A CONSTRUCTION METHOD OF HOMOLOGY 3-SPHERES IN \boldsymbol{S}^{4}

By
Tatsuo Homma and Teruo Nagase ${ }^{11}$

(Received June 19, 1979)

Introduction.

Mazur gives a construction method of a contractible 4-manifold which collapses to the Dance hat (hence the double of the 4 -manifold is the 4 -sphere), and whose boundary is not the 3 -sphere [Mz]. In this paper, we give a construction method of a homology 3 -sphere in S^{4} corresponding to each embedding of a polyhedron into the 3 -sphere. More precisely, let X be a polyhedron which possesses a cell subdivision with only one 0 -cell P. Let $K=\overline{X-N(P ; X)}$. Let $f: K \rightarrow S^{8}$ be an embedding. Then we can associate a 4 -manifold in S^{4} which has a spine X. Hence we can get a homology 3 -sphere in S^{4} if X is aspherical, and a contractible 4manifold in S^{4} if X is contractible. Since the Dance hat is such a polyhedron, we can construct a Mazur's example (see Example 1). Our construction method stands on the h-cobordism theory [M1]. We use a special Morse function to respect that the object which we deal with lies in S^{4}.

§ 1. Preliminaries.

We work in the piecewise linear category.
Maps are all piecewise linear maps. The interior, closure, and boundary of (\cdots) are denoted by $\operatorname{Int}(\cdots),(\bar{\cdots})$, and $\partial(\cdots)$ respectively. The n-dimensional sphere is denoted by S^{n}. For intervals, we use the common notations $[a, b],(a, b]$, $[a, b)$, and (a, b). The unit interval will be denoted by I.

For two simplical complexes K and L, we denote by $K * L$ the abstract join of K and L (for the definition of "join", see [Zm] or [Hd]). If they lie in S^{n} and they are joinable in the space, then we assume that the join $K * L$ also lies in S^{n}.

For a regular neighborhood N of a subpolyhedron X in a polyhedron P, we always assume that N is small, compared to things previously defined. That is to say, we construct N as follows: Choose a triangulation L in which all sub-

[^0]spaces, previously mentioned in the argument, are subcomplexes. Let $L^{\prime \prime}$ be a second derived subdivision of L, and let N be the simplical neighborhood of X with respect to $L^{\prime \prime}$. We often denote N by $N(X ; P)$.

We consider S^{4} as $S^{3} \times[-1,1] /\left\{S^{3} \times(-1), S^{3} \times 1\right\}$. We denote $S^{3} \times(-1)$ and $S^{3} \times 1$ by $-\infty$ and $+\infty$ respectively when we regard $S^{3} \times(-1)$ and $S^{3} \times 1$ as the points in S^{4}. Let $p: S^{4} \rightarrow[-1,1]$ be the natural projection onto the "second" factor $[-1,1]$, and $\pi: S^{4}-\{+\infty,-\infty\} \rightarrow S^{3}$ be the natural projection onto the first factor S^{3}.

In this paper, a "cell" means the closure of an open cell.
We use the sign \square to indicate the end of proofs.

§ 2. Main theorem.

To state main theorem, we introduce several notations and definitions.
We define a layer $(L ; V, W)_{a}^{b}$ as follows. Let V^{*} be a 3 -manifold in S^{3} and let $A_{1} \cong I^{3}, A_{2} \cong I^{3}, \cdots, A_{m} \cong I^{3}, B_{1} \cong I^{3}, \cdots, B_{n} \cong I^{3}$ be mutually disjoint 3-balls in S^{3} such that for each $i=1, \cdots, m, j=1, \cdots, n$
(1) $A_{i} \subset V^{*} \quad$ and $\quad B_{j} \subset\left(\overline{S^{3}-V^{*}}\right)$
(2) $A_{i} \cap \partial V^{*} \cong\left(\partial I^{(i)}\right) \times I^{3-\alpha(i)}, \quad \alpha(i)=0,1,2,3, \quad$ and
(3) $B_{j} \cap \partial V^{*} \cong\left(\partial I^{\beta(j)}\right) \times I^{3-\beta(j)}, \quad \beta(j)=0,1,2,3$.

Let $W^{*}=\left(V^{*}-\bigcup_{i=1}^{m} A_{i}\right) \cup\left(\bigcup_{j=1}^{n} B_{j}\right)$. For integers $-1<a<c<b<1$, let $L^{*}=V^{*} \times$ $[a, c] \cup W^{*} \times[c, b] \subset S^{3} \times[a, b] \subset S^{4}$. Let $(L ; V, W)$ be a triad with $L \subset S^{4}, V=$ $L \cap p^{-1}(a)$, and $W=L \cap p^{-1}(b)$. If there is a homeomorphism $\varphi: S^{4} \rightarrow S^{4}$ such that (1) $p=p \circ \varphi$, and (2) $\varphi\left(L^{*}\right)=L$, then we call $(L ; V, W)_{a}^{b}$ a layer. Simply $(L ; V, W)_{a}^{b}$ will be denoted by L. For each $i=1, \cdots, m, \varphi\left(A_{i}\right)$ is called an inside critical handle of index $\alpha(i)$, and $\varphi\left(B_{j}\right)$ is called an outside critical handle of index $\beta(j)$ for each $j=1, \cdots, n$. The number c is called the critical level (of the layer).

