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1. Introduction.

An electrical circuit $C$ consists of three kinds of elements, inductors, capcitors

and resistors mutually connected. A state of an electrical circuit is specified by

a current vector $i=(i_{1}, i_{2}, \cdots, i_{b})\in R^{b}$ and a voltages vector $v=(v_{1}, v_{2}, \cdots, v_{b})\in R^{b}$ .
Let $G$ be the (oriented) graph determined naturally by the circuit $C$. We can
regard $i$ and $v$ as a real l-chain and l-cochain of $G$ , i.e., $i\in C_{1}(G)$ and $v\in C^{1}(G)^{*}$

The Kirchhoff current (voltage) law restricts $i(v)$ to belong to a linear subspace
$K_{0}(C)=Ker\partial\subset C_{1}(G)(K_{v}(C)={\rm Im}\partial^{*}\subset C^{1}(G))$ , where $\partial:C_{1}(G)\rightarrow C_{0}(G)(\partial^{*}:C^{0}(G)\rightarrow$

$C^{1}(G))$ is boundary (coboundary) operator. Another restriction of possible states
is the restraint of resistive characteristics. We admit couplings between same
kind of elements. The resistive characteristics are represented by a $\rho$-dimensional
$smth$ submanifold $\Lambda_{R}\subset C_{1}(G_{R})\times C^{1}(G_{R})$ , where $\rho$ is the number of resistive ele-
ments and $C_{1}(G_{R})((C^{1}(G_{R}))$ is $\rho$-dimensional eucledian space consisting of resistive
currents (voltages).

Thus the currents and voltages $(i, v)=(i_{L}, i_{C}, i_{R}, v_{L}, v_{C}, v_{R})$ must belong to the
configuration space;

$\Sigma=K\cap\Lambda$ , $K=K_{0}(G)\times K_{v}(G)$ , $\Lambda=\pi_{R}^{-1}(\Lambda_{R})$ ,

where $\pi_{R};C_{1}(G)\times C^{1}(G)\rightarrow C_{1}(G_{R})\times C^{1}(G_{R})$ is the natural projection, i.e., $\pi_{R}(i_{L},$ $i_{C},$ $i_{R}$ ,
$v_{L},$ $v_{G},$ $v_{R}$) $=(i_{R}, v_{R})$ .

For dynamics to be defined on whole of $\Sigma$ , two things are needed. One is
the transversality of $K$ and $\Lambda$ which assures $\Sigma$ to be smooth submanifold. Since
$K$ is b-dimensional, dim $\Sigma=2b-(b+\rho)=b-\rho$ which is equal to the number of in-
ductors and capacitors. Another is the regularity of the map

$\pi_{LG};\Sigma\rightarrow C_{1}(G_{L})\times C^{1}(G_{G})$ ,

which is the restriction of the natural projection to $\Sigma$ , i.e.,

$*$ It is no suffering, however, to regard $8implyC_{1}(G)$ and $C^{1}(G)$ as $b\cdot dimensional$

eucledian space in the sequel.
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$\pi_{LC}(i_{L}, i_{C}, i_{R}, v_{L}, v_{C}, v_{R})=(i_{L}, v_{C})$ .
If $D\pi_{LC}(x)$ is non-singular at any point $ x\in\Sigma$ , we can determine the smooth vector
field $X$ on $\Sigma$ which describes the dynamics of the circuit ([5], [3], [2]). Then any
solution curve is locally a solution of certain differential equation. Therefore so
called ’jumping phenomena’ does not occur. We call such a circuit well-posed.

Consider a circuit $C$ whose graph $G=G(C)$ has a proper tree. Recall a
proper tree means a tree which contains all the capacitors and no inductor. Since
in a cicuit without proper tree the map $\pi_{LC}$ is singular at any point of $\Sigma$ , we
assume the existence of proper tree ([3]). To assure $\Sigma$ to be a submanifold, we
need the transversality of the characterictic submanifold $\Lambda$ and the Kirchhoff space $K$.
Now, we define a somewhat stronger condition than the transversality condition.
We say $\Lambda$ and $K$ are everywhere tnnsverse if for every $x\in\Lambda,$ $T_{a}(\Lambda)$ is transverse
to $K$ in $C_{1}(G)\times C^{1}(G)$ . We call such a circuit itself everywhere transverse circuit.
In the same way, we will define a notion of strongly well-posedness in section 3,
these notions play a central role in this paper.

Now, we consider a connection of two circuits by two different kinds of
(uncoupled) elements. For given circuits $C_{1}$ and $C_{2}$ , connecting a node $P$ of $C_{1}$

with a node $r$ of $C$ by an uncoupled element $e_{1}$ and connecting a node $q$ of $C_{1}$

with a node $s$ of $C_{2}$ by an uncoupled element $e_{2}$ , we obtain a new circuit $C$.
We will discuss in \S 2 the transversality problem, in \S 3 the well-posedness

problem of the new circuit $c$ obtained by connecting two circuits as stated above
and in \S 4 some examples of strongly well-posed circuits. For the reason of con-
necting by different kinds of elements, see \S 4.

The author wishes to thank Prof. T. Matsumoto for his valuable discussion
and criticism.

2. Transversality.

Let $C$ be the circuit obtained by connecting two circuits $C_{\ell},$ $i=1,2$, by two un-
coupled elements $e_{1}$ and $e_{2}$ as stated before.

Theorem 1. Suppose the circuit $C_{i}$ is everywhere transverse, $i=1,2$. Then
the new circuit $C$ is also everywhere transverse.

We say a node $p$ is L-connected with $q$ in $C_{1}$ if there exists a path from $P$

to $q$ in $C_{1}$ which is consisting of only inductor branches.
Theorem 2. SuPpose the circuit $C_{i}$ is transverse, $i=1,2,$ $p$ is L-connected

with $q$ in $C_{1}$ and $r$ is L-connected with $s$ in $C_{2}$ . Then the new circuit $C$ is also
transverse.
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Proof of Theorem 1. First, we deal with the following case.

Case 1. The element $e_{1}$ is a capacitor and $e_{2}$ is an inductor.

