Yokohama Mathematical Journal Vol. 27, 1979

TOPOLOGICAL ENTROPY OF CIRCLE ENDOMORPHISMS

By

SHIGENORI MATSUMOTO

(Received February 8, 1979)

1. The purpose of this paper is to investigate the topological entropy h(f) of a piecewise monotone and continuous transformation f of the unit circle S^1 and to relate it to the mapping degree deg(f) of f. For such a transformation f, L(f) denotes the number of the maximal intervals where f is monotone. Then the limit $G(f) = \lim_{n \to \infty} (1/n) \log L(f^n)$ exists and is called the growth number of f. Our main results are the following Theorems 1 and 2.

Theorem 1. Let f be a piecewise monotone and continuous transformation of S^1 . Suppose that f is not a local homeomorphism. Then h(f)=G(f).

Theorem 2. (1) For a piecewise monotone and continuous transformation $f, h(f) \ge \log |\deg (f)|$.

(2) For a local homeomorphism f of S^1 , $h(f) = \log |\deg(f)|$.

Remark. Theorem 2 (1) is the simplest case of a general theorem of Manning ([4]).

In the case of transformations of the interval, the concept of growth number is introduced and extensively studied by Milnor and Thurston ([3]). Now let us recall the definition of the topological entropy of a continuous transformation of a compact space X ([1]):

 $h(f) = \sup \{H(f, \mathfrak{A}) | \mathfrak{A} \text{ is a open covering of } X\}$ $H(f, \mathfrak{A}) = \lim_{n \to n} \frac{1}{n} \log N(\mathfrak{A} \vee f^{-1} \mathfrak{A} \vee \cdots \vee f^{-n+1} \mathfrak{A}).$

Here for open coverings $\mathfrak{A}, \mathfrak{B}$ of $X, \mathfrak{A} \lor \mathfrak{B}$ denotes the open covering $\{A \cap B | A \in \mathfrak{A}, B \in \mathfrak{B}\}$, and $N(\mathfrak{A})$ is the smallest cardinality of subcoverings of \mathfrak{A} .

2. A nonempty finite subset Δ of the unit circle S^1 is called a *partition*; its cardinality is denoted by $m(\Delta)$; the closure of a connected component of $S^1 - \Delta$ is called a *small interval* of Δ ; for a piecewise monotone and continuous transformation f, Δ_n denotes the partition $\Delta \cup f^{-1} \Delta \cup f^{-2} \Delta \cup \cdots \cup f^{-n+1} \Delta$. A continuous transformation f is called *piecewise monotone* if there exists a partition Δ such that

SHIGENORI MATSUMOTO

f is strictly monotone on each small interval of Δ . Such a partition Δ is called a *monotone partition* for f. Henceforth in this paper, any transformation of S^1 is to be piecewise monotone and continuous.

Lemma 3. For a monotone partition Δ for f,

$$h(f) \leq \liminf_{n \to \infty} \frac{1}{n} \log m(\mathcal{A}_n)$$

Proof. Given an arbitrary covering \mathfrak{A} of S^1 , one can choose a partition Δ' such that (1) Δ' contains as a subset the prescribed monotone partition Δ for f, (2) each small interval of Δ' is contained in some member of \mathfrak{A} . Then $m(\Delta'_n) \ge N(\mathfrak{A} \lor f^{-1}\mathfrak{A} \lor f^{-2}\mathfrak{A} \lor \cdots \lor f^{-n+1}\mathfrak{A})$. (Each small interval of Δ'_n is contained in at least one member of $\mathfrak{A} \lor f^{-1}\mathfrak{A} \lor \cdots \lor f^{-n+1}\mathfrak{A}$.) Let J be a small interval of Δ_n . Then because Δ is a monotone partition for f, f^i maps J homeomorphically into some small interval of Δ for each $i \in \{0, 1, \ldots, n-1\}$. Thus $m(\Delta'_n \cap J) \le nb$, where b is so chosen that $b \ge m(\Delta' \cap J)$ for each small interval I of Δ . Hence $m(\Delta'_n) \le (nb+1)m(\Delta_n)$. Thus

$$N(\mathfrak{A} \vee f^{-1}\mathfrak{A} \vee \cdots \vee f^{-n+1}\mathfrak{A}) \leq (nb+1)m(\Delta_n) .$$

Letting $n \rightarrow \infty$, we have

$$H(f, \mathfrak{A}) \leq \liminf_{n \to \infty} \frac{1}{n} \log m(\mathcal{A}_n)$$
.

Now as \mathfrak{A} was an arbitrary covering of S^1 we have done with the proof.

3. A partition Δ is called a fine partition for a transformation f of S^1 , in case (1) f embeds each small interval of Δ into S^1 , (2) the length of each small interval of Δ , as well as that of its image by f, is smaller than 1/3 of the whole length of S^1 . Thus a fine partition for f is automatically a monotone partion for f. The next lemma is a converse of lemma 3.