Suppose that $\left(L_{1} ; V_{0}, V_{1}\right)_{a(0)}^{a(1)},\left(L_{2} ; v_{1}, v_{2}\right)_{a(1)}^{a(2)}, \cdots,\left(L_{k} ; V_{k-1}, V_{k}\right)_{a(k-1)}^{a(k)}$ are layers such that V_{0} and V_{k} are disjoint unions of 3-balls. Then the union $\bigcup_{i=1}^{k} L_{i}$ is called a stratum. We call L_{i} the $i t h$ layer of the stratum.

We can show that every 4 -manifold in S^{4} is sent to a stratum by an ambient isotopy on S^{4}.

Let \mathscr{S} be the set of strata. Let \mathscr{S} be the subset of \mathscr{S} such that the boundary of each stratum is connected, each stratum consists of four layers, and its critical handles of index i lie on the $i+1$ st layer for each $i=0,1,2,3$.

Two strata are said to be equivalent, if there exists an ambient isotopy on S^{4} which sends one to the other. For each stratum N, we denote by [N] the equi-
valent class of N. Then there is a natural projection of \mathscr{S} onto the set of all equivalence classes. For each subset \mathscr{X} of \mathscr{S}, we denote by \mathscr{X}^{*} the image of \mathscr{O} under the projection.

Let \mathscr{C} be the subset of 2 -dimensional polyhedra such that each element X possesses a cell subdivision $C(X)$ with only one 0 -cell. For each $X \in \mathscr{C}$, the 0 -cell of $C(X)$ is denoted by $P(X)$. Let $\mathscr{K}(X)=\overline{X-N(P(X) ; X})$, and let $\mathscr{K}=$ $\{\mathscr{K}(X) \mid X \in \mathscr{C}\}$. Let

$$
\mathscr{F}^{-}=\left\{(f: K) \mid K \in \mathscr{K}, f: K \rightarrow S^{3} \text { is an embedding. }\right\}
$$

Suppose that $K=\mathscr{K}(X)$. Then we denote X by $\mathscr{C}(K)$. And we denote by \dot{K} the intersection $K \cap N(P(X) ; X)$.

Our main theorem is the following:
Theorem. There exist two maps $\Phi: \mathscr{N}^{*} \rightarrow \mathscr{F}$ and $\Psi: \mathscr{F} \rightarrow \mathscr{N}^{*}$ with $\Psi \circ \Phi=1$.

§ 3. Definition of Φ.

In this section, we define the map $\Phi: \mathscr{N}^{*} \rightarrow \mathscr{F}$.
Proposition 3.1. Suppose $N \in \mathscr{N}$. Then N is equivalent to an element $N^{\prime} \in \mathscr{N}$ such that N^{\prime} possesses no critical handles of index 0 and 3 , and that the first layer and the 4th layer are connected.

Proof. Let $L_{1}=N \cap p^{-1}\left(\left[a_{0}, a_{1}\right]\right)$ and $L_{2}=N \cap p^{-1}\left(\left[a_{1}, a_{2}\right]\right)$ be the first and second layers, and let c_{0} and c_{1} be the critical levels of index 0 and 1 respectively. Let $W=\overline{\partial N \cap p^{-1}\left(\left[-1, c_{1}\right)\right)}$. If W is connected, then N possesses no critical handles of index 0 and the first layer is conected. Suppose that W is disconnected. Since ∂N is connected, there is a handle H of index 1 which connects two connected components of W. Suppose that the handle H is an outside handle. Then we may assume that $\pi(H) \times\left[a_{0}, c_{1}\right] \cap N=H \cup \pi(H \cap \partial W) \times\left[a_{0}, c_{1}\right]$, which is a 3-ball. Thus there is an ambient isotopy on S^{4} which sends N to $N \cup \pi(H) \times\left[a_{0}, c_{1}\right]$, an element of \mathscr{N}. Suppose that the handle H is an inside handle. Then we may assume that $\pi(H) \times\left[c_{0}, c_{1}\right] \subset N$ and that $\pi(H) \times\left[c_{0}, c_{1}\right] \cap \partial N=H \cup \pi(H \cap \partial W) \times\left[c_{0}, c_{1}\right]$, which is a 3 -ball. Thus there is an ambient isotopy on S^{4} which sends N to $\overline{N-\pi(H) \times\left[c_{0}, c_{1}\right]}$, an element of \mathscr{N}. This process lessens the number of connected components of W. Thus there exists an element $N^{\prime \prime}$ in the class [N] which possesses no critical handles of index 0 . The above argument holds for the top layer. Hence the result follows.

Definition. An element N in \mathscr{S} is said to be admissible if N possesses no

Fig. 3.1.
critical handles of index 0 and 3. If an element N in \mathscr{N} is admissible, then N possesses a stratum consisting of two layers such that the first layer contains critical handles of index 1 and that the second layer contains critical handles of index 2.

Let L be a layer with a critical handle H of index i on the critical level c. Let $h: I^{i} \times I^{s-i} \rightarrow L$ be an embedding such that $\operatorname{Im} h=H$ and $\operatorname{Im} h \cap \overline{\left(\partial L \cap p^{-1}([-1, c))\right)}=$ $h\left(\partial I^{i} \times I^{s-i}\right)$. Then for any point $q \in \operatorname{Int} I^{3-i}$, we call $h\left(\partial I^{i} \times q\right)$ and $h\left(I^{i} \times q\right)$ a left hand sphere and a left hand disk respectively. Similarly, we call $h\left(r \times \partial I^{s-i}\right)$ and $h\left(r \times I^{3-i}\right)$ a right hand sphere and a right hand disk for each point $r \in \operatorname{Int} I^{i}$. We denote $h\left(\partial I^{i} \times I^{s-i}\right)$ by Attach (H). For the case $i=1$, we denote $h\left(I^{1} \times \partial I^{2}\right)$ by Annulus (H) (see Fig. 3.1).

