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Introduction.

Mazur gives a construction method of a contractible 4-manifold which collapses
to the Dance hat (hence the double of the 4-manifold is the 4-sphere), and whose
boundary is not the 3-sphere [Mz]. In this paper, we give a construction method
of a homology 3-sphere in $S^{4}$ corresponding to each embedding of a polyhedron into
the 3-sphere. More precisely, let $X$ be a polyhedron which possesses a cell sub-
division with only one O-cell $P$. Let $K=\overline{X-N(P:X}$). Let $f:K\rightarrow S^{s}$ be an em-
bedding. Then we can associate a 4-manifold in $S^{4}$ which has a spine $X$. Hence
we can get a homology 3-sphere in $S^{4}$ if $X$ is aspherical, and a contractible 4-
manifold in $S^{4}$ if $X$ is contractible. Since the Dance hat is such a polyhedron,
we can construct a Mazur’s example (see Example 1). Our construction method
stands on the h-cobordism theory [M1]. We use a special Morse function to
respect that the object which we deal with lies in $S^{4}$ .

\S 1. Preliminaries.

We work in the piecewise linear category.
Maps are all piecewise linear maps. The interior, closure, and boundary of

$(\cdots)$ are denoted by Int$(\cdots),$ $(\cdots)-$ , and $\partial(\cdots)$ respectively. The n-dimensional
sphere is denoted by $S^{n}$ . For intervals, we use the common notations $[a, b],$ $(a, b$],
$[a, b)$ , and $(a, b)$ . The unit interval will be denoted by $L$

For two simplical $\ovalbox{\tt\small REJECT} mplexesK$ and $L$ , we denote by $K*L$ the abstract join
of $K$ and $L$ (for the definition of “join”, see [Zm] or [Hd]). If they lie in $S^{n}$

and they are joinable in the space, then we assume that the join $K*L$ also lies
in $S^{n}$ .

For a regular neighborhood $N$ of a subpolyhedron $X$ in a polyhedron $P$, we
always assume that $N$ is small, compared to things previously defined. That is
to say, we construct $N$ as follows: Choose a triangulation $L$ in which all sub-

1) The partial results in this article are contained in the second author’s Master thesis
written at University of Tokyo under the direction of Professor I. Tamura.
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spaces, previously mentioned in the argument, are subcomplexes. Let $L^{\prime\prime}$ be a
second derived subdivision of $L$ , and let $N$ be the simplical $neighborh\ovalbox{\tt\small REJECT} d$ of $X$

with respect to $L^{\prime\prime}$ . We often denote $N$ by $N(X;P)$ .
We consider $S^{4}$ as $S^{s}\times[-1,1]/\{S^{3}\times(-1), S^{S}\times 1\}$ . We denote $S^{3}\times(-1)$ and

$S^{3}\times 1$ by $-\infty$ and $+\infty$ respectively when we regard $S^{3}\times(-1)$ and $S^{3}\times 1$ as the
points in $S^{4}$ . Let $p:S^{4}\rightarrow[-1,1]$ be the natural projection onto the “second” factor
[-1, 1], and $\pi;S^{4}-\{+\infty, -\infty\}\rightarrow S^{3}$ be the natural projection onto the first factor $S^{3}$ .

In this paper, a “cell” means the closure of an open cell.
We use the sign $\square $ to indicate the end of proofs.

\S 2. Main theorem.

To state main theorem, we introduce several notations and definitions.
We define a layer $(L;V, W)_{a}^{b}$ as follows. Let $V^{*}$ be a 3-manifold in $S^{3}$ and

let $A_{1}\cong P,$ $A_{2}\cong I^{3},$
$\cdots,$

$A_{m}\cong I^{3},$ $B_{1}\cong I^{s},$
$\cdots,$

$B_{n}\cong I^{3}$ be mutually disjoint 3-balls in
$S^{3}$ such that for each $i=1,$ $\cdots,$ $m,$ $j=1,$ $\cdots,$ $n$

(1) $A_{i}\subset V^{*}$ and $B_{j}\subset(\overline{S^{3}-V^{*}})$

(2) $A_{i}\cap\partial V^{*}\cong(\partial I^{\alpha(i1})\times I^{3-a(i)}$ , $\alpha(i)=0,1,2,3$ , and
(3) $B_{j}\cap\partial V^{*}\cong(\partial I^{\beta^{(j)}})\chi I^{3-\beta^{(j1}}$ , $\beta(j)=0,1,2,3$ .

Let $W^{*}=(V^{*}-\bigcup_{i=1}^{m}A_{i})\cup(\bigcup_{\dot{g}=1}^{n}B_{j})$ . For integers $-1<a<c<b<1$ , let $ L^{*}=V^{*}\times$

$[a, c]\cup W^{*}\times[c, b]\subset S^{3}\times[a, b]\subset S^{4}$ . Let $(L;V, W)$ be a triad with $L\subset S^{4}$ , $V=$

$L\cap P^{-1}(a)$ , and $W=L\cap p^{-1}(b)$ . If there is a homeomorphism $\varphi:S^{4}\rightarrow S^{4}$ such that
(1) $ p=p\circ\varphi$ , and (2) $\varphi(L^{*})=L$ , then we call $(L;V, W)_{\alpha}^{b}$ a layer. Simply $(L;V, W)_{a}^{b}$

will be denoted by $L$ . For each $i=1,$ $\cdots,$ $m,$ $\varphi(A_{i})$ is called an inside critical
handle of index a(i), and $\varphi(B_{j})$ is called an outside critical handle of index $\beta(j)$

for each $j=1,$ $\cdots,$ $n$ . The number $c$ is called the critical level (of the layer).
Suppose that $(L_{1};V_{0}, V_{1})_{a(0}^{a(1}$ }, $(L_{2};v_{1}, v_{2})_{at1)}^{a(2)},$

$\cdots,$
$(L_{k};V_{k-1}, V_{k})_{a(k-1)}^{atk)}$ are layers such

that $V_{0}$ and $V_{k}$ are disjoint unions of 3-balls. Then the union $\bigcup_{i\Rightarrow 1}^{k}L_{i}$ is called a
stratum. We call $L_{\ell}$ the ith layer of the stratum.

