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SUMMARY. We investigate the relationship between the asymptotic tail be-
havior of an infinitely divisible distribution function and the Lévy spectral
function in the Lévy canonical representation of the distribution.

1. Introduction and theorems.
Let F(x) be an infinitely divisible ditribution function and f(¢) be its charac-
teristic function with the Lévy canonical representation

a.1 log f(t)=i7t—azt2/2+s (€ —1 —ite(1+a%) )dMz) ,

121>0

where 7 is real, 6=0 and M(x) is a nondecreasing function over each of (—cc, 0)
and (0, o) vanishing at Foo with x*d M(x) < oo.

0<|zl<1
Chatterjee and Pakshirajan (1956) obtained the following result on the tail

T(x)=1—F(x)+F(—=x), x>0:
Theorem A. T(x)=O0 for all large x>0 if and only if M(x)=0 for all x+0
and a*=0,

Dealing with the one-sided tail F(—x), >0, Baxter and Shapiro (1960) proved

Theorem B. F(—zx)=0 for all large x>0 if and only if M(—z)=0 for all

£>0, ¢*=0 and Sl 2dM(x) < oo.
0+

In addition to this, Tucker (1961), Esseen (1965) and Ramachandran (1966) showed
that 1.ext. F=inf {z: F(z)>0} is given by l.ext. F=y— T e(l+a?) dM ).

On the other hand, the asymptotic conditions on tlfg tail T(x) for F(x) to be
normal or degenerate were investigated by Ruegg (1970), Horn (1972) and Steutel
(1974). Actually, Steutel gave the most general result:

Theorem C.
(i) lim—a % log T(x)=co if and only if M(x)=0 for all x+0 and o*=0.

r-—->00
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(i) lim—(xlog2)™" log T(x)=co if and only if M(z)=0 for all x=O.

Ruegg (1971) and Horn (1972) also gave some results containing the one-sided tail.

From these results, it naturally arises the problem: What explicit relationships
exist between the Lévy spectral function M(zx), ¢* and the asymptotic behavior of
- the one-sided tail F(—z) when #—cc? The purpose of this paper is to prove the
following theorems, answering this question.

Throughout this paper, we make the convention that —log 0=co, 0"'=co and
oot =0.

Theorem 1. If M(—x)=0 for all >0 and ¢*=0, then

liminf—a™ "% log F(—x)=k, limoinf 2 7 M)
=0+

T—00

and
lim inf—27"7* log F(—x)<Ah, lim inf 2™ ~°|M(z)[~* ,
+

x—+00 z—0

where 1<a<co, and k,>0 and h,>0 are constants which are independent of F(x)
and M(x). In addition to the assumptions if lim &'t |\ M(x)| exists, then
z—0+

lim inf—z7"* log F(—x)=Fk, lil";l‘l 277 M) .
z—0+

X—00

Theorem 2.

(i) lim—27" log F(—x)=(20")", provided that M(—z)=0 for all z>0.

(ii) ai;l;;—(w log )7 log F(—x)=(—1.ext. M)™, where l.ext. M is defined by
L ext. M=inf [{z <0: M(z)>0}U{0}].

Theorem 3. If M(—x)>0 for all x>0, then

(i) liminf—2z7"(log )™ log F(—)=¢, lim inf z"'[—log M(—x)]'™*, where 0<
a<1, and ¢,>0 is a constant which is independent of F(z) and M),

(ii) lim inf—(xs(log )~ log F (—x)=lim inf—(xs(w))"l log M(—%), where s(x) is
any strictlya-z:;creasing continuous function xdeﬁned over (A, =) for some A>0 with
$(c0)=o0 such that (loglog x)™ log s(x) is nomincreasing.

(iii) lim inf—(u(x))™" log F(—)=lim inf—(u(x)) " log M(—%) where u(x) is any
strictly inc;;;ing continuous functionw—c}:ﬁned over (A, =) for some A>0 with
#(c0)=o0 such that x u(x) is nonincreasing.

As a consequence of [Theorem 2, we have

Corollary. The following three conditions are equivalent:
(i) lim—z"%log F(—2)>0
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(ii) lim—(zlog x)™" log F(—x)=00
(iii) ﬂ?—m)r_o for all %>0.
Moreover the following two conditions are equivalent:
(iv) lim—z"?log F(—x)=c0
(v) a}l?(o—-w):O for all x>0 and o*=0.