Now we define the map Φ as follows: For each class of \mathscr{N}^{*}, we specify an admissible element $N \in \mathscr{N}$ in the class. Then N is a stratum consisting of two layers such that the first layer L_{1} contains critical handles of index 1 on the level c_{1}, and that the second layer L_{2} contains critical handles of index 2 on the level c_{2}. Let B_{1}, \cdots, B_{m} be the outside critical handles of index 2 , and E_{1}, \cdots, E_{n} the outside critical handles of index 1. We may assume that for each $i=1, \cdots, m$

$$
\pi\left(B_{i}\right) \times\left[c_{1}, c_{2}\right] \cap N=B_{i} \cup\left(\pi\left(\operatorname{Attach}\left(B_{i}\right)\right)\right) \times\left[c_{1}, c_{2}\right]
$$

which is a 3 -ball. We may further assume that for each $i=1, \cdots, m$, there exists a left hand sphere S_{i} of B_{i} such that for each $j=1, \cdots, n$

$$
\pi\left(S_{i}\right) \times c_{1} \cap E_{j}=\pi\left(S_{i}\right) \times c_{1} \cap \text { Annulus }\left(E_{j}\right),
$$

which consists of proper arcs on Annulus $\left(E_{j}\right)$. Let $N^{\prime}=N \cup\left(\bigcup_{i=1}^{m} \pi\left(B_{i}\right) \times\left[c_{1}, c_{2}\right]\right)$. Then there is an ambient isotopy on S^{4} which sends N to N^{\prime} on $S^{4}{ }^{i=1}$ For each $i=1, \cdots, m$, let D_{i} be a left hand disk of B_{i} whose boundary is S_{i}, and let $\hat{D}_{i}=\pi\left(D_{i}\right) \times c_{1}$. Now

The fine lines are a part of the S_{i} 's

$\boldsymbol{Z}_{j} \cup \operatorname{Attach}\left(\boldsymbol{E}_{\boldsymbol{j}}\right)$

Fig. 3.2.

Fig. 3.3.
N^{\prime} collapses to $N^{\prime} \cap p^{-1}\left(\left[-1, c_{1}\right]\right)$. Note that

$$
N^{\prime} \cap p^{-1}\left(\left[-1, c_{1}\right]\right)=\left(N \cap p^{-1}\left(\left[-1, c_{1}\right]\right)\right) \cup\left(\bigcup_{i=1}^{m} \pi\left(B_{i}\right) \times c_{1}\right)
$$

Since B_{i} collapses to the union $D_{i} \cup$ Attach $\left(B_{i}\right), N^{\prime} \cap p^{-1}\left(\left[-1, c_{1}\right]\right)$ collapses to the union $\left(N \cap p^{-1}\left(\left[-1, c_{1}\right]\right)\right) \cup\left(\bigcup_{i=1}^{m} \hat{D}_{i}\right)$. We collapse as follows each outside handle E_{j} of index 1 to a set Z_{j} (see Fig. 3.2). Suppose that $\left(\bigcup_{i=1}^{m} \hat{D}_{i}\right) \cap$ Annulus (E_{j}) consists of proper $\operatorname{arcs} \alpha_{j}(1), \cdots, \alpha_{j}\left(t_{j}\right)$ on Annulus (E_{j}). Let A_{j} be a left hand disk of E_{j} which is an unknotted proper arc in E_{j}. Then there are 2-disks $F_{j}(1), \cdots, F_{j}\left(t_{j}\right)$ in E_{j} such that for each $k, h=1, \cdots, t_{j}$,
(1) the 2 -disk $F_{j}(k)$ contains the $\operatorname{arcs} A_{j}$ and $\alpha_{j}(k)$,
(2) $F_{j}(k) \cap \operatorname{Int} E_{j}=A_{j} \cup \operatorname{Int} F_{j}(k), \quad$ and
(3) $F_{j}(k) \cap F_{j}(h)=A_{j}$.

Let $Z_{j}=\bigcup_{k=1}^{t j} F_{j}(k)$. Then E_{j} collapses to the union $Z_{j} \cup \operatorname{Attach}\left(E_{j}\right)$. Let $K=\left(\bigcup_{i=1}^{m} \hat{D}_{i}\right) \cup$ $\left(\bigcup_{j=1}^{m} Z_{j}\right), \quad W=\overline{N \cap} \cap \overline{p^{-1}\left(\left[-1, c_{1}\right)\right)}$, and $\dot{K}=K \cap W$. Let \mathscr{V} be a point in S^{4} with $-1<$ $p(\mathscr{V})<c_{1}$. Then $\mathscr{V} * \dot{K} \subset S^{4}$. Let $X=K \cup(\mathscr{V} * \dot{K})$. Since W is a 4-ball and $W \cap$
$p^{-1}\left(c_{1}\right)$ is a 3-ball, there is an ambient isotopy on S^{4} which ships N^{\prime} to a regular neighborhood of X in S^{4}. Now $K \subset S^{3} \times c_{1}$ implies $\pi(K) \subset S^{3}$. This defines an element in \mathscr{F} to be $\Phi([N])$.

§4. Definition of Ψ.

In this section, we show a construction method of a closed 3-manifold in S^{4} starting from an element $(f: K)$ of \mathscr{F}. Specially if $\mathscr{C}(K)$ is aspherical, then the constructed closed 3 -manifold is a homology 3 -sphere. We use the idea of neutralizer in [Cr].

