Then
by E. Hopf’s maximum principle we see $w\equiv k$ in $U$, so $U\subset M^{\prime}$ . Hence we have
proved that $M^{\prime}$ is open in $M$. Since $M^{\prime}$ is closed in $M$ and $M$ is connected, $w\equiv k$

in $M$. But the continuity of $w$ implies $w=k>0$ on $\partial M$, which is contradiction.
Thus we get $u\leqq v$ in $M$. Note $\mathcal{L}(u)=- \mathscr{L}(-u)=0$ and $\leftarrow \mathscr{L}(-v)\leqq 0$ if $\mathcal{L}(v)\geqq 0$ .
Therefor the second inequality follows from the first.

The following is an immediate consequence of the above lemma.
Proposition 2.1. Let $u$ be a function in $C^{2}(M)\cap C^{0}(\overline{M})$ satisfying $|u|\leqq m$ on

$\partial M$. Suppose that $u$ is a solution of the minimal surface equation (1.8) in $M$.
Then $|u|\leqq m$ in $M$.

Furthermore, ksing a similar argument as in the proof of Lemma 2.1, we have
Proposition 2.2. Let $u$ and $v$ be functions in $C^{2}(M)$ satisfying the condition:

$\mathcal{L}(u)\geqq 0,$ $\mathcal{L}(v)\leqq 0$ in M. SuPpose that $u\leqq v$ in $M$ and at a point $m$ of$Mu(m)=$
$v(m)$ . Then $u=v$ in $M$.

3. Let $\overline{M}$ be a compact n-dimensional Riemannian manifold with boundary
$\partial M$ and interior $M$. For a positive $r$ we put $\perp,.(\partial M)=\{(m, \eta);\eta$ is an inward
normal vector to $\partial M$ at $m\in\partial M$ and $0\leqq||\eta||<r$}. Since $\partial M$ is compact, we can
take a positive $r_{0}$ such that exp $|\perp 2r_{0}(\partial M):1_{2r_{0}}(\partial M)\rightarrow\overline{M}$ is imbedding where exp
denotes the exponential map. In the following we let $N_{r}=\exp(1_{r}(\partial M)),$ $0<r\leqq r_{0}$ ,
and in particular we put $N=N_{0}$ when $r=r_{0}$ . For each point $m$ of $\partial M$, we can
take a local coordinate system $(V_{m}\times[0, r_{0}),$ $(x_{1}, \cdots, x_{n-1}, r))$ about $m$ in $\overline{M}$ which
has the following properties:

(1) $(V_{m}, (x_{1}, \cdots, x_{n-1}))$ is a local $c\ovalbox{\tt\small REJECT} rdinate$ system about $n$ in $\partial M$ and
$V_{m}$ is homeomorphic to an unit open ball in $R^{n-1}$ and $x_{1},$ $\ldots,$ $x_{n-1},$ $r$

are defined on an open neighborhood of the closure of $V_{*}\times[0, r_{0}$).
(3.1) (2) $g_{ij}(m)=\delta_{ij},$ $g_{in}=0,$ $g_{n}=1$ where we put $g_{ij}=\langle\partial/\partial x_{\ell}, \partial/\partial x_{j}\rangle,$ $\partial/\partial x_{n}=\partial/\partial r$.

(3) For any contravariant unit vector $\sigma=(\sigma^{1}, \cdots, \sigma^{n})\in R^{n}(||\sigma||=1)$

$\sum_{i=1}^{n}\{g^{ii}-(\sigma^{i})^{2}\}\geqq 1/2$ on $V_{m}\times[0, r_{0}$).

Here we note $\sum_{i=1}^{\prime*}\{g^{ii}-(\sigma^{i})^{2}\}=n-1$ on $\{m\}\times[0, r_{0}]\times\{\sigma\in R^{n};||\sigma||=1\}$ . Since $\partial M$ is
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compact, $\partial M$ is covered by finitely many local coordinate neighborhoods having the

properties stated above. We let $\partial M\subset\bigcup_{a=1}^{k}\tilde{V}_{a}$ where each $V_{\alpha}:=V_{\alpha}\times[0, r_{0}$) has the

properties (1), (2) and (3) in (3.1). In what follows we fix these $\tilde{V}_{a},$ $1\leqq\alpha\leqq k$ .
Let $f$ be a given function in $C(\overline{M})$ . We put