We can show that every 4-manifold in $S^{4}$ is sent to a stratum by an ambient
isotopy on $S^{4}$ .

Let $S$ be the set of strata. Let $\Lambda^{\prime}$ be the subset of $S$ such that the boundary
of each stratum is connected, each stratum consists of four layers, and its critical
handles of index $i$ lie on the $i+1st$ layer for each $i=0,1,2,3$ .

Two strata are said to be equivalent, if there exists an ambient isotopy on $S^{4}$

which sends one to the other. For each stratum $N$, we denote by $[N]$ the equi $\cdot$
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valent class of $N$. Then there is a natural projection of $S$ onto the set of all
equivalence classes. For each subset $\mathcal{H}$ of $S$, we denote by $\mathcal{H}^{*}$ the image of
$\mathcal{H}$ under the projection.

Let $C$ be the subset of 2-dimensional polyhedra such that each element $X$

possesses a cell subdivision $C(X)$ with only one O-cell. For each $X\in C$, the

O-cell of $C(X)$ is denoted by $P(X)$ . Let $ (X)=X-N(P(X);X)$ , and let $ =$

$\{ (X)|X\in C\}$ . Let
$\ovalbox{\tt\small REJECT}^{\prime}=$ { $(f:K)|K\in\ovalbox{\tt\small REJECT},f:K\rightarrow S^{3}$ is an embedding.}

Suppose that $K= (X)$ . Then we denote $X$ by $C(K)$ . And we denote by
$\dot{K}$ the intersection $K\cap N(P(X);X)$ .

Our main theorem is the following:

Theorem. There exist two maps $\Phi;_{c}\Lambda^{\nearrow*}\rightarrow y^{\varpi}$ and $\Psi;\varpi^{\varpi}\rightarrow r^{*}$ with $\Psi\circ\Phi=1$ .

\S 3. Definition of $\Phi$ .
In this section, we define the map $\Phi:_{\circ}\parallel\sim*\rightarrow\nu^{\varpi}$.
Proposition 3.1. SuPpose $ N\in.\parallel\sim$. Then $N$ is equivalent to an element $ N^{\prime}\in\gamma\nearrow$

such that $N^{\prime}$ possesses no critical handles of index $0$ and 3, and that the first layer

and the 4th layer are connected.

Proof. Let $L_{1}=N\cap p^{-1}([a_{0}, a_{1}])$ and $L_{2}=N\cap p^{-1}([a_{1}, a_{2}])$ be the first and second
layers, and let $c_{0}$ and $c_{1}$ be the critical levels of index $0$ and 1 respectively. Let
$W=\partial N\cap P^{-1}([-1, c_{1}))$ . If $W$ is connected, then $N$ possesses no critical handles of
index $0$ and the first layer is conected. Suppose that $W$ is disconnected. Since
$\partial N$ is connected, there is a handle $H$ of index 1 which connects two connected
components of $W$. Suppose that the handle $H$ is an outside handle. Then we
may assume that $\pi(H)\times[a_{0}, c_{1}]\cap N=H\cup\pi(H\cap\partial W)\times[a_{0}, c_{1}]$ , which is a 3-ball.

Thus there is an ambient isotopy on $S^{4}$ which sends $N$ to $N\cup\pi(H)\times[a_{0}, c_{1}]$ , an
element of $\Lambda^{\prime}$. Suppose that the handle $H$ is an inside handle. Then we may
assume that $\pi(H)\times[c_{0}, c_{1}]\subset N$ and that $\pi(H)\times[c_{0}, c_{1}]\cap\partial N=H\cup\pi(H\cap\partial W)\times[c_{0},c_{1}]$ ,

which is a 3-ball. Thus there is an ambient isotopy on $S^{4}$ which sends $N$ to
$\overline{N-\tau(H)\times[c_{0},c_{1}}]$ , an element of $\prime r$. This process lessens the number of con-
nected components of $W$. Thus there exists an element $N^{\prime\prime}$ in the class $[N]$

which possesses no critical handles of index $0$ . The above argument holds for

the top layer. Hence the result follows. $\square $

Deflnition. An element $N$ in $S$ is said to be admissible if $N$ possesses no
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Fig. 3.1.

critical handles of index $0$ and 3. If an element $N$ in $\sim l^{\prime}$ is admissible, then $N$

possesses a stratum consisting of two layers such that the first layer contains cri-
tical handles of index 1 and that the second layer contains critical handles of
index 2.

Let $L$ be a layer with a critical handle $H$ of index $i$ on the critical level $c$.
Let $h:P\times I^{3-i}\rightarrow L$ be an embedding such that ${\rm Im} h=H$ and ${\rm Im} h\cap\overline{(\partial L\cap p^{-1}([-1,c)))}=$

$h(\partial\dot{\Gamma}\times P^{-i})$ . Then for any point $qe$ Int $I^{3-i}$ , we call $h(\partial I^{i}\times q)$ and $h(I^{i}\times q)$ a left
hand sphere and a left hand disk respectively. Similarly, we call $h(r\times\partial I^{3-i})$ and
$h(r\times P^{-i})$ a right hand sphere and a right hand disk for each point $ r\in$ Int $I^{:}$ . We
denote $h(\partial\dot{\Gamma}\times P^{-i})$ by Attach $(H)$ . For the case $i=1$ , we denote $h(I^{1}\times\partial F)$ by
Annulus $(H)$ (see Fig. 3.1).