Let $\mathscr{F}_{i}$ be a tree for $C_{1},$ $i=1,2$ . Put $\swarrow\approx_{=}z_{1}\cup\{e_{1}\}\cup F_{2}$ and clearly $F$ is a
tree for $G(C)$ . Let $C_{1}(C_{\dot{f}})$ and $C^{1}(C_{j})$ denote the current and voltage spaces
of $C_{j}$ , respectively, $j=1,2$ . Since we do not add a new resistive element, the
characteristic submanifold of the new circuit $C$ is the following;

(1) $\Lambda(C)=\Lambda(C_{1})\times\Lambda(C_{2})\times C_{1}(e_{1})\times C^{1}(e_{1})\times C_{1}(e_{2})\times C^{1}(e_{2})\subset C_{1}(G(C))\times C^{1}(G(C))$ .
The Kirchhoff space $K(C)$ of $C$ is represented as follows. Let $B_{j}$ denote the

fundamental loop matrix for $C_{j}$ corresponding to the tree $F_{j},$ $j=1,2$ . Then the
fundamental loop matrix $B$ for corresponding to $t\mathscr{F}$ has the followimg form;

(2)
$B=[I:A]=\left\{\begin{array}{llllll}I & & & A_{1} & & \\ & I & & & A_{2} & \\ & & 1 & A_{21} & A_{22} & -1\end{array}\right\}e_{2}\mathcal{L}_{2}\mathcal{L}_{1}\mathcal{L}_{2}e_{2}F_{1}F_{2}e_{1}\mathcal{L}_{1}$

where $B_{j}=[I:A_{j}]$ and $A_{21}(A_{12})$ has non-zero element $(\pm 1)$ at the tree branches in
$C_{1}(C_{2})$ contained in the path connecting $p(r)$ with $q(s)$ in $F_{1}(\mathscr{F}_{2})$ . The current
Kirchhoff space $K_{c}(C)$ of $C$ is the image of the map

$B^{\ell}:C_{1}(\mathcal{L})\rightarrow C_{1}(G(C))$ ,

where $C_{1}(\mathcal{L})$ denotes the current space of the link branches in $C$. And the
voltage Kirchhoff space $K_{v}(C)$ of $C$ is the image of the map

$Q^{t}:C^{1}(F)\rightarrow C^{1}(G(C))$ ,

where $Q$ is the fundamental cutset matrix for $C$ and has the form ([4], [1]);

(3) $Q=[-A^{\ell}:I]$ ,

and $C^{1}(\mathscr{F})$ denotes the voltage space of the tree branches in $C$. Thus the
Kirchhoff space $K(C)$ of $C$ is represented as follows;

(4) $K(C)={\rm Im} B^{\ell}\times{\rm Im} Q^{t}\subset C_{1}(G(C))\times C^{1}(G(C))$ .
Now, we prove the everywhere transversality of $\Lambda(C)$ and $K(C)$ . Take a point
$(i, v)\in\Lambda(C)$ . We must show that $T_{(\ell,v)}\Lambda(C)$ is transverse to $K(C)$ . To show
this, for each vector $w\in T_{(i,v)}C_{1}(G(C))\times C^{1}(G(C))$ we will find two vectors $w_{A}e$

$T_{(i.v)}\Lambda(C)$ and $w_{K}\in K(C)$ such that $w=w_{A}+w_{K}$ .
Corresponding to the decomposition;
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$C_{1}(G(C))\times C^{1}(G(C))=C_{1}(G(C_{1}))\times C^{1}(G(C_{1}))\times C_{1}(G(C_{2}))\times C^{1}(G(C_{2}))\times C_{1}(e_{1})$

$\times C^{1}(e_{1})\times C_{1}(e_{2})\times C^{1}(e_{2})$ ,
$=C_{1}(F_{1})\times C_{1}(F_{2})\times C_{1}(\mathcal{L}_{1})\times C_{1}(\mathcal{L}_{2})\times C_{1}(e_{1})\times C_{1}(e_{8})$

$\times C^{1}(\mathscr{F}_{1})\times C^{1}(F,)\times C^{1}(\mathcal{L}_{1})\times C^{1}(\mathcal{L}_{2})\times C^{1}(e_{1})\times C^{1}(e_{2})$ ,
we write

$(i, v)=(i_{1}, v_{1}, i_{2}, v_{2}, i_{\ell_{1}}, v_{1}, i_{e_{2}}, v_{2})$

$=(i_{r_{1}}, i_{r_{2}}, i_{\ovalbox{\tt\small REJECT}_{1}}, i_{\ovalbox{\tt\small REJECT}_{2}}, i_{\epsilon_{1}}, i_{e_{2}}, v_{\mathcal{J}_{1}^{-}}, v_{\mathcal{J}_{2}}, v_{\ovalbox{\tt\small REJECT}_{1}}, v_{\ovalbox{\tt\small REJECT}_{2}}, v_{e_{1}}, v_{e_{2}})$

and
$w=(w_{1}, w_{2}, w_{\ell_{1}}, w_{\ell_{2}})$

$=(w(i_{\tau_{1}}), w(i_{\mathcal{J}_{2}}),$ $w(i_{\ovalbox{\tt\small REJECT}_{1}}),$ $w(i_{\ovalbox{\tt\small REJECT}_{2}}),$ $w(i_{l}1),$ $w(\dot{t}_{e_{2}})$ ,
$w(v_{r_{1}}),$ $w(v_{\mathcal{J}_{2}}),$ $w(v_{\ovalbox{\tt\small REJECT}_{1}}),$ $w(v_{\ovalbox{\tt\small REJECT}_{2}}),$ $w(v_{1}),$ $w(v_{2}))$ .

Then by (1), $(i_{\dot{f}}, v_{\dot{f}})\in\Lambda(C),$ $j=1,2$. Since $\Lambda(C_{\dot{f}})$ is everywhere transverse to
$K(C_{\dot{f}})$ , there exist vectors $w_{A_{j}}\in T_{(\ell_{j^{v}j})}\Lambda(C)$ and $w_{K_{j}}\in K(C_{\dot{f}})=T_{\{\ell_{j^{v}j})}(K(C_{\dot{f}})+(i_{\dot{f}}, v_{\dot{f}}))$

such that $w_{j}=w_{K_{j}}+w_{A_{j}},$ $j=1,2$ . Put $w_{A}=(w_{A_{1}}, w_{A_{2}}, w_{A}(i_{e_{1}}), w_{A}(i_{2}), w_{A}(v_{e_{1}}), w_{A}(v_{e_{2}}))$

then $w_{A}\in T_{(\ell.,)}\Lambda(C)$ for any $w(i_{\ell}j)$ and $w(v_{e_{j}}),$ $j=1,2$ , by (1). Put $w_{K}=(w_{K_{1}},$ $w_{K_{2}}$ ,
$w_{K}(i_{\iota_{1}}),$ $w_{K}(i_{e_{2}}),$ $w_{K}(v_{e_{1}}),$ $w_{K}(v_{e_{2}}))$ and decompose,

$w_{K_{j}}=(w_{K_{j}}(i), w_{K_{j}}(v))$ , $j=1,2$ ,
and

$w_{K_{j}}(i)=(w_{K}(i_{F_{\dot{f}}}), w_{K}(i_{\ovalbox{\tt\small REJECT}_{\dot{f}}}))$ , $j=1,2$ ,
$w_{K_{j}}(v)=(w_{K}(v_{\mathcal{J}_{\dot{f}}}), w_{K}(v_{\ovalbox{\tt\small REJECT}_{\dot{f}}}))$ , $j=1,2$ .