(3.2)
$c_{0}=s_{\frac{u}{M}}p|f|$

,
$c_{1}=s_{\frac{u}{K}}p||Df||$

,
$c_{2}=\max\{\sup_{\tilde{V}_{\alpha}}||D^{2}f]|, 1\leqq\alpha\leqq k\}$

where $||D^{2}f$] $|$ denotes the norm of hessian of $f(||D^{2}f]|=(\tilde{\sum_{i,j=1}}(f:_{\dot{f}})^{2})^{1\prime 2})$ .
We now take a local coordinate system $(\tilde{V}_{\alpha}, (x_{1}\cdots, x_{n-1}, r))$ . We denote a

point of $\tilde{V}_{\alpha}$ by $x=(x_{1}, \cdots, x_{n-1}, r)$ . We put $g_{ij}=\langle\partial/\partial_{X:}, \partial/\partial x_{\dot{f}}\rangle(1\leqq i, j\leqq n),$ $\partial/\partial x_{n}=$

$\partial/\partial r$. On $V_{\alpha}\times(O, r_{0})$ we rewrite equation (1.8) as follows:

(3.3) $\sum_{i,\dot{g}=1}^{\hslash}\ovalbox{\tt\small REJECT}_{1j}(x, Du)u_{ij}=\mathcal{B}(x, Du)$

where
$\ovalbox{\tt\small REJECT}_{ij}(x, p)=A_{ij}(x, P)/trace(A_{ij}(x, p))$ , $1\leqq i,$ $j\leqq n$ ,

(3.4)
$\mathcal{B}(x, P)=B(x, P)/trace(A_{\ell j}(x, p))$ , $p=(p_{1}, \cdots, p_{\iota})\in R^{n}$

We note that $ _{ij}$ and $\mathcal{B}$ are defined on an open neighborhood of the closure of $\tilde{V}_{a}$

and that the equation (3.3) is not invariant for the choice of local $c\ovalbox{\tt\small REJECT} rdinate$

systems. It is easy to see that there exist positive constants $\lambda_{\alpha},$
$\Lambda_{\alpha}$ satisfying

(3.5) $\lambda_{\alpha}\leqq\sum_{i,\dot{g}=1}^{n}\ovalbox{\tt\small REJECT}_{ij}(x, p)p_{i}p_{j}\leqq\Lambda_{a}$

for all $x\in\tilde{V}_{\alpha}$ and all $p=(p_{1}, \cdots, p_{n})\in R^{n}$ such that $||p||\geqq 1$ . By (3.5) the equation
(3.3) is of genre two in the sense of Bernstein. Since the eigenvalues of $(\mathscr{A}_{ij}(x, p))$

all lie in the open interval $(0,1)$ , we have

(3.6) $\sum_{\ell.j=1}^{*}\ovalbox{\tt\small REJECT}_{:j}(x, p)f_{ij}\leqq c_{2}$ on $V_{a}\times R^{n}$ .
For non-zero vector $p$ of $R^{n}$ we put

(3.7) $C(x, p)=\mathcal{B}(x, p)/||p||$

and we put

(3.8) $\ovalbox{\tt\small REJECT}_{0ij}(x, \sigma)=(g^{ij}-\sigma^{i}\sigma^{j})/\{\sum_{k=1}^{\prime}(g^{kk}-(\sigma^{k})^{2})\}$ , $1\leqq i,$ $j\leqq n$ ,

(3.9) $C_{0}(x, \sigma)=\{\sum_{\ell,j,k=1}^{n}(g^{ij}-\sigma^{i}\sigma^{\dot{f}})\Gamma_{i\dot{g}}^{k}\sigma_{k}\}/\{\sum_{k=1}^{n}(g^{kk}-(\sigma^{k})^{2})\}$

where $\sigma=p/||p||,$ $\sigma^{i}=\sum_{j=1}^{\prime}g^{ij}\sigma_{j}$ . Then by a direct calculation we can show
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(3.10) $|\ovalbox{\tt\small REJECT}_{lj}(x, p)-\ovalbox{\tt\small REJECT}_{0ij}(x, \sigma)|\leqq C_{\alpha}||p||^{-2}$ , $1\leqq i,$ $j\leqq n$ ,
and
(3.11) $|C(x, p)-C_{0}(x, \sigma)|\leqq C_{a}||p||^{-2}$

for all $x\in\tilde{V}_{\alpha}$ and all $p\in R^{n}$ such that $||p||\geqq 2c_{1}$ where $C_{\alpha}$ depends only on the
bounds of $\rho,$

$|g_{2j}|$ and $|\Gamma_{\ell\dot{g}}^{k}|$ on $\tilde{V}_{\alpha}$ . We put

$\ovalbox{\tt\small REJECT}_{(x,p)=\sum_{i,\dot{g}=1}\ovalbox{\tt\small REJECT}_{ij}(x,p)(p_{i}-p_{0i})(p_{j}-p_{0j})}^{-}$ , $(x, p)\in\tilde{V}_{\alpha}\times R^{n}$

where $p_{0}$ is a fixed vector of $R^{n}$ such that $||p_{0}||\leqq c_{1}$ . Then by (3.5), (3.10) and
(3.11) there exists a positive constant $\mu_{\alpha}$ satisfying

(3.12) $-\ovalbox{\tt\small REJECT}^{-}(x, P)\geqq\mu_{a}$

for all $x\in\tilde{V}_{\alpha}$ and all $p\in R^{n}$ such that $||p||\geqq 2c_{1}$ (see p. 437 in Serrin [9]).