Now we define the map $\Phi$ as follows: For each class of $-A^{\wedge*}$ , we specify
an admissible element Ne $A^{\prime}$ in the class. Then $N$ is a stratum consisting of
two layers such that the first layer $L_{1}$ contains critical handles of index 1 on the
level $c_{1}$ , and that the second layer $L_{2}$ contains critical handles of index 2 on the
level $c_{2}$ . Let $B_{1},$

$\cdots,$
$B_{m}$ be the outside critical handles of index 2, and $E_{1},$

$\cdots,$
$E_{n}$

the outside critical handles of index 1. We may assume that for each $i=1,$ $\cdots,$ $m$

$\pi(B_{i})\times[c_{1}, c_{a}]\cap N=B_{i}\cup(\pi(Attach(B_{i})))\times[c_{1}, c_{2}]$ ,

which is a 3-ball. We may further assume that for each $i=1,$ $\cdots,$ $m$ , there exists
a left hand sphere $S_{i}$ of $B_{i}$ such that for each $j=1,$ $\cdots,$ $n$

$\pi(S_{i})\times c_{1}\cap E_{j}=\pi(S_{i})\times c_{1}\cap Annulus(E_{j})$ ,

which consists of proper arcs on Annulus $(E_{j})$ . Let $N^{\prime}=N\cup(\cup^{n}\pi(B_{i})\times[c_{1}, c_{2}])$ . Then
$\ell=1$

there is an ambient isotopy on $S$ which sends $N$ to $N^{\prime}$ on $S^{4}$ . For each $i=1,$ $\cdots,$ $m$ ,
let $D_{i}$ be a left hand disk of $B_{i}$ whose boundary is $S_{i}$ , and let $\hat{D}_{i}=\pi(D_{i})\times c_{1}$ . Now
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The fine lines are a part of the Si’s $Z_{j}\cup Attach(E_{j})$

Fig. 3.2.

Fig. 3.3.

$N^{\prime}$ collapses to $N\cap P^{-1}([-1, c_{1}])$ . Note that

$\mathcal{N}np^{-1}([-1, c_{1}])=(N\cap p^{-1}([-1, c_{1}]))\cup(\bigcup_{i=1}^{m}\pi(B_{i})\times c_{1})$ .
Since $B_{i}$ collapses to the union $D_{i}\cup Attach(B_{i}),$ $N^{\prime}np^{-1}([-1, c_{1}])$ collapses to the

union $(N\cap p^{-1}([-1, c_{1}]))\cup(\bigcup_{\ell=1}^{m}\hat{D}_{i})$ . We collapse as follows each outside handle $E_{j}$

of index 1 to a set $Z_{j}$ (see Fig. 3.2). Suppose that $(\bigcup_{\ell=1}^{m}\hat{D}_{i})\cap$ Annulus $(E_{j})$ consists

of proper arcs $\alpha_{j}(1),$
$\cdots,$

$\alpha_{j}(t_{\dot{f}})$ on Annulus $(E_{\dot{f}})$ . Let $A_{\check{j}}$ be a left hand disk of
$E_{j}$ which is an unknotted proper arc in $E_{j}$ . Then there are 2-disks $F_{j}(1),$ $\cdots,$

$F_{\dot{f}}(t_{\dot{f}})$

in $E_{\dot{f}}$ such that for each $k,$ $h=1,$ $\cdots,$
$t_{j}$ ,

(1) the 2-disk $F_{j}(k)$ contains the arcs $A_{j}$ and $\alpha_{j}(k)$ ,
(2) $ F_{j}(k)\cap$ Int $E_{\dot{f}}=A_{j}\cup IntF_{j}(k)$ , and
(3) $F_{j}(k)\cap F_{j}(h)=A_{j}$ .

Let $Z_{\dot{f}}=\bigcup_{k=1}^{tj}F_{j}(k)$ . Then $E_{\dot{f}}$ collapses to the union $Z_{j}\cup Attach(E_{j})$ . Let $ K=(\bigcup_{=1}^{n*}\hat{D}:)\cup$

$(\bigcup_{\dot{g}=1}^{n*}Z_{\dot{f}}),$
$W=\overline{N\cap p^{-1}([-1,c_{1}))}$, and $\dot{K}=K\cap W$. Let $\ovalbox{\tt\small REJECT}^{\prime}$ be a point in $S$ with $-1<$

$p(\ovalbox{\tt\small REJECT}^{\prime})<c_{1}$ . Then $\ovalbox{\tt\small REJECT}^{\prime}*\dot{K}\subset S$ . Let $X=K\cup(\ovalbox{\tt\small REJECT}^{\prime}*\dot{K})$ . Since $W$ is a 4-ball and $ W\cap$
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$p^{-1}(c_{1})$ is a 3-ball, there is an ambient isotopy on $S^{4}$ which ships $N^{\prime}$ to a regular
neighborhood of $X$ in $S^{4}$ . Now $K\subset S^{3}\times c_{1}$ implies $\pi(K)\subset S^{3}$ . This defines an ele-
ment in $\ovalbox{\tt\small REJECT}^{-}$ to be $\Phi([N])$ .