Then by (2), (3) and (4), $w_{K}$ belongs to $K(C)$ if and only if

$w_{K}(i_{r_{j}})=A_{\dot{f}}^{\ell}w_{K}(i_{\ovalbox{\tt\small REJECT} j})+A_{j}^{l}w_{K}(i_{2})$ , $j=1,2$ ,
$w_{K}(i_{1})=-w_{K}(\dot{t}_{2})$ ,

(5) and
$w_{K}(v_{\ovalbox{\tt\small REJECT} j})=-A_{j}w_{K}(v_{r_{j}})$ , $j=1,2$ ,

$w_{K}(v_{e_{2}})=-A_{21}w_{K}(v_{r_{1}^{-}})-A_{22}w_{K}(v_{r_{2}})+w_{K}(v_{e_{1}})$ .
Thus, if we put $w_{K}(i_{e_{2}})=w_{K}(i_{1})=0,$ $w_{K}(v_{1})=0,$ $w_{K}(v_{2})=-A_{21}w_{K}(v_{r_{1}})-A_{22}w_{K}(v_{r_{2}})$ ,
$w_{A}(i_{e_{1}})=w(i_{1}),$ $w_{A}(i_{2})=w(i_{2}),$ $w_{A}(v_{*}1)=w(v_{e_{1}})$ , and $w_{A}(v_{2})=w(v_{\iota_{2}})-w_{K}(v_{e_{2}})$ , then $w=$

$w_{A}+w_{K}$ and $w_{A}\in T_{(\ell,v)}\Lambda(C),$ $w_{K}\in K(C)$ . This proves the everywhere transversality
of $\Lambda(C)$ and $K(C)$ .

Case 2. The element $e_{1}$ is a linear resistor and the element $e_{2}$ is an inductor
or a capacitor.

Put $\ovalbox{\tt\small REJECT}\cong F_{1}\cup\{e_{1}\}\cup \mathscr{F}_{2}$ and $\iota \mathscr{F}$ is a tree. Let $\Lambda(e_{1})$ denote the characteristics
of $e_{1}$ . Since $e_{1}$ is a linear resistor, we have
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$\Lambda(e_{1})=\{(\dot{\iota}_{1}, v_{1}):v_{1}=i_{1}\cdot r_{\iota_{1}}\}\subset C_{1}(e_{1})\times C^{1}(e_{1})$ ,

The characteristic submanifold $\Lambda(C)$ of the new circuit has the following form;

$\Lambda(C)=\Lambda(C_{1})\times A(C_{2})\times\Lambda(e_{1})$ .
The Kirchhoff space $K(C)$ is quite the same as in case 1. For a point $(i, v)\in$

$\Lambda(C)$ , we will show the transversality of $T_{(\ell.v)}\Lambda(C)$ and $K(C)$ . As in case 1,
for each $w\in T_{(\ell,.)}(C_{1}(G(C))\times C^{1}(G(C))$ we must find $w_{A}\in T_{(\ell.*)}\Lambda(C)$ and $w_{K}\in K(C)$

such that $w=w_{K}+w_{A}$ . The only difference from case 1 is that the vector $(w_{A}(i_{\ell_{1}})$ ,
$w_{A}(v_{e_{1}}))$ should belong to $T_{(i_{\ell_{1}}.v_{\ell_{1}}|\Lambda(e_{1})=\Lambda(e_{1})}$ , i.e., $w_{A}(i_{e_{1}})\cdot r_{\ell_{1}}=w_{A}(v_{e_{1}})$ . Besides (5)

put

$w_{\Lambda}(i_{1})=w(i_{e_{1}})$ , $w_{A}(v_{e_{1}})=w_{\Lambda}(i_{e_{1}})\cdot r_{\iota_{1}}$ , $w_{K}(v_{\ell_{1}})=w(v_{1})-w_{A}(v_{1})$ ,
and

$w_{A}(v_{2})=w(v_{2})-w_{K}(v_{e_{2}})$ .
Then $w_{K}$ and $w_{A}$ have the required properties.

Proof of Theorem 2. The $prf$ of Theorem 2 proceeds in the same way as
that of Theorem 1 except one point that if $(i_{\dot{f}}, v_{\dot{f}})$ does not belong to $K(C_{\dot{f}})$ then
$T_{(\ell_{j^{v}j})}\Lambda(C_{\dot{f}})$ may not transverse to $K(C_{\dot{f}})$ . This point is rescued by the assump-
tion of L-connectedness as follows.

Since $(i, v)$ belongs to $K(C),$ $(i, v)$ satisfies (5) or
$i_{\mathcal{F}_{j}}=A^{l}\dot{f}is_{j}’+A_{2\dot{g}}^{\ell}i_{2}$ , $j=1,2$ ,
$i_{\ell_{1}}=-\dot{t}_{2}$ ,
$v_{\ovalbox{\tt\small REJECT}_{j}}=-A_{j}v_{r_{j}}$ , $j=1,2$ ,
$v_{e_{2}}=-A_{21}v_{\mathcal{J}_{1}}\cdot-A_{22}v_{r_{2}}+v_{1}$ .

The assumption that $p$ and $q$ are connected by the path consisting of only inductors
means the following. There exists a link currents vector $\tilde{i}_{e_{j}}\in C_{1}(G(\mathcal{L}_{\dot{f}}))$ such
that $i_{F_{\dot{f}}}=A_{j}^{i}\tilde{i}_{\ovalbox{\tt\small REJECT}_{j}},$ $j=1,2$ , and the difference between $i_{\ovalbox{\tt\small REJECT}_{1}}(i_{\ovalbox{\tt\small REJECT}_{2}})$ and $\tilde{i}_{\ovalbox{\tt\small REJECT}_{1}}(\tilde{i}_{\ovalbox{\tt\small REJECT}_{2}})$ occurs
only in the link inductor branches connecting $p(r)$ with $q(s)$ in $C_{1}(C_{2})$ . If we put
$i\ovalbox{\tt\small REJECT}_{ij}=(i_{PtL)}, i_{\ovalbox{\tt\small REJECT} tR1j})$ then $\tilde{i}\ovalbox{\tt\small REJECT}_{ii’ j}=(\tilde{i}_{\ovalbox{\tt\small REJECT}(L)}i_{\ovalbox{\tt\small REJECT}(R)})$ . Put $(i_{\dot{f}}^{\prime}, v_{\dot{f}})=(i_{r_{j}},\tilde{i}_{\ovalbox{\tt\small REJECT} j}, v_{Fj}, v_{F_{\dot{f}}})$ and
$(i_{\dot{f}}^{\prime}, v_{\dot{f}})\in K(C_{j})$ and $(i_{j}^{\prime}, v_{j})\in\Lambda(C_{\dot{f}})$ . Since there is no coupling between different
kinds of elements, $\Lambda(C_{j})$ has the form; $\Lambda(C_{\dot{f}})=\pi_{R_{j}}^{-1}(\Lambda_{R_{\dot{f}}}),$ $j=1,2$, where $\pi_{R_{j}}$