For each $x\in\tilde{V}_{a}$ we denote by $\overline{x}$ the unique nearest point of $\partial M$ from $x$ to $\partial M$.
Clearly, $\overline{x}$ is contained in $V_{a}$ . We let $\nu=(0, \cdots, 0,1)\in R^{n}$ . Using (3.11) we have

(3.13) $|C(x, p)-C_{0}(\overline{x}, \nu)|\leqq\tilde{C}_{\alpha}(||p||^{-1}+r)$

for all $x=(x_{1}, \cdots, x_{n-1}, r)\in\tilde{V}_{a}$ and all $p\in R^{n}$ such that $||p||\geqq 2c_{1}$ where $\tilde{C}_{a}$ depends
only on $c_{1},$

$C_{\alpha}$ the bounds of $\rho,$
$|g_{ij}|,$ $|\Gamma_{ij}^{k}|$ and the $C^{1}$ norm of $C_{0}$ .

Let $m_{1}$ be a given positive constant. We put

(3.14) $c=\max\{2(c_{2}+\tilde{C}_{\alpha}(2m_{1}+1))\mu_{\alpha}^{-1};1\leqq\alpha\leqq k\}$

and
(3.15) $s_{0}=\max\{3c_{1}, m_{1}/r_{0}\}$ .
We now define positive constants $s_{1},$ $r_{1}(r_{1}\leqq r_{0})$ by

(3.16) cm $1^{=\int_{\epsilon_{0}}^{*}\frac{s-c_{1}}{s^{2}}ds}1$ $cr_{1}=\int_{l}^{l}1\frac{s-c_{1}}{s^{3}}ds0$

We set

(3.17) $c\overline{h}=\int_{l}^{e_{1}}\frac{s-c_{1}}{s^{2}}ds$ , $cr=\int^{l}1\frac{s-c_{1}}{s^{3}}ds$ , $s_{0}\leqq s\leqq s_{1}$ .
Then $h(r):=\overline{h}(s(r))$ is a function in $C^{0}([0, r_{1}])\cap C^{2}((0, r_{1}))$ satisfying

(3.18) $h(O)=0$ , $h(r_{1})=m_{1}$ , $h^{\prime}(r)=s\geqq s_{0}$ , $h^{\prime\prime}(r)<0$ .
Let $v$ be a function in $C^{0}(\overline{N_{r_{1}}})$ defined by

(3.19) $v=f+hor$

where $r$ denotes the distance from each point of $N$ to $\partial M$. For a point $\overline{x}$ of $\partial M$
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we denote by $H(\overline{x})$ the mean curvature (with respect to the inward direction) of
$\partial M$ at $\overline{x}$ . Then by (3.9) we have

(3.20) $C_{0}(\overline{x}, \nu)=\{\sum_{i,j=1}^{l-1}g^{ij}(\overline{x})\Gamma_{\ell\dot{g}}^{n}(\overline{x})\}/(\sum_{k=1}^{-1}g^{kk}(\overline{x}))=(n-1)H(\overline{x})/(\sum_{k=1}^{n-1}g^{kk}(\overline{x}))$

where $\overline{x}\in V_{\alpha}$ and $\nu=(0, \cdots, 0,1)\in R^{n}$ .
Under the circumstances stated above we shall prove the following.

Lemma 3.1. Suppose $H\geqq 0$ on $\partial M$. Then $v$ defined by (3.19) satisfies $\mathcal{L}(v)\leqq 0$

in $N_{r_{1}}$ .
Proof. We take a local $c\ovalbox{\tt\small REJECT} rdinate$ system $(\tilde{V}_{\alpha}, (x_{1}, \cdots, x_{n-1}, r))$ and we put

$\tilde{\mathcal{L}}(v)=\mathcal{L}(v)/trace(A_{ij}(x, Dv))$ .
Putting $p=Dv,$ $p_{0}=Df$, by (3.2), (3.15) and (3.18) we have

(3.21) $2c_{1}\leqq h^{\prime}-c_{1}\leqq||l||\leqq 2h^{\prime}$

where we note $p=p_{0}+h^{\prime}\nu,$ $\nu=(0, \cdots, 0,1)$ . From (3.13) we get