Since the duals of our results are true, Theorems 2, 3 and Corollary remain
true if F(—z), M(—x) and —l.ext. M are replaced by 7T(x)=1—F(x)+F(—z),
L(x)=|M(z)]+ M(—2x) and max {—1.ext. M, r.ext. M}, respectively. (The notation
r.ext. M will be clear.) For, the equations

lim inf —v(%) log T'(2)=min {lim inf —v(x) log F(—x), lim inf—o(x) log (1—F(x))}

and the similar equations for L(x), M(~«) and |M(z) hold, where v(x)=2",
(wlogx)™, ---,etc. Hence Corollary is thought of as a generalization of Theorem
C. Theorem 2(ii) and Theorem 3 (i) are generalizations and simplifications of
Ruegg (1971, Remark 3), but Theorem 2 (ii) is reduced to the one-dimensional
case of the result due to Sato (1973, Theorem 3). However our proof is different
from his. Theorem 3 (iii) is close to Wolfe’s (1971, Theorem 4). Corollary and
the dual of it imply that the complicated conditions in all theorems of Horn
(1972) can be dropped.

Theorems 1, 2 and 3 will be proved in Section 4. Their proofs'except of
Theorem 3 (iii) are based on the theory of Fourier-Stieltjes transform analytic in
the upper half-plane which will be discussed in Section 2.

2. Fourier-Stieltjes transform analytic in the upper half-plane.

The contents of this section relates deeply to the work of Ramachandran
(1962). His results play important roles in the proofs of our theorems.

Throughout this section, we suppose that G(x) is a bounded nondecreasing
function defined on (—co, ) with G(—o0)=0 and write g(2)= ” &**dG(z) for
some complex number z, when it exists. -

We begin with the following Lemma 1. The special case with 7(x)=log«

and 7(z)=% are owing to Ramachandran (1962, Theorem 3.1 and Theorem 4.1).

Lemma 1. Let 0<p=<co and r(x) be a strictly increasing continuous function
defined over [0, o) with r(cc)=co. Then .

@.1) S exp (yr(—)dG(@) <o (O=y<p),
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[[_expr-onds@=c w>p)

if and only if

lim inf—(r(2)) ™" log G(—xz)=p .
When p=0, the first relation of is dropped out and when p=oo, the second
relation is neglected. ’

Proof. It suffices to prove the ““if’’ part. Suppose p>0. For any 0<y<p,
there exists a finite number g such that y<g<p. By the assumption, we obtain
G(—x)<exp (—qr(x)) for all £>A>0. Using integration by parts, we have that

Si exp (yr(—u))dG(u)=[G(—u) exp (yr(u))]2 + S: G(—w)d(exp (yr(%))

-+ So ) exp (y7(—u))dG(»)

for all x> A4 in which

G(—2) exp (yr(x))<exp (¥ —g)7(x))—0 as z—co

and
S: G(—wu)d(exp (yr(u)) < L exp (—qgr(u))d(exp (yr(u))

[--)
és v dp< oo .
exp (yr(4))

The above shows the first relation of to be true. In order to prove the second
0
relation of (2.1) we may suppose p < co. If it were true that S exp (g7r(—u))dG(u) < oo

for some g > p, there should exist a constant K>0such that K> Sw exp(qr(—u))dG(u)=
exp (q7(x))G(—xz) for all large 2>0. We then have

lim inf— (r(x)) ™ log G(—x)=q>p .

This contradicts the assumption.
From Lemma 1, we immediately have well known result:

2.2 g(iy) exists for y>0 if and only if lim—z"log G(—x)=co .

When g(iy) exists for 0<y<p (0<p=co), we easily see that
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@.3) #G—n)sginsy | e G—wdutGleo)

for all >0 and for all O<y<p.

In the following, we shall consider the relationship between the asymptotic
behaviors of log g(7y) when y—c and of —log G(—x) when x—co.

We start with the result of Ramachandran (1966, Theorem 1). Esseen (1965)
also has noticed it.

Lemma 2.
lim sup ¥~ log g(éy)=b
if and only if li_’rg——x“l log G(—x)=c and
—l.ext. G=b,
where 1. ext. G=inf {x: G(x) >0} and —oco<b=co.
The following lemma is essentially due to Ramachandran (1962, Theorem 7.1).

