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1. Summary. Let {§;} be a strictly stationary sequence of random variables
which are distributed uniformly over the interval [0, 1] and satisfy the strong
mixing (s.m.) condition

1.1) a(n)= sup |[P(ANB)—P(A)P(B)| |0

k oo
Ae/_w,Be.,l,H.”

as n—oo, where £, is the g-algebra generated by &, ---, & (a<b).

Recently, Berkes and Philipp (1977) proved an almost sure invariance principle
for some empirical processes by which a functional law of the iterated logarithm
for the functions of s.m. sequences, a two-dimensional functional law of the
iterated logarithm, etc., are easily obtained. In this note, we shall prove that
Theorem 1 in Berkes and Philipp remains true under the less restrictive s.m.
condition.

2. The main result. Let Fy(s) (0=<s=1) be the empirical distribution func-
tion defined by &, ---, &n.
Let

2.1 R(s, t)z[t](F[t](s)—s) ’ 0=s=z1, t=0
where [¢] denotes the largest integer not exceeding f. Write
2.2) gi(@)=1Ip, () —t

where I, (.) denotes the indicator function of the interval [s, f) and for fixed s
and ¢ with 0<s<¢<1, put

2.3) Zn(s, £)=g:(En)—gs(&n) -

Then, we can rewrite R(s, {) as
3]

(2.4) R(s, t)= _Z}l x;0, s) .
=

Consider the covariance function
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2.5 I, t)=Eg.($1)gz($x)+“22Ey.($1)gt(€,)+n§2Egt(él)g.(&.) 0=s, t<1).

(It is known that under the conditions of (below) the two series in (2.5)
converge absolutely for 0<s, t<1).
Let

(2.6) o’(s, O=I(s, s)+I'(t, t)—2I(s, t) .

It is clear that if /'(s, #) is positive definite, then o*(s, #)>0 for 0<s<¢<1. Further,
let {K(s, #), 0=s=1, t=0} be a Kiefer process, i.e., a separable Gaussian process
K(s, t) on [0, 11x[0, o) such that K(0, {)=K(1, t)=K(s, 0) for all 0=s=1, =0,

(2.7) EK(S, t):O
and )
(2.8) EK(s, K(s', t')=min (¢, \I'(s, s') .

We prove the following

Theorem. Let {§;} be random variables defined above. Suppose that a(n)=
On™*'*) for some a (0O<a<l). Suppose that I'(s,s’) is positive definite. Then,
without changing the distribution of the empirical process R(s, t) of {&.} we can
redefine R on a richer probability space on which there exists a Kiefer process
with covariance min (¢, t')['(s, s') such that

2.9) sup sup |R(s, {)—Kls, t)|=0(T"?*(log T)™*) a.s.

05851 0StST

Jor some 2>0.

3. Proof. To prove Theorem, we need some lemmas. In what follows, we
denote by the letter C, with or without subscript, various absolute constants.

Lemma 1. Let X be a random variable with finite first moment. Let o(t) be
the characteristic function of X. Further, let Z be the standardized normal ran-
dom variable. If there exist two numbers L and T(>1) such that for all t(t|<=T)

3.1) lp()—e <L,
then for all M(>1)

3.2) sup |P(X < u)— (1) éC[M“{EIXI +E|Z|}+Llog MT+%:| .

where
1

¢(x)=ES et .
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Proof. Let M(>1) be an arbitrary number. Since E|X|<oco, so for all
t (tl=M™) '

lp(t)—e™ | < Bl *-2t _ 1| < Clt{ E|X| + E|Z]} -

Hence, we have

SI!IST

o(t)—e "
:

a={| 4 o™
ltisy—1 MIST 4

gC[{EIXH—EIZl}S dt+LS l—ldt}
ltlsxH—1 M—lcegr|
<C[M Y{E|X|+E|Z}}+L log MT] .

Now, follows from Theorem 2 in [2, Chap. 5, §1], which completes the proof.
We put /=¢—s for any pair (s, ) 0=s<t=1).

dt

Lemma 2. Suppose that the conditions of Theorem are satisfied. Then there
exist positive numbers v, p, p and C, such that 1/2<p<y and
HiN (r—p)/2 . 1/2
(3.9 P( %ﬂw,-(s, B|=34l (2N log log N)™'%)
i=
=Clexp (—A’C3*I log log N)+ A2 IP N4
uniformly for all pairs (s, t) (=N"*"*) and for all H=0, A>0 as N—c.
Proof. Firstly, we note that if a(#)=0O(x"*'*) then we can easily find positive
numbers C, and y'(=5/9) such that for s, ¢ (0<s, ¢=1) and for all » sufficiently large

(3.5) ais, H=LB| % a5, n=CH"

since |2o(s, £)]=<1 and Elx(s, )| <CL

Secondly, as {¢;} is strictly stationary, we shall prove Lemma 2 in the case
H=0,