$\mathcal{B}(x, p)=||p||C(x, p)\geqq||p||\{C_{0}(\overline{x}, \nu)-\tilde{C}_{a}(||p||^{-1}+r)\}\geqq-2h^{\prime}(r)\tilde{C}_{\alpha}(||p||^{-1}+r)$

where we used (3.21) and $C_{0}(\overline{x}, \nu)\geqq 0$ (see (3.20)). Since $h^{\prime\prime}(r)<0(0<r<d_{1})$ , from

(3.18) and (3.21)

$r\leqq 2||p||^{-1}h^{\prime}r\leqq 2m_{1}||p||^{-1}$

Thus we get
$\mathcal{B}(x, p)\geqq-2\tilde{C}_{a}(2m_{1}+1)h^{\prime}(r)||l||^{-1}$ .

This estimate and (3.6) imply

$\tilde{\mathcal{L}}(v)\leqq \mathscr{A}_{nn}(x, P)h^{\prime\prime}+c_{2}+2\tilde{C}_{\alpha}(2m_{1}+1)h^{\prime}(r)||p||^{-1}$

Since $\ovalbox{\tt\small REJECT}_{nn}(x, p)=\mathscr{G}^{-}(x, p)/(h^{\prime}(r))^{2}$ and $F(x, p)\geqq\mu_{\alpha}$ (see (3.12)), we have

$\tilde{\mathcal{L}}(v)\leqq h^{\prime}F(x, p)[h^{\prime\prime}/(h^{\prime})^{\$}+2\{c_{2}+\tilde{C}_{a}(2m_{1}+1)\}\mu_{\alpha}^{-1}||p||^{-1}]$ .
Finally, by (3.14) and (3.21), we have

$\tilde{\mathcal{L}}(v)\leqq h^{\prime}\mathscr{F}^{-}(x, p)[h^{\prime\prime}/(h^{\prime})^{\$}+c/(h^{\prime}-c_{1})]$ .
Then by the definition of $h$ we see that the right-hand side of the last inequality

vanishes. Thus we have proved $\tilde{\mathcal{L}}(v)\leqq 0$ , so $\mathcal{L}(v)\leqq 0$ on $\tilde{V}_{\alpha}\cap N_{r_{1}}(1\leqq\alpha\leqq k)$ . Hence

we complete the $pr\ovalbox{\tt\small REJECT} f$ .
Theorem 3.1. Let $\overline{M}$ be a compact n-dimensional Riemannian manifold Utth
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boundary $\partial M$ and interior M. Assume that the mean curvature (with respect to
the inward direction) of $\partial M$ is non-negative everywhere. Let $f$ be a given function
in $c^{3}(\overline{w}$ . Suppose that $ueC^{2}(M)$ is a solution of equation (1.8) such that $u=f$

on $\partial M$. Then we have $||Du||\leqq L$ on $\partial M$ where $L$ depends only on the bounds of $\rho$ ,
$||D\rho||,$ $c_{0},$ $c_{1},$ $c_{2}$ , C’-norms of $C_{0}$ on $V_{\alpha}(1\leqq\alpha\leqq k)$ and the quantity determined by
the Riemannian metric of $\overline{M}$.

Proof. By Proposition 2.1, $|u|\leqq\sup_{\partial K}|J|=c_{0}$ in $M$. We now put $m_{1}=2c_{0}$ in
(3.13). For this $m_{1}v$ defined by (3.19) satisfies

$\mathcal{L}(v)\leqq 0$ in $N_{r_{1}}$ (by Lemma 3.1)
and

$u=f=v$ when $r=0$ , $u\leqq c_{0}\leqq f+2c_{0}=v$ when $r=r_{1}$ .
Thus by Lemma 2.1 we have $u\leqq v$ in $N_{r_{1}}$ , which implies $\partial u/\partial r\leqq\partial v/\partial r$ on $\partial M$. By
a similar method we get $\partial u/\partial r\geqq-\partial v/\partial r$ on $\partial M$ Hence we obtain $||Du||\leqq||Dv||$ on
$\partial M$. Putting $L:=\sup_{\partial K}||Dv||$ , we complete the $pr\ovalbox{\tt\small REJECT} f$.