A handle body in S^{3} is said to be unknotted if the closure of its complementary domain is also a handle body.

Let $(f: K)$ be an element of \mathscr{F}. Let C be a cell subdivision of $\mathscr{C}(K)$ with only one 0 -cell. Let $\widetilde{S}_{1}, \cdots, \widetilde{S}_{m}$ be the 1-cells in C, and $\widetilde{D}_{1}, \cdots, \widetilde{D}_{n}$ the 2 -cells in C. For each $i=1, \cdots, m, j=1, \cdots, n$, let $S_{i}=f\left(\widetilde{S}_{i} \cap K\right)$ and $D_{j}=f\left(\widetilde{D}_{j} \cap K\right)$. Then $f(K)-\bigcup_{i=1}^{m} S_{i}$ consists of n connected components, and each component is contained in one of the D_{j} 's. We will define the element $\Psi(f: K)$ in \mathscr{S} in three steps.

Step 1. In this step, we will construct an unknotted handle body W in S^{3} such that (1) $f(K) \subset W$, (2) $f(K) \cap \partial W=f(\dot{K})$, and (3) there is a complete system of meridinal disks $A_{1}, \cdots, \mathrm{~A}_{g}$ of W which miss the S_{i} 's, where "complete"' means that $W-\bigcup_{k=1}^{g} N\left(A_{k} ; W\right)$ is a 3 -ball.

For each $i=1, \cdots, m, j=1, \cdots, n$, let s_{i} be an interior point of S_{i}, and d_{j} be an interior point of D_{j}. Let $Q=\left\{(i, j) \mid S_{i} \subset D_{j}\right\}$. Let $\{J(i, j) \mid(i, j) \in Q\}$ be the set of simple arcs in $f(K)$ such that (1) $J(i, j) \subset D_{j}$, (2) $J(i, j) \cap J\left(i^{\prime}, j\right)=d_{j}\left(i \neq i^{\prime}\right)$, and (3) $J(i, j) \cap \partial D_{j}=s_{i}$ (see Fig. 4.1). Let $J=\cup\{J(i, j) \mid(i, j) \in Q\} \cup\left(\bigcup_{k=1}^{m} s_{k}\right) \cup\left(\bigcup_{h=1}^{n} d_{h}\right)$. Then K

Fig. 4.1.

Fig. 4.2.
collapses to J. Since J is a 1-dimensional polyhedron in S^{3}, there exists a 1-dimensional polyhedron P in S^{3} such that (1) $J \subset P$ and (2) a regular neighborhood W^{*} of J in S^{3} is an unknotted handle body. We may assume that W^{*} does not contain $f(\dot{K})$. Then there are proper disks $A_{1}^{*}, \cdots, A_{g}^{*}$ in W^{*} such that (1) $W^{*}-\bigcup_{k=1}^{g} N\left(A_{k}^{*} ; W^{*}\right)$ is a 3-ball, (2) for each $h=1, \cdots, g, A_{h}^{*} \cap J$ consists of at most one point at which J pierces A_{h}^{*}, and (3) A_{h}^{*} misses $\bigcup_{k=1}^{m} S_{k}$. Now expand W^{*} along the D_{j} 's to get a desired handle body W. The proper disks $A_{1}^{*}, \cdots, A_{g}^{*}$ assure the existence of a complete system of meridinal disks A_{1}, \cdots, A_{g} of W.

Step 2. In this step, we construct the first layer of the stratum $\Psi(f: K)$ (see Fig. 4.2, 4.3).

For each $h=1, \cdots, g$, let H_{h} be a regular neighborhood of A_{h} in W which misses $\bigcup_{k=1}^{m} S(K)$. For each $i=1, \cdots, m$, let E_{j} be regular neighborhood of $S(i)$ in W which misses $\bigcup_{h=1}^{g} H_{h}$. For each $\frac{j=1, \cdots, n}{m}$, let $F_{j}=\overline{D-\bigcup_{i=1}^{n} E_{i}}$. We may assume that each F_{j} is a proper disk in $W-\bigcup_{i=1}^{m} E_{i}$ (see Fig. 4.2). ${ }_{m}^{\text {Let }} \Delta(1), \cdots, \Delta(n)$ be mutually disjoint disk in S^{3} such that (1) each disk misses $\left(\bigcup_{i=1}^{m} E_{i}\right) \cup\left(\bigcup_{n=1}^{n} H_{h}\right) \cup$ Int W, and (2) for each $t=1, \cdots, n, \Delta(t) \cap \partial W$ is an arc in $\partial \Delta(t)$ and $\Delta(t) \cap\left(\bigcup_{j=1}^{n} \partial F_{j}\right)=$ $\Delta(t) \cap \partial F_{t}=$ a crossing point (see Fig. 4.3). For each $t=1, \cdots, n$, let $\alpha(t)$ be a regular neighborhood of $\overline{(\partial \Delta(t)-W)}$ in $\overline{S^{3}-W}$ which misses $\left(\bigcup_{i=1}^{m} E_{i}\right) \cup\left(\bigcup_{h=1}^{g} H_{h}\right)$. These $\alpha(t)$'s correspond to neutralizers in [Cr]. Let

$$
\begin{aligned}
& V_{0}^{*}=\overline{S^{3}-W} \cup\left(\bigcup_{h=1}^{g} H_{h}\right), \quad \text { and } \\
& V_{1}^{*}=\overline{S^{3}-\left(W \cup \bigcup_{t=1}^{n} \alpha(t)\right)} \cup\left(\bigcup_{i=1}^{m} E_{i}\right) .
\end{aligned}
$$

Let $L_{1}=V_{0}^{*} \times[-(1 / 2),-(1 / 4)] \cup V_{1}^{*} \times[-(1 / 4), 0] . \quad$ Then L_{1} is a layer which possesses
($g+n$) inside critical handles and m outside critical handles of index 1 on the level -(1/4).