Lemma 3.
lim Sup y—l—(lla)

Y—rco

log g(iy)=b""*
if and only if lim—x " log G(—x)=c and

lim inf—2 """ log G(—x)=7.b"",

&—>0c0

where 0<a<oco, 0=b=oco and r,=a*(1+a)™* "%
Proof. It suffices to prove that for every 0<b<co,

(2.4) lim sup ¢~ log g(iy)<b'"

Yy

if and only if lim—2~"log G(—%)=cc and

=0

(2.5) lim inf—2™'"* log G(—z)=7.0"" .

X—o0

The proof of this is carried out without any change of the way of proof of
Ramachandran. ‘

If (2.4) holds, then necessarily lim—ga " log G(—&)=cc by virtue of [2.2), and
for an arbitrary ¢>0 o

gGy)sexp (B +e)y't'™M*)
for all large ¥>0. From the first inequality of [2.3), it follows that
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_..log G(——w)gyw_(bl/a+e)y1+(1/¢)

for all #>0 and for all large y>0. Take y=a*(1+a) *(b"/*+¢)"°2* for large z>0,
we then have

—2717% log G(—2) = 7,(0"/*+¢)~°
which yields (2.5).

We prove the converse. The assumption lim—g'log G(—2)=occ and the

statement ensure that g(iy) exists for any y>0. If holds, then for an
arbitrary ¢>0

G(—x)<exp (—(b+¢) ‘r.a'™?)
for all x>B=DB(s). Hence from the second inequality of we have that

g(y)=yG(co) S: exp (yx)dz+y S: exp (yx— (b+e) ‘r.2' ") dr+G(co)

=G(c0) exp (By)+Ky'*''/* exp ((b-+¢)"/°y*+ /%)
(see Kawata (1972), Lemma 11.11.1)

Scyl-Hl/a) exp ((b+€)1/ay1+(1/u))

for all large y>0, where K>0 and C>0 are constants. Therefore
log g(iy)<(L+o(L))(B+e)/*y' ' as y—co .
This yields (2.4).
Lemma 4.
lim sup ¥~ 's(log g(iy))=b
if and only if li_’rg—a;’l log G(—x)=cc and

lim inf — (@s()) ™" log G(—x)=b""

T—»00

where 0=b=oco and s(x) is any strictly increasing continuous function defined on
(—o0, 00) with —oo<s(—o0) and s(co)=co such that (loglog %)™ log s(x) is nonin-
creasing over (A, o) for some A>0.

Proof. It suffices to prove that for every 0<b< oo,

(2.6) lim sup ¥y 's(log g(iy))=b
y—oo

if and only if lim—&™" log G(—2)=cc and

2.7 lim inf— (xs(x)) ™" log G(—z)=b"" .
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To prove this, we first observe that s(x) has the property that
(2.8) s(cus(u)+d)=1+o0(1))s(u) as wu—oo

for any costant ¢>0 and d.

If holds, then again from [2.2) necessarily lim—z"log G(—)=occ, and
for an arbitrary ¢>0 '

g(ty)=exp s ((b+¢)y)
for all large y>0. Therefore, from the first inequality of [2.3), it follows that
—log G(—z)=yx—s " ((b+¢)y)

for all >0 and for all large y>0. If we take y=(b+¢) s(x) for large x>0, then
we have

—(zs(@)) ™" log G(—x) = (b+¢) " —(s(x)) ™
which yields (2.7).
Conversely, if (2.7) holds, then for an arbitrary ¢>0

G(—z)<exp (—(b+¢) xs(x))
for all x=B=B(). From [2.2), and the assumption lim—z~" log G(—%)=oo,
we have that for any C>0 and for any y>0

(i) <yG(o) S: exp (yz)dz+y S: G(— ) exp (ym)dz+G(oo) .

Fix 6>0 and set C=C(y)=s"'((b+¢c)(y+0)) for y>(b+¢) 's(B)—d. Then C>B.
Hence we obtain

9(1y) = G(0) exp (Cy)+y S: exp (yz— b+ 'as(x))dz .