4. Let $\Omega$ be a bounded domain in $R^{n}$ with boundary $\partial\Omega$ of class $C^{3}$ . Let $a$

and $\rho$ be given positive valued functions in $C^{3}(\overline{\Omega})$ . For a $\epsilon,$
$ 0<\epsilon\leqq\infty$ , we let

$\tilde{M}=\overline{\Omega}\times(-\epsilon, \epsilon)$ . We now give a Riemannian metric on $\tilde{M}$ such that
(4.1) $ds^{2}=a^{2}(dx_{1}^{2}+\cdots+dx_{n}^{2})+\rho dt^{2}$

where $x_{1},$ $\cdots,$ $x_{n}$ are canonical $c\ovalbox{\tt\small REJECT} rdinate$ functions on $R^{n}$ . Then by (1.8) the
minimal surface equation on $\Omega$ is expressed as follows:

(4.2)
$\sum_{i.j=1}A_{ij}(x, Du)u_{ij}=B(x, Du)$

where
$A_{ij}(x, p)=(a^{2}+\rho|p|^{2})\delta_{ij}-\rho p_{:}p_{j}$ , $1\leqq i,$ $j\leqq n$ ,

(4.3)
$ B(x, p)=\frac{1}{a}\{a^{2}(2-n)+\rho(1-n)|p|^{2}\}(Da\cdot p)-a^{2}(D\rho\cdot p)/2\rho$ , $(x, p)e\Omega\times R^{\iota}$ ,

where $|p|=(\sum_{l=1}^{n}(p_{\ell})^{2})^{1/2}$ and the dot stands for the standard inner prduct in $R^{n}$ .
We rewrite equation (4.2) as follows:

(4.4) $\sum_{\ell,j=1}^{n}\ovalbox{\tt\small REJECT}_{1j}(x, Du)u:j=\mathcal{B}(x, Du)$

where

(4.5){?}
$\ovalbox{\tt\small REJECT}_{:j}(x, p)=A_{\ell j}(x, p)/\{a^{2}n+(n-1)\rho|p|^{2}\}$ , $1\leqq i,$ $j\leqq n$ ,

$\mathcal{B}(x, p)=B(x, p)/\{a^{2}n+(n-1)\rho|p|^{2}\}$ .
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We put

(4.6) $C(x, p)=\mathcal{B}(x, p)/|p|$ , $p\neq 0$ , $C_{0}(x, \sigma)=-(Da\cdot\sigma)/a$ , $\sigma=p/|p|$ .
Then we have

(4.7) $|\mathcal{R}(x, p)|:=|C(x, p)-C_{0}(x, \sigma)|\leqq C_{1}|p|^{\prec}$

for all $ x\in$ di and all $p\in R^{n}$ such that $|p|\geqq 1$ where $C_{1}$ depends only on the bounds
of $a,$ $\rho,$ $|Da|$ and $|D\rho|$ on $\overline{\Omega}$ .

We put

$g(x, p)=\sum_{\ell.j=1}^{n}\ovalbox{\tt\small REJECT}_{ij}(x, p)p_{i}p_{j}$ , $(x, p)e\overline{\Omega}\times R^{*}$ .
Then $g(x, l)=a^{2}|p|^{2}/\{a^{2}n+(n-1)\rho|p|^{2}\}$ .

For a function $\Phi(x, p)$ of class $C^{1}$ on $\Omega\times R^{n}$ we put

$\Phi_{x}=(\partial\Phi/\partial x_{1}, \cdots, \partial\Phi/\partial x_{n})$ , $\Phi_{p}=(\partial\Phi/\partial p_{1}, \cdots, \partial\Phi/\partial p_{n})$ .
It is easy to show the following.

Lemma 4.1.
(1) There exist positive constants $\mu(0<\mu<1)$ and $k_{1}$ such that

$p\cdot g_{p}\leqq(1-\mu)^{g}$ , $ g\geqq\mu$

for all $ x\in$ di and all $p\in R^{n},$ $|p|\geqq k_{1}$ where $\mu$ depends only on $k_{1}$ and the bounds of
$a$ and $\rho$ on $\overline{\Omega}$ .

(2) There exists a positive constant $C_{2}$ such that

$|g_{x}|+|^{g_{p}}|\leqq C_{2}^{g}$ ,
$|\mathcal{R}|+|\mathcal{R}_{x}|+|p||\mathcal{R}_{p}|\leqq C_{2}^{g}/|p|$

for all $ x\in$ di and all $p\in R^{n},$ $|p|\geqq 1$ , where $C_{2}$ depends only on the bounds of $a,$ $\rho$ ,
$|Da|$ and $|D\rho|$ on $\overline{\Omega}$.

By the above lemma we can get global gradient estimates of solutions of

equation (4.2). By virtue of the theorem ([9], p. 449) due to Serrin we have the

following.