Step 3. In this step, we construct the second layer.
Let $W^{\prime}=\overline{W-\bigcup_{i=1}^{m} E_{i}}$ and $W^{\prime \prime}=S^{3}-\operatorname{Int} V_{1}^{*}$. Then W^{\prime} and $W^{\prime \prime}$ are unknotted handle bodies in $S^{i=1}$. Note that $W^{\prime \prime}=W^{\prime} \cup\left(\bigcup_{t=1}^{n} \alpha(t)\right)$. For each $j=1, \cdots, n$, let U_{j} be a regular neighborhood of F_{j} in $W^{\prime \prime}$. Thanks to the neutralizers, there is an ambient isotopy on S^{3} which sends $W^{\prime \prime}-\bigcup_{j=1}^{n} U_{j}$ to W^{\prime}. Hence there exist mutually disjoint 3-balls G_{1}, \cdots, G_{g+m} in $W^{\prime \prime}$ such that
(1) each 3-ball meets $\partial W^{\prime \prime}$ by an annulus,
(2) each 3-ball misses $\bigcup_{j=1}^{n} U_{j}$, and
(3) $\overline{V_{1}^{*}-\bigcup_{r=1}^{g+m} G_{r}} \cup\left(\bigcup_{j=1}^{n} U_{j}\right)$ is a 3-ball.

Let $V_{2}^{*}=\overline{V_{1}^{*}-\bigcup_{r=1}^{+m} G_{r}} \cup\left(\bigcup_{j=1}^{n} U_{j}\right)$. Let $L_{2}=V_{1}^{*} \times[0,1 / 4] \cup V_{2}^{*} \times[1 / 4,1 / 2]$. Then L_{2} is a layer which possesses $(g+m)$ inside critical handles and n outside critical handles of index 2 on the level $1 / 4$. We define $\Psi(f: K)$ to be the equivalence class of the stratum $L_{1} \cup L_{2}$. The definition of $\Psi(f: K)$ is well-defined in the following sense: Let Y be the cone on $f(\dot{K}) \times(-(1 / 4))$ with a vertex on $S^{3} \times(-(1 / 2))$. Then the stratum $L_{1} \cup L_{2}$ has a spine which is isotopic to $Y \cup(f(\dot{K}) \times(-(1 / 4)))$ by an ambient isotopy on S^{4}.

5. Corollaries.

Corollary 1. Suppose that $(f: K)$ is an element of \mathscr{F} with $\mathscr{C}(K)$ being aspherical. Let N be a stratum in the class $\Psi(f: K)$. Then ∂N is a homology 3-sphere.

Proof. Since N is of the same homotopy type to $\mathscr{C}(K), N$ is aspherical. Hence S^{4}-Int N is also aspherical by Alexander duality theorem. Therefore, ∂N is a homology 3 -sphere by the Mayer-Vietoris sequence of N and $S^{4}-\operatorname{Int} N$.

Corollary 2. Suppose that N is an admissible stratum whose boundary is a homology 3-sphere. Then the number of outside critical handles of index 1 is equal to the number of outside critical handles of index 2. The same statement holds for inside handles.

Proof. Let $\Phi([N])=(f: K)$. By the definition of Φ, there exists a cell subdivision of $\mathscr{E}(K)$ whose 1-cells correspond to outside critical handles of index 1 and whose 2 -cells correspond to outside critical handles of index 2 . Since N is homo-
topy equivalent to $\mathscr{C}(K)$, then $\mathscr{C}(K)$ is aspherical. Since $\mathscr{C}(K)$ possesses only one 0 -cell, the first statement holds. For the second statement, let $N^{*}=\overline{p^{-1} p(N)-N}$. Then there is an ambient isotopy on S^{4} which sends $S^{4}-\operatorname{Int} N$ to N^{*}. Each inside critical handle of N is now an outside critical handle of the stratum N^{*}. Since N^{*} is admissible, the first statement implies the second statement. \square

Corollary 3. If N is a connected stratum without outside critical handles, then N is a 4-ball. The same statement holds for inside.

Proof. Since each layer does not have any outside critical handles, each layer collapses from the top to the bottom. Hence N collapses from the top to the bottom. Since N is connected, the bottom must be a 3 -ball. Hence N is collapsible. Hence the first statement holds. Considering $\overline{p^{-1} p(N)-N}$, the first statement implies the second statement.

For each element $X \in \mathscr{C}$, a cell subdivision C of X is said to be regular, provided that (1) C possesses only one 0 -cell $P(X)$, (2) each 1 -cell is contained in at most three 2 -cells, (3) each 2 -cell contains at most three 1 -cells and (4) each 2 -cell D possesses a characteristic $\operatorname{map} \phi:\left(I^{2}, \partial I^{2}\right) \rightarrow(D, \dot{D})$ with $\left\{x \in \partial I^{2} \mid \phi^{-1} \phi(x) \neq\{x\}\right\}=$ $\phi^{-1}(P(X))$.