;

$C_{1}(G(C_{\dot{f}}))\times C^{1}(G(C_{j}))\rightarrow C_{1}(G_{R}(C_{\dot{f}}))\times C^{1}(G_{R}(C_{j}))$ is the natural projection to the
resistive current and voltage space, $j=1,2$. Therefore $T_{(\ell^{\prime}v)}\Lambda(C_{\dot{f}})=T_{(\ell_{j^{v}j})}\Lambda(C_{j})\dot{g},j$.
By the assumption $T_{(\ell_{j^{v}j^{1}}^{\prime}},\in\Lambda(C_{\dot{f}})$ is transverse to $K(C_{\dot{f}})$ . Thus $T_{t\ell_{j^{v}j)}},A(C_{\dot{f}})$ is
transverse to $K(C_{\dot{f}})$ . The rest of the $prf$ is the same as that of $Threm1$ .
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3. Well-posedness.

We will discuss the problem when the connected circuit is well-posed.
Henceforth, we assume all the circuits have proper trees and are transverse. First
we show a variant of Theorem in [2], which gives a necessary and sufficient
condition for a circuit to be well-posed in terms of transversality. Let us recall
some notations from [2]. For $(i_{L}, v_{C})\in C_{1}(G_{L})\times C^{1}(G_{C})$ , put

$K(i_{L}, v_{C})=\pi_{LC}^{-1}(i_{L}, v_{C})\cap K$ ,

where $\pi_{LC};C_{1}(G)\times C^{1}(G)\rightarrow C_{1}(G_{L})\times C^{1}(G_{C})$ is the natural projection and $K$ is the
Kirchhoff space. By (4), we can see the space $K(i_{L}, v_{C})$ is parallel translation of the

space $K(O, 0)$ to a point $b(i_{L}, v_{C})$ in $C_{1}(G)\times C^{1}(G)$ . Here, $b(i_{L}, v_{C})=[0$’‘
$Q^{\ell]}0\left\{\begin{array}{l}0\\i_{L}\\0\\v_{C}\end{array}\right\}$

.

Since $\pi_{R};C_{1}(G)\times C^{1}(G)\rightarrow C_{1}(G_{R})\times C^{1}(G_{R})$ is a linear map, the space $\pi_{R}(K(i_{L}, v_{C}))$ is
also the parallel translation of $K_{0}=\pi_{R}(K(0,0))$ to the point $(i_{R}, v_{R})=\pi_{R}(b(i_{L}, v_{C}))$ .

Theorem A. A circuit $C$ is well-posed if and only if the affine subspace
$\pi_{R}(K(i_{L}, v_{C}))$ is transverse to the characteristic submanifold $\Lambda_{R}$ for all $(i_{L}, v_{C})\in$

$C_{1}(G_{L})\times C^{1}(G_{C})$ .
Proof of Theorem A. Assume $C$ is not well-posed. Then there exist a

singular point $(i, v)=(i_{L}, i_{C}, i_{R}, v_{L}, v_{C}, v_{R})\in\Sigma$ . By Theorem in [2], the space
$K_{0}+(i_{R}, v_{R})=\pi_{R}(K(i_{L}, v_{C}))$ is not transverse to $\Lambda_{R}$ at $(i_{R}, v_{R})$ . This proves the ’if’
part of Theorem A.

Let $\mathscr{F}$ be a proper tree and $\mathcal{L}$ a corresponding link. Assume $(i_{L}, v_{C})\in$

$C_{1}(G_{L})\times C^{1}(G_{C})$ be a point such that $\pi_{R}(K(i_{L}, v_{C}))$ and $\Lambda_{R}$ have non-transversal
intersection. Let $(i_{R}, v_{R})=(i_{RtFI}, i_{R(\ovalbox{\tt\small REJECT})}, v_{Rt\mathcal{J}I}, v_{R(\ovalbox{\tt\small REJECT})})\in\pi_{R}(K(i_{L}, v_{C}))\cap\Lambda_{R}$ be a non-
transversal point, where $i_{R(F)}$ and $i_{R(B^{\prime})}$ ($v_{RIF)}$ and $v_{Rt\ovalbox{\tt\small REJECT})}$ ) denote the currents
(voltages) of tree resistors and link reistors, respectively. Since $(i_{R}, v_{R})$ belongs
to $\pi_{R}(K(i_{L}, v_{C}))$ , the following holds

$i_{Rt\mathcal{F}\mathfrak{l}}=A_{RF}^{t}i_{Rt\ovalbox{\tt\small REJECT})}+A_{L\mathcal{F}}^{\ell}i_{L}$ ,
$v_{Rt\ovalbox{\tt\small REJECT})}=-A_{R\mathcal{J}}v_{Rt\mathcal{J}I}-A_{RC}v_{C}$ ,

where $A_{R\ovalbox{\tt\small REJECT}^{-}},$ $A_{L\mathcal{J}}$ and ARC are the submatrices of $B$ given by the following form;

$R(\mathcal{L})$ $L$ $R(\mathscr{F})$ $C$

(6) $B=[$ $01$ $01$ $A_{L\prime}A_{R\mathcal{F}}$ $A_{RC}A_{LC}E^{(\mathcal{L})}$
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Put
$i_{C}=A_{RG}^{\ell}i_{R1\ovalbox{\tt\small REJECT} I}+A_{LG}^{\ell}i_{L}$ ,
$v_{L}=-A_{LF}v_{R1F)}-A_{LC}v_{C}$ .