\S 4. Definition of $\Psi$ .
In this section, we show a construction method of a closed 3-manifold in $S^{4}$

starting from an element $(f:K)$ of $\ovalbox{\tt\small REJECT}^{-}$. Specially if $C(K)$ is aspherical, then the
constructed closed 3-manifold is a homology 3-sphere. We use the idea of neutral-
izer in [Cr].

A handle body in $S^{3}$ is said to be unknotted if the closure of its complementary
domain is also a handle body.

Let $(f:K)$ be an element of $\mathscr{F}$ Let $C$ be a cell suMivision of $C(K)$ with
only one O-cell. Let $\tilde{S}_{1},$ $\cdots,\tilde{S}_{m}$ be the l-cells in $C$, and $\tilde{D}_{1},$ $\cdots,\tilde{D}_{n}$ the 2-cells in
$C$ . For each $i=1,$ $\cdots,$ $m,$ $j=1,$ $\cdots,$ $n$ , let $S_{i}=f(\tilde{s}_{:}\cap K)$ and $D_{j}=f(\tilde{D}_{j}\cap K)$ . Then
$f(K)-\bigcup_{i=1}^{m}S_{i}$ consists of $n$ connected components, and each component is contained
in one of the $D_{j}’ s$ . We will define the element $\Psi(f:K)$ in $\mathscr{M}^{-}$ in three steps.

Step 1. In this step, we will construct an unknotted handle body $W$ in $S^{3}$

such that (1) $f(K)\subset W,$ (2) $f(K)\cap\partial W=f(\dot{K})$ , and (3) there is a complete system
of meridinal disks $A_{1},$

$\cdots,$
$A_{g}$ of $W$ which miss the $S_{1}’ s$ , where “complete” means

that $W-\bigcup_{k=1}^{g}N(A_{k};W)$ is a 3-ball.
For each $i=1,$ $\cdots,$ $m,$ $j=1,$ $\cdots,$ $n$ , let $s_{\ell}$ be an interior point of $S_{i}$ , and $d_{j}$ be

an interior point of $D_{j}$ . Let $Q=\{(i, j)|S_{i}\subset D_{j}\}$ . Let $\{J(i, j)|(i, j)\in Q\}$ be the set of
simple arcs in $f(K)$ such that (1) $J(i, j)\subset D_{j}$ , (2) $J(i, j)\cap J(i^{\prime}, j)=d_{j}(i\neq i^{\prime})$ , and (3)
$J(i, j)\cap\partial D_{j}=s_{i}$ (see Fig. 4.1). Let $J=\cup\{J(i, j)|(i, j)\in Q\}\cup(\bigcup_{k=1}^{\hslash}s_{k})\cup(\bigcup_{h=1}^{n}d_{h})$ . Then $K$

Fig. 4.1.
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Fig. 4.2.

collapses to $J$. Since $J$ is a l-dimensional polyhedron in $S^{3}$ , there exists a l-dimen-
sional polyhedron $P$ in $S^{3}$ such that (1) $J\subset P$ and (2) a regular neighborhood $W^{*}$

of $J$ in $S^{3}$ is an unknotted handle body. We may assume that $W^{*}$ does not
contain $f(\dot{K})$ . Then there are proper disks $A_{1}^{*},$

$\cdots,$
$A_{g}^{*}$ in $W^{*}$ such that (1)

$W^{*}-\bigcup_{k=1}^{g}N(A_{k}^{*}; W^{*})$ is a 3-ball, (2) for each $h=1,$ $\cdots,$ $g,$
$A_{h}^{*}\cap J$ consists of at most

one point at which $J$ pierces $A_{h}^{*}$ , and (3) $A_{h}^{*}misses\bigcup_{k=1}^{m}S_{k}$ . Now expand $W^{*}$ along

the $D_{j}’ s$ to get a desired handle body $W$. The proper disks $A_{1}^{*},$
$\cdots,$

$A_{g}^{*}$ assure
the existence of a complete system of meridinal disks $A_{1},$

$\cdots,$
$A_{g}$ of $W$.

Step 2. In this step, we construct the first layer of the stratum $\Psi(f:K)$ (see

Fig. 4.2, 4.3).

For each $h=1,$ $\cdots,$ $g$ , let $H_{h}$ be a regular $neighborh\ovalbox{\tt\small REJECT} d$ of $A_{h}$ in $W$ which

misses $\bigcup_{k=1}^{m}S(K)$ . For each $i=1,$ $\cdots,$ $m$ , let $E_{j}$ be regular neighborhood of $S(i)$ in

$W$ which misses $\bigcup_{h=1}^{g}H_{h}$ . For each $j=1,$ $\cdots,$ $n$ , let $F_{j}=D-\bigcup_{l=1}^{n}E_{i}$ . We may assume
that each $F_{j}$ is a proper disk in $W-\bigcup_{l=1}^{n}E_{i}$ (see Fig. 4.2). Let $\Delta(1),$

$\cdots,$
$\Delta(n)$ be

mutually disjoint disk in $S^{s}$ such that (1) each disk misses $(\bigcup_{\ell=1}^{m}E_{i})\cup(\bigcup_{h=1}^{g}H_{h})\cup IntW$,

and (2) for each $t=1,$ $\cdots,$ $n,$ $\Delta(t)\cap\partial W$ is an arc in $\partial\Delta(t)$ and $\Delta(t)\cap(\bigcup_{\dot{g}=1}\partial F_{j})=$

$\Delta(t)\cap\partial F_{\ell}=a$ crossing point (see Fig. 4.3). For each $t=1,$ $\cdots,$ $n$ , let $a(t)$ be a regular

neighborhood of $\overline{(\partial\Delta(t)-W)}$ in $\overline{S^{3}-W}$ which misses $(\bigcup_{i=1}^{m}E_{\ell})\cup(\bigcup_{h=1}^{g}H_{h})$ . These $\alpha(t)s$

correspond to neutralizers in [Cr]. Let

$V_{0}^{*}=\overline{S^{3}-W}\cup(\bigcup_{h=1}^{g}H_{h})$ , and

$V_{1}^{*}=S^{3}-(W\cup\bigcup_{t=1}^{*}a(t))\cup(\bigcup_{i=1}^{m}E_{i})$ .