Let $(f: K)$ and ($f^{\prime}: K^{\prime}$) be elements in \mathscr{F}. We say that ($f: K$) and ($f^{\prime}: K^{\prime}$) are eqvivalent if $\Psi(f: K)=\Psi\left(f^{\prime}: K^{\prime}\right)$. Then by an argument similar to the one in Lemma 2.2 of [Wd], we can show that each element ($f: K$) in \mathscr{F} is equivalent to an element ($f^{\prime}: K^{\prime}$) such that $\mathscr{C}\left(K^{\prime}\right)$ possesses a regular cell subdivision. For each regular cell subdivision C, we define as follows two kinds of complexity of C :

Complexity $(1: C)=$ the number of 1 -cells contained in three 2 -cells
Complexity $(2: C)=$ the number of 2 -cells containing three 1 -cells.
Corollary 4. Let $(f: K)$ be an element in \mathscr{F} with $\mathscr{C}(K)$ being aspherical. Suppose that $\mathscr{E}(K)$ possesses a regular cell subdivision C with Complexity $(1 ; C)=0$ or Complexity $(2 ; C)=0$. Then $\Psi(f: K)$ is the class containing a 4-ball.

Proof. Suppose that K_{1}, \cdots, K_{n} are the connected components of K. For each $j=1, \cdots, n$, let $f_{j}=f \mid K_{j}$ and $N_{j} \in \Psi\left(f_{j}: K_{j}\right)$. Then $\Psi(f: K)$ is the class of a stratum homeomorphic to the boundary connected sum $N_{1} \# N_{2} \# \cdots \# N_{n}$. Hence we may assume that K is connected.

Note that $H_{i}(K, \dot{K})=0$ for all $k=0,1,2, \cdots$.
Suppose that Complexity $(1 ; C)=0$. Then K is a surface. Since $\mathscr{C}(K)$ is aspherical, \dot{K} is connected by the Mayer-Vietoris sequence. Since each component of ∂K meets $\dot{K}, \partial K$ is connected. Furthermore, $H_{1}(K, \dot{K})=0$ implies that K is of
genus 0 . Hence K is a disk or a Möbius band. Now asphericity of $\mathscr{C}(K)$ implies that $\partial K \neq \dot{K}$. Hence K must be a disk. Thus $\partial K \neq \dot{K}$ and the connectness of \dot{K} imply that $\mathscr{C}(K)$ is a disk. Since a stratum in $\Psi(f: K)$ has a spine homeomorphic to $\mathscr{C}(K), \Psi(f: K)$ is the class containing a 4 -ball.

Suppose that Complexity $(2 ; C)=0$. Let C^{\prime} be a subcomplex of C such that C cellwisely collapses to C^{\prime} and that C^{\prime} possesses no free face. We claim that C^{\prime} possesses no 2 -cell. Suppose that C^{\prime} possesses a 2 -cell. Then C^{\prime} satisfies the following property (*):
(*) there is only one 0 -cell, there is at least one 2 -cell, there is no free face, and each 2 -cell possesses a characteristic map whose preimage of the 0 -cell consists of two points.

Let D be a 2 -cell in C^{\prime} containing two 1-cells S_{1} and S_{2}. Let $C^{\prime \prime}$ be the cell complex obtained from $C^{\prime}-D$ by identifying the two 1-cells S_{1} and S_{2}. Then C^{\prime} and $C^{\prime \prime}$ are of the same homotopy type. Hence $C^{\prime \prime}$ is aspherical. Thus $C^{\prime \prime}$ satisfies the property (*). If $C^{\prime \prime}$ contains a 2 -cell containing two 1 -cells, we can repeat the above process to get an aspherical cell complex which satisfies the property (*) and possesses fewer 2 -cells. Thus we get an aspherical cell complex C^{*} which satisfies the property (*) and contains no 2 -cell containing two 1 -cells. Since C^{*} is aspherical, C^{*} contains a 1 -cell S. By the property (*), each 2 -cell contains at most one 1-cell. Hence each 2 -cell containing S is a 2 -sphere or a projective plane. This is impossible since C^{*} is aspherical. Therefore, C^{\prime} possesses no 2 -cell. Since C^{\prime} is aspherical, C^{\prime} possesses no 1 -cell, either. Hence C^{\prime} consists of only the 0 -cell. This means that C is collapsible. Therefore, $\Psi(f: K)$ is the class containing a 4 -ball. \square

§ 6. Two examples.

In [Mz], Mazur constructed a 4 -manifold M such that M collapses to the Dance hat $\mathscr{D}, \partial M$ is not S^{3}, and the double of M is S^{4}. In our word, he constructed a stratum M such that M collapses to \mathscr{D} and that M is not a 4 -ball. Since $\mathscr{D} \in \mathscr{O}$, we can construct Mazur stratum from embeddings of $\mathscr{K}(\mathscr{D})$ to S^{3}. In example 1, we give a Mazur stratum in \mathscr{N} from the embedding of $\mathscr{K}(\mathscr{D})$ to S^{3} as in Fig. 6.1. By Corollary 2 and 3, any contractible stratum with at most one critical handle of index 1 is a 4 -ball. In example 2 , we give a contractible stratum N in \mathscr{N} such that N possesses only two critical handles of index 1 and that N is not a 4-ball.