Then
$\left\{\begin{array}{l}i_{R(\mathcal{J}},\\i_{C}\end{array}\right\}=A^{t}\left\{\begin{array}{l}i_{R(\ovalbox{\tt\small REJECT})}\\i_{L}\end{array}\right\}$ ,

$\left\{\begin{array}{l}v_{R(\ovalbox{\tt\small REJECT}|}\\v_{L}\end{array}\right\}=-A\left\{\begin{array}{l}v_{Rt\ovalbox{\tt\small REJECT}^{-})}\\v_{C}\end{array}\right\}$ ,

this means
$(i, v)=(i_{L}, i_{C}, i_{R}, v_{L}, v_{C}, v_{R})eK(i_{L}, v_{C})$ .

Since $(i_{R}, v_{R})$ belongs to $\Lambda_{R},$ $(i, v)$ belongs to $\Lambda=\pi_{R}^{-1}(\Lambda_{R})$ . Applying Theorem in

[2] for a point $(i, v)\in K(i_{L}, v_{C})\cap\Lambda\subset K\cap\Lambda=\Sigma$ , we see that $(i, v)$ is a singular point.

This proves the ’only if’ part of Theorem A.
According to Theorem $A$ , we can reduce the well-posedness problem to the

transversality problem. Now we define a stronger condition than well-posedness,

corresponding to the ‘everywhere transversality’ in section 2. A circuit is called

strongly well-posed if for all $(i_{R}, v_{R})\in\Lambda_{R},$ $T_{(i_{R},v_{R}I}\Lambda_{R}$ is transverse to $K_{0}$ .
Theorem 3. SuPpose the circuit $C_{i}$ is strongly well-posed, $i=1,2$ . Then the

new cicuit $C$ is also strongly well-posed.

Theorem 4. $SuPPose$ the circuit $C_{i}$ is well-posed. $i=1,2$ . If $p(r)$ is L-connected

with $q(s)$ in $C_{1}(C_{2})$ , then the new circuit $C$ is also well-posed.

Proof of Theorem 3. This is essentially the same as that of $Threm1$ .
Case 1. The element $e_{1}$ is a capacitor and $e_{2}$ is an inductor.

We can see the following holds by direct verification or by noting that the

space $K_{0}$ agrees with the Kirchhoff space of the resistive circuit obtained by

open-circuitting the inductor branches and short-circuitting the capacitor branches,

(7) $K_{0}(C)=K_{0}(C_{1})\times K_{0}(C_{2})$ .
Clearly,

(8) $\Lambda_{R}(C)=\Lambda_{R}(C_{1})\times\Lambda_{R}(C_{2})\subset C_{1}(G_{R}(C))\times C^{1}(G_{R}(C))$ .
Take a point $(i_{R}, v_{R})\in\Lambda_{R}$ . Put

$(i_{R}, v_{R})=(i_{R_{1}}, v_{R_{1}}, i_{R_{2}}, v_{R_{2}})eC_{1}(G_{R}(C_{1}))\times C^{1}(G_{R}(C_{1}))\times C_{1}(G_{R}(C_{2}))\times C^{1}(G_{R}(C_{2}))$

and by (8) $(i_{R_{j}}, v_{R_{j}})\in\Lambda_{R}(C_{j})$ . Since $C_{\dot{f}}$ is strongly well-posed, $T_{(\ell_{R_{j^{v}}\cdot R_{j})}}(\Lambda_{R}(C_{\dot{f}}))$

and $K_{0}(C_{\dot{f}})$ are transverse by (7) and (8).
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Case 2. The element $e_{1}$ is a linear resistor and the element $e_{2}$ is an inductor.
In this case, we have

(9) $\Lambda_{R}(C)=\Lambda_{R}(C_{1})\times\Lambda_{R}(C_{2})\times\Lambda_{R}(e_{1})$

where
$\Lambda_{R}(e_{1})=\{(i_{e_{1}}, v_{e_{1}}):v_{\iota_{1}}=i_{e_{1}}\cdot r_{e_{1}}\}\subset C_{1}(e_{1})\times C^{1}(e_{1})$ .

And

(10) $K_{0}(C)=K_{0}(C_{1})\times K_{0}(C_{2})\times K_{0}(e_{1})$ ,

where
$K_{0}(e_{1})=\{(i_{\ell_{1}}, v_{\ell_{1}}):i_{e_{1}}=0\}\subset C_{1}(e_{1})\times C^{1}(e_{1})$ .

Unless $r_{e_{1}}=0,$ $\Lambda_{R}(e_{1})$ is everywhere transverse to $K_{0}(e_{1})$ . The rest of the proof
is quite similar to that of case 1.

Case 3. The element $e_{2}$ is a linear resistor and $e_{1}$ is a capacitor. In this
case, instead of (10) the following holds;

(11) $K_{0}(C)=\{(i_{R_{1}}, i_{R_{2}}, i_{\ell_{2}}, v_{R_{1}}, v_{R_{2}}, v_{e_{2}}):i_{Rt.\tau_{i^{1}}}=A_{R_{j^{\mathcal{F}}j}}^{\ell}i_{R(\ovalbox{\tt\small REJECT}_{j)}}$ ,
$v_{R(\ovalbox{\tt\small REJECT} j)}=-A_{R_{j^{\mathcal{F}}j}}v_{(\ovalbox{\tt\small REJECT}_{j)}^{-}},$ $v_{2}=-\tilde{A}_{21}v_{R(\ovalbox{\tt\small REJECT}_{1}^{-})}-\tilde{A}_{22}v_{Rt\mathcal{J}_{2})}$ }

where $A_{R_{j}F_{j}}$ is determined by the following form, $j=1,2$ ;

$R(\mathcal{L}_{j})$ $L_{j}$ $R(F_{j})$ $C_{j}$

(12) $B_{\dot{f}}=[$

1
1

$A_{L_{j^{\mathcal{F}}j}}A_{R_{j^{F}j}}$ $A_{L_{j}c_{j}}A_{R_{\dot{f}}c_{\dot{\prime}1_{\dot{J}}^{R(\mathscr{L}_{\dot{f}}^{-})}}}$

and $\tilde{A}_{2j}$ is the submatrix of $A_{2j}$ consisting of the column corresponding to resistive
tree elements, $j=1,2$ . In other words, $K_{0}(C)$ is the graph of the map,

$F:K_{0}(C_{1})\times K_{0}(C_{2})\times C_{1}(e_{2})\rightarrow C^{1}(e_{2})$

defined by

$F(i_{R_{1}}, v_{R_{1}}, i_{R_{2}}, v_{R_{2}}, i_{\iota_{2}})=-\tilde{A}_{21}v_{Rt\mathcal{J}_{1}I}-\tilde{A}_{22}v_{R1\mathcal{J}_{2})}$ .
While we have;

(13) $\Lambda_{R}(C)=\Lambda_{R}(C_{1})\times\Lambda_{R}(C_{2})\times\Lambda_{R}(e_{2})$

where
$\Lambda_{R}(e_{2})=\{(i_{\ell_{2}}, v_{0_{2}}):v_{e_{2}}=i_{e_{2}}\cdot r_{\ell_{2}}\}$ .