Let $L_{1}=V_{0}^{*}\times[-(1/2), -(1/4)]\cup V_{1}^{*}\times[-(1/4), 0]$ . Then $L_{1}$ is a layer which possesses
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$(g+n)$ inside critical handles and $m$ outside critical handles of index 1 on the
level $-(1/4)$ .

Step 3. In this step, we construct the second layer.

Let $W^{\prime}=W-\cup mE_{:}$ and $W^{\prime\prime}=S^{3}$ –Int $V_{1}^{*}$ . Then $W^{\prime}$ and $W^{\prime\prime}$ are unknotted
$t=1$

handle bodies in $S^{3}$ . Note that $W^{\prime\prime}=W^{\prime}\cup(\bigcup_{\ell=1}^{n}a(t))$ . For each $j=1,$ $\cdots,$ $n$ , let $U_{j}$

be a regular $neighMrh\ovalbox{\tt\small REJECT} d$ of $F_{j}$ in $W^{\prime\prime}$ . Thanks to the neutralizers, there is an
ambient isotopy on $S^{3}$ which sends $W^{\prime\prime}-\bigcup_{f\Leftrightarrow 1}^{\hslash}U_{j}$ to $W^{\prime}$ . Hence there exist mutually
disjoint 3-balls $G_{1},$

$\cdots,$ $G_{g+m}$ in $W^{\prime\prime}$ such that

(1) each 3-ball meets $\partial W^{\prime\prime}$ by an annulus,

(2) each 3-ball misses $\bigcup_{\dot{g}=1}^{n}U_{j}$ , and

(3) $V_{1}^{*}-\bigcup_{r=1}^{g+m}G_{r}\cup(\bigcup_{j=1}U_{j})$ is a 3-ball.

Let $V_{2}^{*}=V_{1}^{*}-\bigcup_{r=1}^{g+m}G_{r}\cup(\bigcup_{\dot{g}=1}U_{j})$ . Let $L_{2}=V_{1}^{*}\times[0,1/4]\cup V_{2}^{*}\times[1/4,1/2]$ . Then $L_{2}$ is a
layer which possesses $(g+m)$ inside critical handles and $n$ outside critical handles
of index 2 on the level 1/4. We define $\Psi(f:K)$ to be the equivalence class of the
stratum $L_{1}\cup L_{2}$ . The definition of $\Psi(f:K)$ is well-defined in the following sense:
Let $Y$ be the cone on $f(\dot{K})\times(-(1/4))$ with a vertex on $S\times(-(1/2))$ . Then the
stratum $L_{1}\cup L_{2}$ has a spine which is isotopic to $Y\cup(f(\dot{K})\times(-(1/4)))$ by an ambient
isotopy on $S^{4}$ .

5. Corollaries.

Corollary 1. Supp0se that $(f:K)$ is an element of $\ovalbox{\tt\small REJECT}^{-}with$ $C(K)$ being aspher-
ical. Let $N$ be a stratum in the class $\Psi(f:K)$ . Then $\partial N$ is a homology 3-sphere.

Proof. Since $N$ is of the same homotopy type to $C(K),$ $N$ is aspherical. Hence
$S^{4}$–Int $N$ is also aspherical by Alexander duality theorem. Therefore, $\partial N$ is a
homology 3-sphere by the Mayer-Vietoris sequence of $N$ and $S^{4}$ -Int N. $\square $

Corollary 2. Supp0se that $N$ is an admissible stratum whose boundary is a homo-
logy 3-sphere. Then the number of outside critical handles of index 1 is equal to
the number of outside critical handles of index 2. The same statement holds for
inside handles.

Proof. Let $\Phi([N])=(f:K)$ . By the definition of $\Phi$ , there exists a cell subdivi-
sion of $C(K)$ whose l-cells correspond to outside critical handles of index 1 and
whose 2-cells correspond to outside critical handles of index 2. Since $N$ is homo-
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topy equivalent to $C(K)$ , then $C(K)$ is aspherical. Since $C(K)$ possesses only
one O-cell, the first statement holds. For the second statement, let $N^{*}=\overline{p^{-1}p(N)-N}$.
Then there is an ambient isotopy on $S^{4}$ which sends $S^{4}$ -Int $N$ to $N^{*}$ . Each inside
critical handle of $N$ is now an outside critical handle of the stratum $N^{*}$ . Since
$N^{*}$ is admissible, the first statement implies the second statement. $\square $

Corollary 3. If $N$ is a connected stratum without outside critical handles,
then $N$ is a 4-ball. The same statement holds for inside.