Example 1. The Dance hat possesses a cell subdivision consisting of one 0 -cell, one 1 -cell \widetilde{S}, and one 2 -cell \widetilde{D}. Let f be the embedding of $\mathscr{K}(\mathscr{D})$ to S^{3} as in Fig. 6.1. Let $S=f(\widetilde{S} \cap \mathscr{K}(\mathscr{D}))$ and $D=f(\hat{D} \cap \mathscr{K}(\mathscr{D}))$. Let W be an unknotted handle body of genus 2 in S^{3} as in Fig. 6.2. Let H_{1} and H_{2} be disjoint 3-balls in W such that $\overline{W-\left(H_{1} \cup H_{2}\right)}$ is a 3-ball and that each 3-ball misses the proper arc S. Let H_{3} be a regular neighborhood of S in W such that $D \cap \overline{\left(W-H_{3}\right)}$ is a proper 2-disk and that H_{3} misses H_{1} and H_{2}. Let $V_{0}=\left(S^{3}-\right.$ Int $\left.W\right) \cup H_{1} \cup H_{2}$ and $V_{1}=\left(S^{3}-\operatorname{Int} W\right) \cup H_{3} . \quad$ Let $L_{1}=V_{0} \times[-(1 / 2),-(1 / 4)] \cup V_{1} \times[-(1 / 4), 0]$. Then L_{1} is a layer which possesses an outside critical handle and two inside critical handles of index 1 on the level -(1/4). Let a, b, c, x, y, z be oriented simple closed curves on ∂V_{1} as in Fig. 6.3 which represent a generated system of the fundamental group of ∂V_{1}. Let e_{1} and e_{2} be disjoint simple closed curves on ∂V_{1}, missing $\partial\left(D \cap V_{1}\right)$, represented by

$$
\begin{aligned}
& r_{1}=b y b^{-1} x^{-1} a^{-1} x b y^{-1} b^{-1} z^{-1} c^{-1} c^{-1} y^{-1} c z b y b^{-1} x^{-1} a x b y^{-1} b^{-1} z^{-1} c^{-1} y c z, \\
& r_{2}=b y b^{-1} x^{-1} a b y b^{-1} a^{-1} z^{-1} c^{-1} y^{-1} c z \quad \text { (see Fig. 6.4). }
\end{aligned}
$$

Fig. 6.1.

Fig. 6.2.

Fig. 6.3.

Fig. 6.4.

Then e_{1} and e_{2} are homotopic to zero in V_{1}. It follows from Dehn's lemma and the irreducibility of the handle body V_{1} that the curves e_{1} and e_{2} bound disjoint disks B_{1} and B_{2} in V_{1}. Let J_{1} be a regular neighborhood of the union $B_{1} \cup B_{2}$ in V_{1}, missing the disk D-Int V_{1}. Let J_{2} be a regular neighborhood of the disk D-Int V_{1} in ($S^{3}-$ Int V_{1}), missing J_{1}. Let $V_{2}=\overline{\left(V_{1}-J_{1}\right)} \cup J_{2}$. Then V_{2} is a 3-ball. Let $L_{2}=V_{1} \times[0,1 / 4] \cup V_{2} \times[1 / 4,1 / 2]$. Then $L_{1} \cup L_{2}$ is a stratum in \mathscr{N} which collapses to the Dance hat. Since $\partial\left(D-\right.$ Int $\left.V_{1}\right)$ is represented by

$$
r_{3}=b y b^{-1} x^{-1} a^{-1} x b y^{-1} b^{-1} c^{-1} y^{-1} c z b y b^{-1} x^{-1} a x b y^{-1} b^{-1} z^{-1} c^{-1} y b^{-1} a^{-1}
$$

$\pi_{1}\left(\partial\left(L_{1} \cup L_{2}\right)\right)$ has the following group presentation G.

$$
\begin{aligned}
G & =\left\{a, b, c, x, y, z: b, x, z, r_{1}, r_{2}, r_{3}\right\} \\
& =\left\{a, c, y: r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}\right\}, \quad \text { where } r_{1}^{\prime}=y a^{-1} y^{-1} c^{-1} y^{-1} c y a y^{-1} c^{-1} y a^{-1}, \\
& r_{2}^{\prime}=y a^{-1} y^{-1} c^{-1} y^{-1} c y a y^{-1} c^{-1} y c, \quad r_{3}^{\prime}=y a y a^{-1} c^{-1} y^{-1} c \\
& =\left\{a, c, y: r_{1}^{\prime \prime}, r_{2}^{\prime \prime}, r_{3}^{\prime}\right\}, \quad \text { where } \quad r_{1}^{\prime \prime}=y a^{-1} y^{-1} a y^{-1} y^{-1} c^{-1} y a^{-1}, \\
& r_{2}^{\prime \prime}=y a^{-1} y^{-1} c^{-1} a y^{-1} y^{-1} c^{-1} y^{-1} c \\
& =\left\{a, c, y: y a^{-1} y^{-1} a y^{-1} y^{-1} c^{-1} y a^{-1}, y a^{-1} y^{-1} c^{-1} a y^{-1} a y a^{-1}, r_{3}^{\prime}\right\} \\
& =\left\{a, y: r_{4}, r_{5}\right\}, \quad \text { where } r_{4}=y a^{-1} y a^{-1} y a y^{-1} a y^{-1} a y^{-1} a y a^{-1}, \\
& r_{5}=a y a^{-1} y y a^{-1} y a y^{-1} a y^{-1} a^{-1} y a^{-1} y^{-1} a y^{-1} .
\end{aligned}
$$

Replacing $a y^{-1}$ by v, the above group presentation becomes:

Fig. 6.5.