We assert that $\Lambda_{R}(C)$ is everywhere transverse to $K_{0}(C)$ unless $r_{2}=0$ and
$\tilde{A}_{21}=\tilde{A}_{22}=0$. This can be verified by the straightforward calculation similar to
the proof of Theorem 1, or we can convince ourselves by observing Fig. 1.
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Fig. 1.

(The space $K_{0}(C)$ is the rotated $(i_{\ell_{2}}, K_{0}(C_{1})\times K_{0}(C_{2}))\cdot space$ with $i_{e_{2}}$-axis fixed.
On the other hand, the space $\Lambda_{R}(C)$ is the rotated $(i_{\iota_{2}}, K_{0}(C_{1})\times K_{0}(C_{2}))$-space with
$K_{0}(C_{1})\times K_{0}(C_{2})$-space fixed.) The rest of the proof is quite the same as before.

Proof of Theorem 4. According to Theorem $A$ , we will show that for each
$(i_{L}, v_{C})\in C_{1}(G_{L}(C))\times C^{1}(G_{C}(C))$ the space $\pi_{R}(K(i_{L}, v_{C}))$ is transverse to $\Lambda_{R}$ .

Case 1. The element $e_{1}$ is a capacitor and $e_{2}$ is an inductor. As before, the
following holds;

(14) $\Lambda_{R}(C)=\Lambda_{R}(C_{1})\times\Lambda_{R}(C_{2})$

and

(15) $K_{0}(C)=K_{0}(C_{1})\times K_{0}(C_{2})$ .
For a point $(i_{R}, v_{R})\in\pi_{R}(K(i_{L}, v_{C}))\cap\Lambda_{R}(C)$ , write

$(i_{R}, v_{R})=(i_{R_{1}}, i_{R_{2}}, v_{R_{1}}, v_{R_{2}})$

and

$i_{R_{j}}=(i_{Rt\mathcal{F}j)}, i_{Rt\ovalbox{\tt\small REJECT} j)})$ , $v_{R_{j}}=(v_{Rt\ovalbox{\tt\small REJECT}^{-}j)}, v_{Rt\ovalbox{\tt\small REJECT}_{j)}})$ , $j=1,2$ .
Then the fact that $(i_{R}, v_{R})$ belongs to $\pi_{R}(K(i_{L}, v_{C}))$ is equivalent to the following;

$i_{R(\mathcal{F}j)}=A_{R_{j\cdot j}}^{t},- i_{R(\ovalbox{\tt\small REJECT} j)}+A_{L_{j\mathcal{J}^{-}j}}^{l}i_{L_{j}}+\tilde{A}_{2j}^{t}i_{\ell_{2}}$ ,
$v=-A- v_{R(\mathcal{J}j)}-A_{R_{\dot{f}}C_{f}}v_{c_{j}}$ .

$T$he assumption of L-connectedness implies the existence of inductor currents
$\iota_{L_{j}}\in C_{1}(G_{L}(C_{j}))$ such that
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$i_{R1Fj)}=A_{R_{jFj}}^{t}i_{Rt\ovalbox{\tt\small REJECT} j^{1}}+A_{L_{j^{f}}}^{\ell}.j_{L_{j}}^{\prime}$ , $j=1,2$ .
This in tum means that the point $(i_{R_{j}}, v_{R_{j}})=(i_{Rtr_{j)}}, i_{R(\ovalbox{\tt\small REJECT} j)}, v_{Rtr_{j^{1}}}, v_{Rt\ovalbox{\tt\small REJECT} j)})$ belongs
to $\pi_{R}(K(i_{L_{j}}^{\prime}, v_{c_{j}})),$ $j=1,2$ . Thus we have,

$(i_{R_{j}}, v_{R_{j}})\in\pi_{R_{j}}(K(i_{L_{j}}^{\prime}, v_{C_{j}}))\cap\Lambda_{R}(C_{j})$ , $j=1,2$ .
By the assumption, $T_{(t_{R_{j}}.v_{R_{j}})}\Lambda_{R}(C_{j})$ is transverse to $\pi_{R_{j}}(K(i_{L_{j}}^{\prime}, v_{C_{j}}))$ at $(i_{R_{j}}, v_{R_{j}})$ in
$C_{1}(G_{R}(C_{\dot{f}}))\times C^{1}(G_{R}(C_{\dot{f}})),$ $j=1,2$ . Since $T_{tt_{R},v_{R})\dot{g},j}(\pi_{R}(K(i_{L_{j}}, v_{C_{j}})))=K_{0}(C_{\dot{f}}),$ $j=1,2$ ,
noting (14) and (15) we see $T_{(t_{R}.v_{R)}}\Lambda_{R}$ is transverse to $T_{(t_{R},v_{R})}(\pi_{R}(K(i_{L},v_{C})))(=K_{0}(C))$

at $(i_{R}, v_{R})$ .
Case 2. The element $e_{1}$ is a linear resistor and $e_{2}$ is an inductor. In this

case, $\pi_{R}(\Lambda)$ and $K_{0}(C)$ have the forms (9) and (10), respectively. For a point
$(i_{R}, v_{R})\in\pi_{R}(K(i_{L}, v_{C}))\cap\Lambda_{R}(C)$ , write

$(i_{R}, v_{R})=(i_{R_{1}}, i_{R_{2}}, i_{e_{1}}, v_{R_{1}}, v_{R_{2}}, v_{\ell_{1}})$

and
$i_{R_{j}}=(i_{R(\mathcal{J}j^{1}}, i_{R(\ovalbox{\tt\small REJECT} j)})$ , $v_{R_{j}}=(v_{R(\mathcal{F}j)}, v_{R(\ovalbox{\tt\small REJECT} j)})$ , $j=1,2$ .

since $(i_{R}, v_{R})\in\pi_{R}(K(i_{L}, v_{C}))$ , the following holds;

$i_{Rt\mathcal{J}j)}=A_{R_{j}r_{j}}^{t}i_{Rt\ovalbox{\tt\small REJECT} j)}+A_{L_{j^{\mathcal{J}}j}}^{t}i_{L_{j}}+\tilde{A}^{\ell}\mathfrak{g}_{j}i_{0_{2}}$ , $j=1,2$ ,
$i_{e_{1}}=-i_{e_{2}}$ ,
$v_{Rt\ovalbox{\tt\small REJECT} j)}=-A_{R_{j}\ovalbox{\tt\small REJECT}_{J}^{-v_{Rt\mathcal{J}^{-}j)}-A_{R_{j}C_{f}}v_{c_{j}}}}$ , $j=1,2$ .