Proof. Since each layer does not have any outside critical handles, each layer
collapses from the top to the bottom. Hence $N$ collapses from the top to the
bottom. Since $N$ is connected, the bottom must be a 3-ball. Hence $N$ is collap-
sible. Hence the first statement holds. Considering $\overline{p^{-1}p(N)-N,}$ the first state-
ment implies the second statement. $\square $

For each element $X\in C$, a cell subdivision $C$ of $X$ is said to be regular,
provided that (1) $C$ possesses only one $0\cdot cellP(X)$ , (2) each l-cell is contained in
at most three 2-cells, (3) each 2-cell contains at most three l-cells and (4) each
2-cell $D$ possesses a characteristic map $\phi:(I^{2}, \partial I^{2})\rightarrow(D,\dot{D})$ with $\{xe\partial I^{2}|\phi^{-1}\phi(x)\neq\{x\}\}=$

$\phi^{-1}(P(X))$ .
Let $(f:K)$ and $(f^{\prime}:K^{\prime})$ be elements in $\ovalbox{\tt\small REJECT}^{-}$. We say that $(f:K)$ and $(f^{\prime}:K^{\prime})$

are eqvivalent if $\Psi(f:K)=\Psi(f^{\prime} : K^{\prime})$ . Then by an argument similar to the one in
Lemma 2.2 of [Wd], we can show that each element $(f:K)$ in $\ovalbox{\tt\small REJECT}^{-}$ is equivalent
to an element $(f^{\prime}:K^{\prime})$ such that $C(K^{\prime})$ possesses a regular cell subdivision. For
each regular cell subdivision $C$ , we define as follows two kinds of complexity of $C$ :

Complexity $($1: $C)=the$ number of l-cells contained in three 2-cells
Complexity $($2: $C)=the$ number of 2-cells containing three l-cells.

Corollary 4. Let $(f:K)$ be an element in $\mathcal{F}$ with $C(K)$ being aspherical. Sup-
pose that $C(K)$ p0ssesses a regular cell subdivision $C$ with Complexity $($1; $C)=0$
or Complexity $($2; $C)=0$ . Then $\Psi(f:K)$ is the class containing a 4-ball.

Proof. Suppose that $K_{1},$
$\cdots,$

$K_{n}$ are the connected components of $K$. For
each $j=1,$ $\cdots,$ $n$ , let $f_{j}=f|K_{j}$ and $N_{j}\in\Psi(f_{j}:K_{j})$ . Then $\Psi(f:K)$ is the class of a
stratum homeomorphic to the boundary connected sum $N_{1}\# N_{2}\#\cdots\# N_{n}$ . Hence
we may assume that $K$ is connected.

Note that $H_{i}(K,\dot{K})=0$ for all $k=0,1,2,$ $\cdots$ .
Suppose that Complexity $($1; $C)=0$. Then $K$ is a surface. Since $C(K)$ is

aspherical, $\dot{K}$ is connected by the Mayer-Vietoris sequence. Since each component

of $\partial K$ meets $\dot{K},$ $\partial K$ is connected. Furthermore, $H_{1}(K,\dot{K})=0$ implies that $K$ is of
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genus $0$ . Hence $K$ is a disk or a M\"obius band. Now asphericity of $C(K)$ im-
plies that $\partial K\neq\dot{K}$. Hence $K$ must be a disk. Thus $\partial K\neq\dot{K}$ and the connectness of
$\dot{K}$ imply that $C(K)$ is a disk. Since a stratum in $\Psi(f:K)$ has a spine homeomorphic
to $C(K),$ $\Psi(f:K)$ is the class containing a 4-ball.

Suppose that Complexity $($2; $C)=0$ . Let $C^{\prime}$ be a subcomplex of $C$ such that
$C$ cellwisely collapses to $C^{\prime}$ and that $C^{\prime}$ possesses no free face. We claim that $C^{\prime}$

possesses no 2-cell. Suppose that $C^{\prime}$ possesses a 2-cell. Then $C^{\prime}$ satisfies the
following property $(*)$ :

$(*)$ there is only one O-cell, there is at least one 2-cell, there is no free face,
and each 2-cell possesses a characteristic map whose preimage of the
O-cell consists of two points.

Let $D$ be a 2-cell in $C^{\prime}$ containing two l-cells $S_{1}$ and $S_{2}$ . Let $C^{\prime\prime}$ be the cell com-
plex obtained from $C^{\prime}-D$ by identifying the two l-cells $S_{1}$ and $S_{2}$ . Then $C^{\prime}$ and
$C^{\prime\prime}$ are of the same homotopy type. Hence $C^{\prime\prime}$ is aspherical. Thus $C^{\prime\prime}$ satisfies
the property $(*)$ . If $C^{\prime\prime}$ contains a 2-cell containing two l-cells, we can repeat
the above process to get an aspherical cell complex which satisfies the property
$(*)$ and possesses fewer 2-cells. Thus we get an aspherical cell complex $C^{*}$ which
satisfies the property $(*)$ and contains no 2-cell containing two l-cells. Since $C^{*}$

is aspherical, $C^{*}$ contains a l-cell $S$. By the property $(*)$ , each 2-cell contains at
most one l-cell. Hence each 2-cell containing $S$ is a 2-sphere or a projective
plane. This is impossible since $C^{*}$ is aspherical. Therefore, $C^{\prime}$ possesses no 2-cell.
Since $C^{\prime}$ is aspherical, $C^{\prime}$ possesses no l-cell, either. Hence $C^{\prime}$ consists of only
the O-cell. This means that $C$ is collapsible. Therefore, $\Psi(f:K)$ is the class
containing a 4-ball. $\square $

\S 6. Two examples.