Let

(3.6) 7y=min (5/9, (7—3a)/8)

and choose p so that 1/2<p<y. Let N be a sufficiently large number. Let p=
[N'?(log N)™°] and k=[N/2p]. Choose a number y so that

3.7 O<p<(1—a)/2(3+a).
For brevity, we put

(3.8 xv=(2 log log N)'/?

and g=a,(s, t) (>0).
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For any pair (s, #) such that I=N"*"* put

12 1 & .
yi=p "o j§lw2(j—l)p+i(s, t) (=1,---, k)

and

N
Yen=p"" 5 ais 1),

i=3kp+

As {x;(s, 1)} is strictly stationary, so

k
3.9 LHS of (3.4)§2P([j§1 Yil = ALTP g g
+P(lyer| 2 AL PR Py )=2L+ L,  (say) .
It follows from that

(3.10) LA U " Yy Y Elyeail
SCAZ T Ry p (IN—2kp)I <CAENYp .

Now, we proceed to estimate ;. From [3.7), (3.9) and in Yoshihara
we have

Ely|'=Co™ (1" +1'"p ™ (log p)} < Co™*I'"
and so from Schwartz’s inequality and the fact E|y,|*=1 we have
3.11) Ely P <{ElylY " Ely:'Y < Co™"F .
Hence, by [Lemma 1|, [2, Chap. 5, §2] and we have that for all ¢ (J¢{|<(1/4)Tw)

k
|Efexp (i7"t X, y)}—e™"
=

k
<|Efexp (k™" ﬁl Y- II Efexp k™ "ty )} +| f[1 Efexp ik~ *ty )} —e |
i= g= i=

<Clka(p)+ T¥'}
where
Ty=K"(Ely.}"*(Bl:l' 2 CK ' .

Since for all N sufficiently large

BIE™" 5yl <k Elyi sk (Bl sk
so using (with M=N?), we have

sup [P(~" é:l Yi<2)—0(2)| SCN a1 .

Hence, from the non-uniform estimate of the central limit theorem and
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1/4 -2
(3.12) L=l -0l )+ N |
<Clexp (—A*Cy%I log log N)+ A2 N~I°].
Combining (3.9), [3.10) and (3.12), we have (3.4) and the proof is completed.

The following two lemmas correspond Lemmas 5.1 and 5.2 in Berkes and
Philipp [1].

Lemma 3. If (3.4) holds, then as k—c

(3.13) P(max sup |R(s, t)—R(s;, ty)| =tk (log t,)**)<C exp (—k**)

15527 655!58:7'+1
where r=ri.=[log k/log 4], t,=[exp (k'"*)] and ¢=(r—p)/16.

Proof. We write for 0<s<s'<1 and integers P(=0), @(=1)
’ P+Q ’
FP,Q,s,s)=| L (s ).
J=P+1
Put m=[(1/2+p) log t./log 2] and write for s;=s<s;
s=s;+ E} B.27 627
v=r+1

where 38,=0,1 and 0<0<1. We define the following events:

Euv, @)={F0, ti, a2, (@a+1)27)=22C,2" """ 24, 1:,}
E= U U Ei,a).

r<vsm+105a<2¥
Then, applying the same method in the proof of Lemma 5.1 in and using
we have
FQO, t, s;, )<Cti’*(og t;)""""*  a.s.
and the proof is completed.

Lemma 4. If (3.4) holds, then as k—oo

P( map sup |R(s, t)—R(s, t)|=ti*(log t))<Ck ™ .
tpStstpyq 0Sssl

Proof. Put p=[(1—p)log t,/log 4] and g=[log (ty+1—%)/log 2. We write each
integer ¢ (#,<t<#+:) in the form

t=t+ 3 2=+ X w2408
0ss=s¢

sJjs p<jsSq

where r;=0, 1 and 0<4=<1. Also, we write s(0=s=<1) in the form

s:ozo: 6,27'=3 ¢,27"+627".

1 vEm
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Further, let

Hiv, a, j, )={Ft+h2"", 2, &, 427, (@+1)27) 226,277~ (g — jy 20"y,
Hk=p<Ljqu os»s(Ll'-.mi/a osgz" oshgﬂ‘f B a4, b) -
Then, applying the same method in the proof of Lemma 5.2 in [1] and using
we have the lemma.

From Lemmas 3 and 4, we have the following lemma.
Lemma 5. If the conditions bf Theorem are satisfied, then
3.14) max max max |R(s, £)—R(s;, t,)|=Ct:*(log t,)™ a.s.

tpStSty 1 157527F 555850,

where t, and r, are the ones defined in Lemma 3.

Proof of Theorem. Since under the conditions of Theorem the corresponding
result to Proposition 3.1 in [1] is proved by the method used there, so using the
Berkes and Philipp method in [1] and Lemma 5, we have the theorem.
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