Proposition 4.1. Let $u\in C^{s}(\Omega)\cap C^{1}(\overline{\Omega})$ be a solution of equation (4.2) satisfying
$|u|\leqq m$ in $\Omega$ and $|Du|\leqq L$ on $\partial\Omega$ . Then $|Du|\leqq K$ in $\Omega$ where $K$ depends only on $\mu$ ,
$k_{1},$ $m,$ $L$ , the bounds $ofa,$ $\rho,$ $|Da|,$ $|D\rho|$ , and the $C^{1}$ norm of $C_{0}$ .

Now we consider the Dirichlet problem for equation (4.2). Since each function

in $C(\partial\Omega)$ has a C’ extention into $\overline{\Omega}$ and any function in $C^{\$}(\Omega)$ gives $C^{\$}$ boundary
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data by restriction, we may assume without loss of genelarity that all boundary
data are in $C^{\theta}(\overline{\Omega})$ . Regarding $\partial\Omega$ as a hypersurface in the Riemannian manifold
di with Riemannian metric $ds^{2}=a^{2}(dx_{1}^{2}+\cdots+dx_{n})$ , we let $H$ the mean curvature
of $\partial\Omega$ with respect to the inward normal direction. From Proposition 2.1,
Theorem 3.1 and Proposition 4.1 we have the following.

Proposition 4.2. Let $f$ be a given function in $C^{3}(\overline{\Omega})$ and let $\tau$ be an arbitrary
real number in $[0,1]$ . SuPpose $H\geqq 0$ on $\partial\Omega$ . Then there exists a positive constant
$K$, independent of $\tau$ , such that the conditions

(1) $u\in C^{2}(\overline{\Omega})$

(2) $u=\tau f$ on $\partial\Omega$

(3) $u$ is a solution of equation (4.2) in $\Omega$

imply $sup\{|u|+|Du|\}\leqq K$.
(Using linear $th\ovalbox{\tt\small REJECT} ry$ for elliptic partial differential equations, we see that the
condition (3) guarantees $u\in C^{3}(\Omega)$ . Therefore Proposition 4.1 is applicable.)

Making use of Schauder’s theorem, H\"older estimates for gradients of solutions
of quasilinear elliptic equations due to Ladyzhenskaya and Uralteseva [7] and
the Leray-Schauder fixed point theorem, we see that Proposition 4.2 implies the
following.

Theorem 4.1. Let $\Omega$ be a bounded domain in $R^{n}$ with boundary $\partial\Omega$ of class
$C^{3}$ . Let $a$ and $\rho$ be given positive valued functions in $C(O)$ . Regarding $\partial\Omega$ as a
hypersurface ofRiemannian manifold $\overline{\Omega}$ whose line element is $ds^{2}=a^{1}(dx_{1}^{f}+\cdots+dx^{2})$ ,
assume that the mean curvature (with respect to the inward direction) of $\partial\Omega$ is non-
negative everywhere. Then for a given function $f$ in $C(\partial\Omega)$ there exists a solution
$u$ of equation (4.2) in $\Omega$ such that $u=f$ on $\partial\Omega$ . The solution is unique if exists.

The uniqueness follows from Lemma 2.1.

5. In this section we give an application of Theorem 4.1. Let $c$ be a con-
stant. Throughout this section let $M(c)$ be a complete, simply connected $(n+1)-$

dimensional space form with curvature $c$ and let $\Omega$ be a bounded domain with
boundary $\partial\Omega$ of class $C^{s}$ in a closed totally geodesic hypersurface $M^{\prime}$ of $M(c)$ . In
the case $c$ is positive, we assume that $\Omega=\Omega\cup\partial\Omega$ is contained in an open hemis-
phere in the n-dimensional Euclidean sphere $S^{t}(1/c)$ of radius $1/c$. $Mor\ovalbox{\tt\small REJECT} ver$, let $X$

be a Killing vector field defined on an open set in $M(c)$ including di such that
$X$ is normal to it. We denote by $\{\varphi_{\ell}\}$ the local l-parameter subgroup of local
isometries generated by $X$. Since $\overline{\Omega}$ is compact, we oan take a $\epsilon(0<\epsilon\leqq\infty)$

such that the map $\Phi:\Omega_{1}\times(-\epsilon, \epsilon)\rightarrow M(c)$ defined by $\Phi(x, t)=\varphi_{\ell}(x),$ $(x, t)\in\Omega_{1}\times(-\epsilon, \epsilon)$ ,
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is $C^{3}$-imbedding where $\Omega_{1}$ is an open neighborhood of di in $M^{\prime}$ . In what follows,

we put

(5.1) $\mathscr{M}^{\wedge}=\Phi(\Omega\times(-\epsilon, \epsilon))$

and for a $u\in C^{2}(\Omega)$ such that $|u|<\epsilon$ in $\Omega$ we put

(5.2) $S(u)=\Phi(\{(x, u(x))\in\Omega\times(-\epsilon, \epsilon);x\in\Omega\})$

and also for a $f\in C^{0}(\partial\Omega)$ such that $|f|<\epsilon$ on $\partial\Omega$ we put