In [Mz], Mazur constructed a 4-manifold $M$ such that $M$ collapses to the
Dance hat $\mathcal{D},$ $\partial M$ is not $S^{3}$ , and the double of $M$ is $S^{4}$ . In our word, he con-
structed a stratum $M$ such that $M$ collapses to $\mathcal{D}$ and that $M$ is not a 4-ball.
Since $\mathcal{D}\in C$ we can construct Mazur stratum from embeddings of $\ovalbox{\tt\small REJECT}^{\prime}(\mathcal{D})$ to $S^{3}$ .
In example 1, we give a Mazur stratum in $r$ from the embedding of %(D) to
$S^{3}$ as in Fig. 6.1. By Corollary 2 and 3, any contractible stratum with at most
one critical handle of index 1 is a 4-ball. In example 2, we give a contractible
stratum $N$ in $\swarrow r$ such that $N$ possesses only two critical handles of index 1 and
that $N$ is not a 4-ball.
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Example 1. The Dance hat possesses a cell subdivision consisting of one
O-cell, one l-cell $\tilde{S}$, and one 2-cell $\tilde{D}$ . Let $f$ be the embedding of $\ovalbox{\tt\small REJECT}^{\nearrow}(\mathcal{D})$ to $S^{s}$ as
in Fig. 6.1. Let $S=f(\tilde{S}\cap\ovalbox{\tt\small REJECT}^{\prime}(\mathcal{D}))$ and $D=f(\hat{D}\cap (\mathcal{D}))$ . Let $W$ be an unknotted
handle body of genus 2 in $S^{3}$ as in Fig. 6.2. Let $H_{1}$ and $H_{2}$ be disjoint 3-balls

in $W$ such that $\overline{W-(H_{1}\cup H_{2})}$ is a 3-ball and that each 3-ball misses the proper
arc $S$. Let $H_{s}$ be a regular neighborhood of $S$ in $W$ such that $D\cap\overline{(W-H_{3})}$ is a
proper 2-disk and that $H_{3}$ misses $H_{1}$ and $H_{2}$ . Let $V_{0}=$ ($S^{3}$ –Int $W$) $\cup H_{1}\cup H_{2}$ and
$V_{1}=$ ($S^{3}$ -Int $W$) $\cup H_{3}$ . Let $L_{1}=V_{0}\times[-(1/2), -(1/4)]\cup V_{1}\times[-(1/4), 0]$ . Then $L_{1}$ is

a layer which possesses an outside critical handle and two inside critical handles

of index 1 on the level $-(1/4)$ . Let $a,$ $b,$ $c,$ $x,$ $y,$ $z$ be oriented simple closed curves
on $\partial V_{1}$ as in Fig. 6.3 which represent a generated system of the fundamental
group of $\partial V_{1}$ . Let $e_{1}$ and $e_{2}$ be disjoint simple closed curves on $\partial V_{1}$ , missing
$\partial(D\cap V_{1})$ , represented by

$r_{1}=byb^{-1}x^{-1}a^{-1}xby^{-1}b^{-1}z^{-1}c^{-1}c^{-1}y^{-1}czbyb^{-1}x^{-1}axby^{-1}b^{-1}z^{-1}c^{-1}ycz$ ,
$r_{2}=byb^{-1}x^{-1}abyb^{-1}a^{-1}z^{-1}c^{-1}y^{-1}cz$ (see Fig. 6.4).

Fig. 6.1. Fig. 6.2.

Fig. 6.3.

Fig. 6.4.
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Then $e_{1}$ and $e_{2}$ are homotopic to zero in $V_{1}$ . It follows from Dehn’s lemma and
the irreducibility of the handle body $V_{1}$ that the curves $e_{1}$ and $e_{2}$ bound disjoint
disks $B_{1}$ and $B_{2}$ in $V_{1}$ . Let $J_{1}$ be a regular neighborhood of the union $B_{1}\cup B_{g}$

in $V_{1}$ , missing the disk $D$–Int $V_{1}$ . Let $J_{2}$ be a regular $neighborh\ovalbox{\tt\small REJECT} d$ of the disk
$D$-Int $V_{1}$ in ( $S^{s}$ -Int $V_{1}$ ), missing $J_{1}$ . Let $V_{2}=\overline{(V_{1}-J_{1}}$) $\cup J_{2}$ . Then $V_{2}$ is a 3-ball.
Let $L_{2}=V_{1}\times[0,1/4]\cup V_{2}\times[1/4,1/2]$ . Then $L_{1}\cup L_{2}$ is a stratum in $\Lambda^{\prime}$ which col-
lapses to the Dance hat. Since $\partial$ ($D$ -Int $V_{1}$ ) is represented by

$r_{3}=byb^{-1}x^{-1}a^{-1}xby^{-1}b^{-1}c^{-1}y^{-1}czbyb^{-1}x^{-1}axby^{-1}b^{-1}z^{-1}c^{-1}yb^{-1}a^{-1}$

$\pi_{1}(\partial(L_{1}\cup L_{2}))$ has the following group presentation $G$ .
$G=\{a, b, c, x, y, z:b, x, z, r_{1}, r_{2}, r_{3}\}$

$=\{a, c, y:r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}\}$ ,
$wherer_{1}^{\prime}=ya^{-1}y^{-1}c^{-1}y^{-1}cyay^{-1}c^{-1}ya^{-1}-1-1$

$r_{2}^{\prime}=ya^{-1}y^{-1}c^{-1}y^{-1}cyaycyc$ ,
$-1r_{s}^{\prime}=yaya^{-1}c^{-1}y^{-1}c$

$=\{a, c, y:r_{1}^{\prime\prime},r_{2}^{\prime\prime},r_{3}^{\prime}\}_{1}-1-1-1$ where $-1r_{1}^{\prime\prime}=yay^{-1}ay^{-1}y^{-1}c^{-1}ya^{-1}$ ,
$r_{2}=yaycay^{-1}y^{-1}c^{-1}yc$

$=\{a, c, y:ya^{-1}y^{-1}ay^{-1}y^{-1}c^{-1}ya^{-1}, ya^{-1}y^{-1}c^{-1}ay^{-1}aya^{-1}, r_{3}^{\prime}\}$

$=\{a, y:r_{4}, r_{\epsilon}\}-1$ $wherer_{4}=ya^{-1}ya^{-1}yay^{-1}ay^{-1}ay^{-1}aya^{-1}-l-1-1-1-1$

$r_{5}=aya$ yya yay $ay^{-1}ayaya\overline{y}1$

Replacing $ay^{-1}$ by $v$ , the above group presentation becomes:

Fig. 6.5.