Then the proof proceeds in the same way as in case 1.

Case 3. The element $e_{1}$ is a capacitor and $e_{2}$ is a linear resistor. In this
case, $\Lambda_{R}(C)$ and $K_{0}(C)$ have the forms (13) and (11), respectively. For a point
$(i_{R}, v_{R})\in\pi_{R}(K(i_{L}, v_{C}))\cap\Lambda_{R}(C)$ , write

$(i_{R}, v_{R})=(i_{R_{1}}, i_{R_{2}}, i_{e_{2}}, v_{R_{1}}, v_{R_{2}}, v_{e_{2}})$

and
$i_{R_{j}}=(i_{R(\mathcal{J}^{-}j)}, i_{R(\ovalbox{\tt\small REJECT} j)})$ , $v_{R_{j}}=(v_{R(Fj)}, v_{R(\ovalbox{\tt\small REJECT} j)})$ , $j=1,2$ .

The condition that $(i_{R}, v_{R})\in\pi_{R}(K(i_{L}, v_{C}))$ is equivalent to the following;

$i_{Rtr_{j)}}=A^{\ell}R_{jj}\mathcal{J}- i_{Rt\ovalbox{\tt\small REJECT} j)}+A_{L_{jFj}}^{\ell}i_{L_{j}}+\tilde{A}_{2j}^{\ell}i_{e_{2}}$ , $j=1,2$ ,
$v_{R(\ovalbox{\tt\small REJECT} j)}=-A_{R}j^{\ovalbox{\tt\small REJECT}}- gv_{RtJ^{-}j)}-A_{R_{\dot{f}}C_{f}}v_{c_{j}}$ ,
$v_{e_{2}}=-A_{21}v_{r_{1}}-A_{22}v.’-+v_{e_{1}}2$

where
$v_{\tau_{j}}=(v_{R(Fj)}, v_{C_{\dot{f}}})$ , $j=1,2$ .

The rest of proof proceeds as before.
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4. Examples.

In our $Threms$ , we have treated the case of connection by different kinds
of elements. If $e_{1}$ and $e_{2}$ are both capacitors or both inductors, then the new
circuit may have no proper tree. If $e_{1}$ and $e_{2}$ are both resistors, Theorems 3
and 4 do not hold as shows the following example.

Example 1. Consider the circuits $C_{1}$ and $C_{2}$ shown in Fig. 2. Here the
element $R_{1}$ is non-linear current-controlled resistor having the characteristics shown
in Fig. 4. The essential point is that the characteristic curve has a portion of
negative inclination.

Fig. 2. Fig. 3.

Fig. 4.

Connecting $C_{1}$ and $C_{2}$ by the resistors $e_{1}$ and $e_{2}$ , we obtain the new circuit
$C$. Although the circuit $C_{1}$ and $C_{2}$ are strongly well-posed, the new circuit $\mathscr{G}$

is not necessary well-posed. Take the branches $r_{=\{R_{1},e_{1},C_{1}\}}$ as a tree for $C$

and denote the fundamenta loop matrix associated with $\sim r$ by $B$. Then we have,

$B=\left\{\begin{array}{lllll}1 & 0 & 0 & -1 & 00\\0 & 1 & 0 & -1 -1 & 1\\0 & 0 & 1 & 0 & 0-1\end{array}\right\}e_{2}L_{1}e_{2}L_{2}R_{1}e_{1}C_{1}L_{2}L_{1}$
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$e_{2}$ $R_{1}$ $e_{1}$

$B_{R}=[1 -1 -1]e_{2}$ ,

$e_{2}$ $R_{1}$ $e_{1}$

$Q_{R}=[11$ $01$ $01\iota_{1}^{R_{1}}$ .
Thus, $(\dot{i}_{R},\dot{v}_{R})\in T_{t\ell_{R}.v_{R)}}K_{0}(C)=K_{0}(C)$ if and only if

$B_{R}\dot{v}_{R}=0$ , $Q_{R}\dot{i}_{R}=0$ .
While, $(i_{R}, v_{R})\in T_{(t_{R^{v}R)}},\Lambda_{R}$ if and only if

$R\left\{\begin{array}{l}\dot{i}_{R}\\\dot{v}_{R}\end{array}\right\}=0$ ,

where
$e_{2}$ $R_{1}$ $e_{1}$ $e_{2}$ $R_{1}$ $e_{1}$

$R=\left\{\begin{array}{llllll}-r_{2} & 0 & 0 & 1 & 0 & 0\\0 & -f^{\prime}(i_{R_{1}}) & 0 & 0 & 1 & 0\\0 & 0 & -r_{1} & 0 & 0 & 1\end{array}\right\}\Lambda_{R_{1}}2$

Therefore $T_{\{\ell_{R}.v_{R})}\Lambda_{R}$ is transverse to $K_{0}((C)$ if and only if the enlarged matrix

$J=\left\{\begin{array}{lll}Q & & 0\\0 & R & B\end{array}\right\}$

has the full rank $ 2\rho$ . By elementary operations, we can see rank $ J<2\rho$ if and
only if

det $\left\{\begin{array}{ll}1 & l\\r_{S}+r_{1} & -f^{\prime}(i_{R_{1}})\end{array}\right\}=0$

i.e.,
$f^{\prime}(i_{R_{1}})=-(r_{1}+r_{2})$ .

Thus, this is a counterexample for Theorems 3 and 4. Next, we will give some
examples of strongly well-posed circuits.

Example 2. (Linear circuits)

Any circuit whose resistors are all linear, positive and $un\infty upled$ is strongly
well-posed. Each resistor $R_{j}$ has the characteristics; $v_{R_{j}}=i_{R_{j}}\cdot r_{j},$ $r_{j}>0,$ $j=1,2,3$ ,
.. ., $ 2\rho$ . Let $\mathscr{F}$ be a tree, $\mathcal{L}$ a link, $R(\ovalbox{\tt\small REJECT}^{-})$ tree resistors and $R(\mathcal{L})$ link resistors.
Then the fundamental $1p$ matrix $B$ is decomposed as follows;

$R(\mathcal{L})$ $\mathcal{L}_{LC}$ $R(\mathscr{F})$ $\mathscr{F}_{LC}$

$B=[$ $01$ $01$ $F_{3}F_{1}$ $F_{4}F_{2}g_{LC}^{(\mathcal{L})}$
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And
$R(\mathcal{L})$ $R(\ovalbox{\tt\small REJECT}^{-})$