(5.3) $\partial S_{f}=\Phi(\{(x, f(x))e\partial\Omega\times(-\epsilon, \epsilon);x\in\partial\Omega\})$ .
Let $u$ be a function in $C^{2}(\Omega)$ such that $|u|<\epsilon$ in $\Omega$ . Suppose that $S(u)$ is a minimal
hypersurface in $M(c)$ . Then we see that $u$ is a solution of the following quasili-

near elliptic partial differential equation of second order:

$\sum_{\ell,j=1}^{\cdot}\{(a^{2}+\rho|Du|^{2})\delta_{ij}-\rho u_{\ell}u_{j}\}u_{i\dot{g}}$

(5.4)
$=\frac{1}{a}\{a^{2}(2-n)+\rho(1-n)|Du|^{2}\}(Da\cdot Du)-a^{2}(D\rho\cdot Du)/2\rho$

where $a(x)=4/(4+c|x|^{2})$ . $\rho(x)=||X||^{2}(x),$ $x\in\overline{\Omega}$ , and the dot denotes the inner product

of $R^{\hslash}$ (where $||||$ denotes the norm defined by the Riemannian metric of $M(c)$).

By Theorem 4.1 and Proposition 2.1, we have

Theorem 5.1. Let $f$ be a given function $iuC^{3}(\partial\Omega)$ such that $|f|<\epsilon$ on $\partial\Omega$ .
Assume that the mean curvature (with respect to the inward direction) of $\partial\Omega$ is
non-negative everywhere. Then there exists a minimal hypersurface $S$ in $M(c)$

such that the bounkry of $S$ is $\partial S_{f}$ and $S=S(u)$ where $u$ is a unique solutim of
equation (5.4) in $\Omega$ such that $u=f$ on $\partial\Omega$ and $|u|<\epsilon$ in $\Omega$ .

In what follows we assume that $\overline{\Omega}$ is homeomorphic to a closed unit ball
$\overline{D}=\{x\in R^{n};|x|\leqq 1\}$ in $R^{n}$ . We denote by $D$ (resp. $\partial D$) the interior (resp. the
boundary) of $\overline{D}$ . For a given function $f$ in $C^{0}(\partial\Omega)$ such that $|f|<\epsilon$ on $\partial\Omega$ let
$\Psi:\overline{D}\rightarrow M(c)$ be a continuous map having the following properties:

(1) $\Psi_{1D}:D\rightarrow M(c)$ is a minimal immersion of class $C^{2}$ .
(5.5)

(2) $\Psi_{1\partial D}:\partial D\rightarrow\partial S_{f}$ is a homeomorphism.

We now induce a Riemannian metric on $\tilde{M}:=\overline{\Omega}\times R$ such that

$ds^{z}=a^{2}(dx_{1}^{2}+\cdots+dx_{n}^{2})+\rho dt^{i}$

where $R$ denotes the real line and $a(x)=4/(4+c|x|^{2}),$ $\rho(x)=||X||^{2}(x),$ $ x\in\Omega$. Let $\pi_{1}$

(resp. $\pi,$) be the natural projection (we ignore the metric) from $\tilde{M}$ to $\Omega$ (resp. $R$).
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For a given function $f$ in $C^{0}(\partial\Omega)$ such that $|J|<\epsilon$ on $\partial\Omega$ , let $\Psi:\overline{D}\rightarrow M(c)$ . be a
continuous map having the properties in (5.5). Suppose that $\Psi(D)\subset\leftrightarrow r$. Then
we define a continuous map $\Psi_{1}:\overline{D}\rightarrow\tilde{M}$ by $\Psi_{1}=\Phi^{-1}\circ\Psi$ .

Under the circumstances above, we shall prove the following.

Lemma 5.1. Let $u$ be a unique solution of equation (5.4) such that $u=f$ on
$\partial\Omega$ . Then $\Psi_{1}(D)=1(x, u(x));x\in\Omega$} and $\Psi_{1}:D\rightarrow\tilde{M}$ is imbedding.