Fig. 6.6.
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$(v, y:v^{-1}v^{-1}yvvvvyv^{-1},vyv^{-1}yv^{-1}yvvy^{-1}v^{-1}v^{-1}y^{-1}v)-1-1-1-1-1-1$

$=$ ( $v,$ $y:vv$ yvvvvyv . vyv $yv$ yvvy v)

Replacing $yv^{-1}$ by $w$, the above group presention becomes:

($v,$
$w:v^{-1}v^{-1}$wvvvvvw, $vwwwwvvw^{-1}v$) $=(v, w:v^{-2}wv^{5}w, wv^{7})$ .

Let $S_{7}$ be the symmetric group of order 7. Let $\varphi$ be the homomorphism of $G$ to
$S_{\tau}$ defined by $\varphi(v)=(1526374)$ and $\varphi(w)=(34672)$ . Then $\varphi(G)$ is a non-trivial sub-
group of $S_{7}$ . Hence $G$ is not a trivial group. Therefore, the stratum $L_{1}\cup L_{2}$ is
not a 4-ball.

Example 2. Let $V_{1}$ be an unknotted handle body in $S^{3}$ with genus 2. Let $a,$
$b$,

$x,$ $y$ be oriented simple closed curves on $\partial V_{1}$ as in Fig. 6.5. Let $D_{1}$ be a proper disk

in $V_{1}$ whose boundary is homotopic to $b$ on $\partial V_{1}$ . Let $D_{2}$ be a proper disk in $\overline{S^{3}-V_{1}}$

whose boundary is homotopic to $x$ on $\partial V_{1}$ . Let $B_{1}$ be a regular neighborhood of
$D_{1}$ in $V_{1}$ , and $B_{2}$ a regular $neighborh\ovalbox{\tt\small REJECT} d$ of $D_{2}$ in $\overline{S^{3}-V}_{1}$ with $ B_{1}\cap B_{2}=\emptyset$ . Let
$V_{0}=\overline{V_{1}-B_{1}}\cup B_{2}$ and $L(1)=V_{0}\times[-(1/2), -(1/4)]\cup V_{1}\times[-(1/4), 0]$ . Then $L(1)$ is a
layer. Let $e(1)$ and $e(2)$ be simple closed curves on $\partial V_{1}$ , represented by

$r(1)=ya^{-1}ya^{-1}by^{-1}b^{-1}ay^{-1}ayyb^{-1}ay^{-1}ay^{-1}a^{-1}-1-1-1-1-1$

$r(2)=yaya^{-1}by^{-1}b^{-1}ay^{-1}ay$ $a$ $yayxaa$ (see Fig. 6.6).

Since $e(1)$ is homotopic to zero in $V_{1}$ , then $e(1)$ bounds a proper disk $E_{1}$ in $V_{1}$ .
Since $e(2)$ is homotopic to zero in $\overline{S^{3}-V_{1}}$ , then $e(2)$ bounds a proper disk $E_{2}$ in
$\overline{S^{s}-V_{1}}$. Let $J_{1}$ be a regular neighborhood of $E_{1}$ in $V_{1}$ , and $J_{2}$ a regular neigh-

borhood of $E_{2}$ in $\overline{S^{3}-V_{1}}$ with $ J_{1}\cap J_{2}=\emptyset$ . Let $V_{2}=\overline{V_{1}-E_{1}}\cup E_{2}$ . Then $V_{2}$ is a
3-ball. Let $L(2)=V_{1}\times[0,1/4]\cup V_{2}\times[1/4,1/2]$ . Then $L(1)\cup L(2)$ is a stratum in $\mathscr{M}^{\prime}$

which possesses one outside critical handle of index 1, and one inside critical handle
of index 1, and whose boundary is a homology 3-sphere. Let $M$ be the boundary

of the stratum. Then $\pi_{1}(M)$ has the following group presentation $G$ .
$G=\{a, b, x, y:b,x, r(1),r(2)\}-1-1-1-1$

$=\{a, y:yayayayayya\overline{y}1a\overline{y}1a^{-1}, ya^{-1}ya^{-1}y^{-1}ay^{-1}ay^{-1}a^{-1}ya^{-\iota}yaa\}$

Replacing $ya^{-1}$ by $v$ , the above group presentation becomes:

$(a, v;vva^{-1}v^{-1}v^{-1}avavav^{-1}v^{-1}a^{-1}, vva^{-1}v^{-1}v^{-1}v^{-1}a^{-1}vvaaa)$ .
Let $S_{5}$ be the symmetric group of order 5. Let $\psi$ be a homomorphism of $G$ to
$S_{5}$ defined by $\psi(a)=(35241)$ and $\psi(v)=(241)$ . Then $\psi(G)$ is a non-trivial subgroup

of $S$ . Hence $G$ is not a trivial group. This means that $M$ is not the 3-sphere.

Since the stratum is simply connected and aspherical, the stratum is contractible.
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