Since (b+¢) 's(z)=y+d for £=C, we have
9(iy)=<G(co) exp (Cy)+07 ' y=(G(e0)+0(1)) exp (Cy) as y—oo.
Consequently
log g(iy)sys~ (B+e)(y+8)+0(1) as y—oo.
From with u=s"'((b+¢)(y+9)), it follows that
s(log gGy))=(1+o)d+e)(y+0) as y—oo.
This yields
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3. Further lemmas.

In order to prove our theorems, we need more lemmas.

Let F(x) be an infinitely divisible distribution function whose characteristic
function f(#) has the representation [I.I}. The following lemma is an immediate
consequence of Lemma 1, the theorem due to Marcinkiewicz (for instance see
Lukacs (1970), Theorem 11.11.1 or Kawata (1972), Theorem 11.10.1) and the result
of Esseen (1965, [Theorem 2).

Lemma 5.

lim inf—2™" log F(—x)=lim inf— 2" log M(—z) .

Z->00 T—00

Cosider the case when M(—z)>0 for some £>0 and lim—z~" log M(—z)=oco.

2—»00

For any constant 0<c< —l.ext. M, by choosing suitable constants ¢ and d, we
may write log f(iy) as

o

logf<z'y)=§'° e""’dM(w)+§

- 00

(7 —14+yx+5°) ™ dM(x)+6*y*/2+cy+d .

As is easily seen

e

logf<z'y>=(1+o<1»§ eV dM@) as Yoo

- 00

and hence

log log f(iy)=(1+o(1)) log S_" eVdM(z) as y—oo .

Thus we obtain

Lemma 6. If M(—2)>0 for some x>0 and lim—z" log M(—x)=co, then for

&—»00

any constant 0<c< —l.ext. M,

log log f(iy)=(1+0(1)) log m.(fy) as y—oo,

where mc(z'y)=s-c e VdM(x) .

- 00

Lemma 7. Let 1<a<oco. Then

3.1) e lim sup o't M| M(z)| <lim sup y 1~ V¢ Sw (e —14yx1+2°)HdM(z)
z=0+ y—oo 0+

<al'(1—(1/a)) limos+up gt M M),

Moreover if lim 'V |M(x)| exists, then
z—0+
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(3.2)  limy " S:’ (™" —1+yx(l+a*) HYdM(x)=al (1—(1/a)) 1151 "t |\ M(x)| .
+ x

Yoo

1

Proof. Since the condition S 2*dM(x)< co implies that x’M(x)—0 as z—0+,
0

we have that for every a>0, ¥

3.3)  yive S” (€ —1+yu(l+a%)")dM )

o+

o~ (Y, e
=y S (e —14yx)dM(x)+o(1)
0+

- 1=(1/a) ~yr__ 1 —-1/a 1 ~Yr __
=y (Y 1 L ym) M@ s+ S M) (e ™" —1)dz+o(1)
+

0

. ,
=y"““§ |M(@)|(1—e**)dz +o(1)
0+ :
=S” (y—lv)l—f-(l/a)IM(y—-Iv)lv-—l—(l/a)(l__e—V)dv_*_o(l) as y—oo .
0+
As is easily seen

S"" pi e A—edv=al"1—1/a))

0

when a>1. Hence we obtain the second inequality of (3.1) and the equation (3.2)
by applying the Fatou’s Lemma and the dominated convergence theorem, respec-
tively. On the other hand, the inequalities

3.3)=y §”’ IM(@)|(1—¢*)dz+o(1)
[1]

-1_,~1-(1/a)

=ely |M(y™")|4+0(1) as y—oo

ensure that the first inequality of (3.1) holds.

In the following, F(x) is supposed to be the covolution of two distribution
functions Fi(x) and F,(x). The infinite divisibility for F(x) is not necessarily
assumed. For any small ¢>0 and for any small 6>0, choosing #>0 such that
F,(b)=1—¢, we have

B4) (A—F(—(1+0)x)=Fi(—(1+0)2)Fe(b) < Fi(—(1+0)2)Fy(dx) < F(—x)

for all z=d""b. .
When Fy(x) is a normal distribution function with variance ¢*=0, it obviously
follows that

3.5 lim—x7% log Fi(—%)=(20")" .