Proof. Put $S_{1}=\{(x, u(x));x\in\Omega\}$ . Let $h$ be a continuous function on $\overline{D}$ de-
fined by

$h(y)=|u(\pi_{1}\circ\Psi_{1}(y))-\pi_{2}\circ\Psi_{1}(y)|$ , $y\in\overline{D}$ .
Suppose $\Psi_{1}(D)\not\subset S_{1}$ . Then there exists a point $y_{0}$ of $D$ such that $h(y_{0})=m:=$

$\sup_{D}h>0$ (note that by the condition (2) in (5.5) $h\equiv 0$ on $\partial D$). Now assume
$\pi_{2}\circ\Psi_{1}(y_{0})=u(x_{0})+m$ where $x_{0}=\pi_{1}\circ\Psi_{1}(y_{0})$ . We let $S_{2}=\{(x, u(x)+m);x\in\Omega\}$ . Since $S_{1}$

is minimal in $\tilde{M},$ $S_{2}$ is also minimal in $\tilde{M}$ whose boundary is $\{(x,f(x)+m);x\in\partial\Omega\}$ .
We note $\Psi_{1}(D)\subset\{(x, t);t\leqq u(x)+m\}$ . Since $\partial/\partial t$ is transversal to $S_{g}$ and $\Psi_{1}(D)$ is
tangent to $S_{2}$ at $\Psi_{1}(y_{0})$ , by the theorem of implicit function, $\Psi_{1}(D)$ is locally ex-
$pres\grave{s}$ed by a graph of a function $v$ of class $C^{2}$ defined on an open ball $U$ centred
at $x_{0}$ . Then $v$ satisfies the condition: $v(x_{0})=u(x_{0})+m,$ $v\leqq u+m$ in $U$. Moreover,
since $\Psi_{1}(D)$ is minimal in $\tilde{M},$

$v$ is a solution of equation (5.4). Of course, $u+m$

is also a solution of equation (5.4). Applying Proposition 2.2, we have $v=u+m$
in $U$. Thus there exists an open neighborhood $V$ of $y_{0}$ such that $\Psi_{1}(V)\subset S_{2}$ . This
fact implies that $D^{\prime}:=\{y\in D;\Psi_{1}(y)\in S_{2}\}$ is open in $D$ . It is clear that $D^{\prime}$ is closed
in $D$ . Thus $\Psi_{1}(D)\subset S_{2}$ , so $\Psi_{1}(\overline{D})\subset\overline{S}_{2}$ . But this is a contradiction because by the
condition (2) in (5.5) $\Psi_{1}(\partial D)=\{(x, f(x));x\in\partial\Omega\}$ . Hence we have proved $\pi_{2^{O}}\Psi_{1}(y_{0})\neq$

$u(x_{0})+m$ . Therefore it must be $\pi_{g}\circ\Psi_{1}(y_{0})=u(x_{0})-m$ . In this case we consider a
minimal hypersurface $\{(x, u(x)-m);x\in\Omega\}$ in $\tilde{M}$. We note $\Psi_{1}(D)\subset\{(x, t);t\geqq u(x)-$

$m\}$ . Using the same argument as above, we also get a contradiction. Thus we
have proved $\Psi_{1}(D)=S_{1}$ . Since by the candition (1) in (5.5) $\Psi_{1}$ is locally home-
omorphic, we see that $\Psi_{1}$ is imbedding.

$Th\infty rem5.1$ and Lemma 5.1 imply the following.

Theorem 5.2. In Theorem 5.1, assume that $\Omega$ is homeomorphic to a closed unit
ball $\overline{D}=\{x\in R^{t};|x|\leqq 1\}$ in $R^{n}$ . For $f$ let $\Psi:\overline{D}\rightarrow M(c)$ be a continuous map having
the properties in (5.5). Suppose $\Psi(D)\subset- l^{-}$. Then $\Psi(D)=S(u)$ and $\Psi:D\rightarrow M(c)$ is
imbedding where $u$ is a unique solution of equation (5.4) in $\Omega$ such that $u=f$ on $\partial\Omega$ .

Remark 1. In Theorem 5.1, in the case $c=0,\overline{\Omega}\subset R^{n}$ and $X=\partial/\partial x_{n+1}$ the
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theorem was proved by Jenkins and Serrin [6].

Remark 2. In $Th\ovalbox{\tt\small REJECT} rem5.2$, suppose that the mean curvature (with respect

to the inward direction) of $\Psi(\partial\Omega\times(-\epsilon, \epsilon))$ is non-negative everywhere. Then
under the assumption $\Psi(D)\subset\Phi(\Omega\times(-\epsilon, \epsilon))$ the theorem also holds. (See $Th\ovalbox{\tt\small REJECT} rem$

4.1 and Lemma 5.1 in [5].)

In this paper we have studied the Dirichlet problem for minimal surface equa-
tions in simply connected space forms. We want to investigate this problem in
more general Riemannian manifolds. It will be carried out in the next papers.
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