$B_{R}=[ 1 F_{1} ]R(\mathcal{L})$ .
Thus the enlarged matrix $J$ is given by

$R(\mathcal{L})$ $R(\ovalbox{\tt\small REJECT}^{-})$ $R(\mathcal{L})$ $R(F)$

$J=[00$ $0001$ $1010$
$-r^{\frac{1}{F}1}ooF]_{R(\mathcal{L})}^{R(\mathscr{F})}R(F)R(\mathcal{L})$

where $r_{F}$ and $r_{\ovalbox{\tt\small REJECT}}$ are diagonal matrices with positive entries. The matrix $J$ has
the full rank if and only if

$’|$

det $\left\{\begin{array}{ll}-F_{1}^{\ell} & r_{r^{1}}^{-}\\r_{\ovalbox{\tt\small REJECT}} & F_{1}\end{array}\right\}\neq 0$ . $|$

This is equivalent to det $[F_{1}F_{1}^{t}+r_{\ovalbox{\tt\small REJECT}}r_{F}^{-1}]\neq 0$ . And this is always assumed because
$F_{1}^{\ell}F_{1}$ is positive semi-definite and $r_{\ovalbox{\tt\small REJECT}}r_{z^{1}}^{-}$ is positive definite.

Of course, if the resistors are not linear but monotone increasing, then the
result remains valid. More generally, the following holds.

Example 3. If the characteristics of the resistors have the following form
with respect to some tree,

$\Lambda_{R}=\Lambda_{R}(\mathscr{F})\times\Lambda_{R}(\mathcal{L})$

and
$\Lambda_{R}(\ovalbox{\tt\small REJECT}^{-})=\{(i_{\ovalbox{\tt\small REJECT}^{-}}, v_{\mathcal{J}}):i_{\ovalbox{\tt\small REJECT}^{-}}=f(v_{\mathcal{J}}\cdot)\}$ , $\Lambda_{R}(\mathcal{L})=\{(i_{\ovalbox{\tt\small REJECT}}, v_{\ovalbox{\tt\small REJECT}}):v_{\ovalbox{\tt\small REJECT}}=g(i_{\ovalbox{\tt\small REJECT}})\}$

and if at each point $(i_{R}, v_{R})\in\Lambda_{R}$

det $\left\{\begin{array}{ll}-F_{1}^{\ell} & f^{\prime}(v_{\mathcal{J}})\\g^{\prime}(i_{\ovalbox{\tt\small REJECT}}) & F_{1}\end{array}\right\}\neq 0$ .
then the circuit is strongly well-posed.

Next, we consider a rather old-fashioned electron tube amplifier.

Example 4. (A unit amplifier using a triode.)
Consider the circuit $A_{1}$ shown in Fig. 5. The coupled resistors $R_{b}$ and $R_{0}$

consists a triode. The resistors $R_{l}$ and $R_{k}$ are uncoupled positive linear resistors.
The resistor $R_{p}$ is a linear resistor with a voltage source, its characteristics is
represented as shown in Fig. 6. The electron tube $\{R_{b}, R_{\epsilon}\}$ has the following
characteristics;

$\Lambda_{R_{b.\iota}}=\{(i_{b}, i_{e}, v_{b}, v_{0}):i_{b}=f_{b}(v_{b}, v_{0}), i_{0}=f_{0}(v_{b}, v_{t})\}$
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where the function $f_{b}$ and $f_{\iota}$ are supposed to be $smth$ and at each point to
satisfy the condition;

$\frac{\partial f_{b}}{\partial v_{b}}>0$ , $\frac{\partial f_{0}}{\partial v_{0}}>0$ .

This is satisfied at least within the region usually used. A typical form of $f_{b}$

and $f_{e}$ are illustrated as follows.

Fig. 5. Fig. 6.

Fig. 7. (From RCA tube manual.)

If we take $\{C_{k}, R_{b}, R,\}$ as a tree, then the condition of example 3 is satisfied.
For the condition

det $[0r_{g}010$
$0r_{k}000$

$r_{p}1100\frac{\partial f_{b}}{\frac{\partial v\partial f_{0}}{-1\partial v_{0}0b}b}$

$\frac{\partial f_{b}}{\frac{\partial v\partial f_{\delta}}{-1\partial v_{0}0e}\iota}]=0$

is equivalent to
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$1+\frac{\partial f_{b}}{\partial v_{b}}\cdot r_{p}+\frac{\partial f_{0}}{\partial v_{\iota}}\cdot r_{g}=0$ .

Hence for any $r_{p}>0$ and $r_{g}>0$, the circuit is strongly well-posed.
Applying our results inductively, we obtain,

Example 5. (Triode amplifier)

Let $A_{\ell}$ be a copy of the circuit $A_{1},$ $i=1,2,3,$ $\cdots,$ $n$ . Connect $A_{i}’ s$ as shown
in the following. Then this circuit is strongly well-posed.

Fig. 8.

Now, consider a circuit for which we can take a tree consisting only capacitors,
and we have,

$B_{r}=[1$

1
1

.
$1]$ $J=\left\{\begin{array}{llll}0 & 1 & & \\ & & 1 & \\D_{\ell_{R}}g & & D_{v_{R}}g & 1\end{array}\right\}$

where
$\Lambda_{R}=\{(i_{R}, v_{R}):g(\dot{i}_{R}, v_{R})=0\}$ .

Therefore the circuit is strongly well-posed provided det $D_{t_{R}}g\neq 0$ . This argument

shows the usual transistor flip-flop circuit with stray capacitors as shown in
Fig. 9 is strongly well-posed.

Fig. 9. Fig. 10.

The characteristics of the transistor is given by

$i_{C}=f_{C}(v_{C})-\alpha_{21}i_{E}$ ,
$i_{E}=f_{E}(v_{E})-\alpha_{12}i_{C}$ ,
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where
$0<\alpha_{12}$ , $\alpha_{21}<1$ .

Since $R_{1}$ and $R_{p}$ are linear uncoupled (rigourously saying, $R_{p}$ is affine, for $R$

$\infty ntains$ a voltage source), it is sufficient to verify the determinant of the follow-
ing $2\times 2$ matrix is non-zero,

$i_{C}$ $i_{E}$

$\left\{\begin{array}{ll}1 & \alpha_{21}\\\alpha_{12} & 1\end{array}\right\}$

Since $0<\alpha_{12},$ $\alpha_{21}<1$ , the circuit is strongly well-posed.
More generally, we have.

Example 6. Any transistor circuit consisting of transistors, uncoupled strictly
monotone resistors, capacitors and inductors having a tree consisting of only
capacitors is strongly well-posed.
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