Fig. 6.6.

$$
\begin{aligned}
& \left(v, y: v^{-1} v^{-1} y v v v v y v^{-1}, v y v^{-1} y v^{-1} y v v y^{-1} v^{-1} v^{-1} y^{-1} v\right) \\
& =\left(v, y: v^{-1} v^{-1} y v v v v y v^{-1}, v y v^{-1} y v^{-1} y v v y^{-1} v\right)
\end{aligned}
$$

Replacing $\boldsymbol{y} v^{-1}$ by w, the above group presention becomes:

$$
\left(v, w: v^{-1} v^{-1} w v v v v v w, v w w w w v v w^{-1} v\right)=\left(v, w: v^{-2} w v^{5} w, w^{5} v^{7}\right)
$$

Let S_{7} be the symmetric group of order 7. Let φ be the homomorphism of G to S_{7} defined by $\varphi(v)=(1526374)$ and $\varphi(w)=(34672)$. Then $\varphi(G)$ is a non-trivial subgroup of S_{7}. Hence G is not a trivial group. Therefore, the stratum $L_{1} \cup L_{2}$ is not a 4-ball.

Example 2. Let V_{1} be an unknotted handle body in S^{3} with genus 2. Let a, b, x, y be oriented simple closed curves on ∂V_{1} as in Fig. 6.5. Let D_{1} be a proper disk in V_{1} whose boundary is homotopic to b on ∂V_{1}. Let D_{2} be a proper disk in $\overline{S^{3}-V_{1}}$ whose boundary is homotopic to x on ∂V_{1}. Let B_{1} be a regular neighborhood of D_{1} in V_{1}, and B_{2} a regular neighborhood of D_{2} in $\overline{S^{3}-V_{1}}$ with $B_{1} \cap B_{2}=\varnothing$. Let $V_{0}=\overline{V_{1}-B_{1}} \cup B_{2}$ and $L(1)=V_{0} \times[-(1 / 2),-(1 / 4)] \cup V_{1} \times[-(1 / 4), 0]$. Then $L(1)$ is a layer. Let $e(1)$ and $e(2)$ be simple closed curves on ∂V_{1}, represented by

$$
\begin{aligned}
& r(1)=y a^{-1} y a^{-1} b y^{-1} b^{-1} a y^{-1} a y y b^{-1} a y^{-1} a y^{-1} a^{-1} \\
& r(2)=y a^{-1} y a^{-1} b y^{-1} b^{-1} a y^{-1} a y^{-1} a^{-1} y a^{-1} y x^{-1} a a \quad \text { (see Fig. 6.6). }
\end{aligned}
$$

Since $e(1)$ is homotopic to zero in V_{1}, then $e(1)$ bounds a proper disk E_{1} in V_{1}. Since $e(2)$ is homotopic to zero in $\overline{S^{3}-V_{1}}$, then $e(2)$ bounds a proper disk E_{2} in $\overline{S^{3}-V_{1}}$. Let J_{1} be a regular neighborhood of E_{1} in V_{1}, and J_{2} a regular neighborhood of E_{2} in $\overline{S^{3}-V_{1}}$ with $J_{1} \cap J_{2}=\varnothing$. Let $V_{2}=\overline{V_{1}-E_{1}} \cup E_{2}$. Then V_{2} is a 3-ball. Let $L(2)=V_{1} \times[0,1 / 4] \cup V_{2} \times[1 / 4,1 / 2]$. Then $L(1) \cup L(2)$ is a stratum in \mathscr{N} which possesses one outside critical handle of index 1 , and one inside critical handle of index 1 , and whose boundary is a homology 3 -sphere. Let M be the boundary of the stratum. Then $\pi_{1}(M)$ has the following group presentation G.

$$
\begin{aligned}
G & =\{a, b, x, y: b, x, r(1), r(2)\} \\
& =\left\{a, y: y a^{-1} y a^{-1} y^{-1} a y^{-1} a y y a y^{-1} a y^{-1} a^{-1}, y a^{-1} y a^{-1} y^{-1} a y^{-1} a y^{-1} a^{-1} y a^{-1} y a a\right\}
\end{aligned}
$$

Replacing $y a^{-1}$ by v, the above group presentation becomes:

$$
\left(a, v: v v a^{-1} v^{-1} v^{-1} a v a v a v^{-1} v^{-1} a^{-1}, v v a^{-1} v^{-1} v^{-1} v^{-1} a^{-1} v v a a a\right)
$$

Let S_{5} be the symmetric group of order 5. Let ψ be a homomorphism of G to S_{5} defined by $\psi(a)=(35241)$ and $\psi(v)=(241)$. Then $\psi(G)$ is a non-trivial subgroup of S_{5}. Hence G is not a trivial group. This means that M is not the 3 -sphere. Since the stratum is simply connected and aspherical, the stratum is contractible.

References

[Cr] R. Craggs: Stable representations for 3-and 4-manifolds, (mimeographed manuscript).
[Hd] J. F. P. Hudson: Piecewise Linear Topology (Mathematics Lecture Note Series) New York: W. A. Benjamin, Inc. 1969.
[M1] J. Milnor: Lectures on h-cobordism theory, Preliminary Informal Notes of University Courses and Seminars in Mathematics, Princeton Mathematical Notes.
[Mz] B. Mazur: A note on some contractible 4-manifolds, Ann. Math. 73, 221-228 (1969).
[Zm] E. C. Zeeman: Seminor on combinatorial topology, Publ. Hautes Sci. Paris, 1963 (mimeographed note).

Department of Information Science Tokyo Institute of Technology Ookayama, Meguro-ku
Tokyo Japan
1-8-6 Hongo, Seya-ku
Yokohama Japan

[^0]: ${ }^{1)}$ The partial results in this article are contained in the second author's Master thesis written at University of Tokyo under the direction of Professor I. Tamura.