Z—+00
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When Fi(x) is a compound Poisson distribution function defined by
(3.6) Fi@)=c" T *®&)7'6"a), 150,

where G(z) is a distribution function with —oco<]. ext. G<0 and G**(x) indicates
the %-fold convolution of G(x) with itself, we necessarily have

3.7 lim sup—(z log )" log Fy(—x)<(—1l.ext. G)™ .
| This follows from the inequalities _
Fy(—ne)ze™ 2" (n!) 'G*(—ne) 2 e [AG(— o' "

for any constant 0<c< —l.ext. G and for every positive integer 7.
From (3.4), [3.5) and [3.7), we have

Lemma 8. Suppose that F=F, « Fy, where Fy(®) is any distribution Junction.
(i) If Fi(x) is a normal distribution function with variance *=0, then

lim sup—2~* log F(—x)<(26*)™ .

(i) If Fu(x) is @ compound Poisson distribution function defined by [3.6), then
lim sup—(z log )™ log F(—x)<(—l.ext. G)™*,

provided that —oo<l.ext. G<O.

4. Proofs of theorems.

Now we go back to the proofs of theorems.
Proof of Write lim sup *'**|M()|°=p. Since
logf(Z'y):Sc’° (e —1+yx(1+2*)"YdM(x)—ry
0+

when M(—x)=0 for all >0 and ¢*=0, it follows from that
e 'p*<lim sup y =V log fiy)<al'(1—1/a))p"° .
y—o0

By this is equivalent to that
a*(14+a) ' %e*p ™ zlim inf—x """ log F(—x)=(1 +a) " Ir1—1/a)] "t .

Thus the first assertion is shown to hold with k.=(1+a)™ " [I'1—(1/a))]™® and
h,=a"(1+a)'"%". The second assertion is verified in the same way.
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Proof of
(i) We first observe that the equation (3.3) with a=1 implies that

Sw (e —1+yx(l+2°) " )dM(z)=0(y") as y—oo.
0+

Therefore we see that lim ¢~ log f(iy)=0¢"/2 if M(—x)=0 for all x>0. Hence we
have ’
lim inf—2 % log F(—#)=(2¢%)""

L—400

by On the other hand, we have
lim sup—z"* log F(—#)< (20"}

by Lemma 8(j).
(ii) Write b=—l.ext. M. When b=0, our assertion is trivial because of (i).
When 0<b<oo or b= and lim—z~" log M(—x)=co, choosing a constant 0<c<b

00

and then using we have

lim sup y~* log m.(iy)=b , m,(ty)= S—c e dM(z) .
y—soo

From Lemma 6 and Lemma 4 with s(x)=log « for large x>0, it follows that
lim inf—(x log )~ log F(—x)=b""

T—00

When b= and lim inf—z " log M(—2)< o, noticing we obtain

=00

lim inf—(z log %) " log F(—x)=0 .

Therefore the equation

lim inf —(z log )" log F(—x)=6"

X —c0

holds when 0<d<oco. On the other hand, by virtue of Lemma 8 (ii), the inequality

lim sup—(z log z) " log F(—x)<b™"

also holds when 0<b=<oo.

Proof of (iii) is an immediate consequence of Lemma 1 together
with the theorem due to Kruglov (1970). Since (i) and (ii) are evident by
5 when lim—z""log M(—x)< oo, we assume that lim—2"" log M(—x)=oco.

200 z—+o0

(i) Write lim inf—2™""%log M(—x)=7r.b"", 7.=a"1+a)"""*, 0<a<oco. It fol-

B=—r0O

lows from Lemma 3 and [Lemma 6 that
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lim sup ™'~ "'* log log f(sy)=0",

y—r0

i.e.,
@/il+a) _ p1/(1+a)

lim sup y[log log f(iy)]
y—o0

Applying Lemma 4 with s(x)=(log z)**** for large x>0, we obtain

lim inf —2 " '(log 2)~*'"*** log F(—x)=5b"""**" .

Thus the assertion is shown to hold with ¢,=a™%(1—a)*™" by replacing a/(1+a)
with a.
(i) Writing lim inf—(s(x))™" log M(—x)=b"", we obtain

lim sup y 's(log log f(iy))=b
y—rco

from Lemma 4 and Lemma 6. Again from we have
lim inf — (2xs(log %))~ log F(—x)=b"".

Thus our theorems are all proved.
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