Lemma 4. For a fine partition Δ for f,

$$h(f) \ge \limsup_{n \to \infty} \frac{1}{n} \log m(\mathcal{A}_n)$$
.

Proof. Our proof is analogous to the argument employed by Bowen in his paper [2].

Given a positive integer N, we shall construct an open covering, say \mathfrak{A}_N , out of the partition $\mathcal{A}=\{x_1, x_2, \ldots, x_r\}$. For each point x_j of \mathcal{A} , consider the open interval U_j whose endpoints are those points of \mathcal{A}_N which are next to x_j . These U_j 's, together with interiors of small intervals \mathring{I}_j 's of \mathcal{A} $(1 \le j \le r)$, constitute an

TOPOLOGICAL ENTROPY OF CIRCLE ENDOMORPHISMS

open covering \mathfrak{A}_N of S^1 . For each member $B = A_0 \cap f^{-1}A_1 \cap \cdots \cap f^{-n+1}A_{n-1}$ of $\mathfrak{A}_N \vee f^{-1}\mathfrak{A}_N \vee \cdots \vee f^{-n+1}\mathfrak{A}_N$ (A_i is either some U_j or some \mathring{I}_j), we shall count the number of the small intervals of \mathcal{A}_n which intersects B. Notice that a small interval of \mathcal{A}_n is of the form $I_{i_0} \cap f^{-1}I_{i_1} \cap f^{-2}I_{i_2} \cap \cdots \cap f^{-n+1}I_{i_{n-1}}$. (Here we use the assumption that \mathcal{A} is fine.) Now look at the sequence $A_0, A_1, \ldots, A_{n-1}$ which defines B. We shall construct a subsequence in the following way. Let i_1 be the smallest number, if any, such that A_{i_1} is equal to some U_j . Then delete the (N-1) terms $A_{i_1+1}, \ldots, A_{i_1+N-1}$ from the sequence. Consider the new sequence, and let i_2 be the next number, if any, such that $A_{i_2}=U_j$ for some U_j . Then delete the N-1 terms $A_{i_2+1}, \ldots, A_{i_2+N-1}$ from the sequence. Proceeding in this fashion, one obtains finally a subsequence, say, $A_{j_1}, A_{j_2}, \ldots, A_{j_s}$. Notice that if $A_{j_k}=U_j$, then A_{j_k} is contained in a union of two small intervals of \mathcal{A}_N . Thus $f^{-j_1}(A_{j_1}) \cap \cdots \cap f^{-j_s}(A_{j_s})$, hence a fortiori B, is contained in a union of at most $2^{n/N+1}$ small intervals of \mathcal{A}_n . Thus

$$N(\mathfrak{A}_N \lor \cdots \lor f^{-n+1}\mathfrak{A}_N) \cdot 2^{n/N+1} \ge m(\mathcal{A}_n)$$
.

Letting $n \rightarrow \infty$, one gets

$$H(f,\mathfrak{A}_N)+\frac{1}{N}\log 2\geq \limsup_{n\to\infty}\frac{1}{n}\log m(\mathcal{A}_n).$$

As N is arbitrary, one obtains $h(f) \ge \limsup (1/n) \log m(\Delta_n)$, as is desired.

4. In this paragraph we shall complete the proof of Theorems 1 and 2. To begin with one has the following easy consequence of Lemmas 3 and 4.

Proposition 5. Let Δ be an arbitrary monotone partition for a transformation f of S^1 . Then the following limit exists and is equal to h(f):

$$\lim_{n\to\infty}\frac{1}{n}\log m(\mathcal{A}_n).$$

Proof. Given a monotone partition Δ for f, there exists a fine partition Δ' for f such that $\Delta' \supset \Delta$. Then

$$h(f) \ge \limsup_{n \to \infty} \frac{1}{n} \log m(\Delta'_n) \ge \liminf_{n \to \infty} \frac{1}{n} \log m(\Delta'_n)$$
$$\ge \liminf_{n \to \infty} \frac{1}{n} \log m(\Delta_n) \ge h(f) .$$

Hence $h(f) = \lim_{n \to \infty} (1/n) \log m(\Delta_n)$, as is desired.

SHIGENORI MATSUMOTO

Proof of Theorem 1. Let f be a transformation of S^1 , which is not a local homeomorphism. Let Δ_f be a monotone partition for f with the smallest cardinality. Of course such a partition is unique and each small interval of Δ_f is a maximal interval where f is monotone. Then clearly $L(f^n) = m((\Delta_f)_n)$. Thus Theorem 1 is implied by Proposition 5.

Proof of Theorem 2. (1) Notice that $m(f^{-1}\{x\}) \ge |\deg(f)|$ for each point x of S^1 . Thus for a monotone partition Δ for f, one has $m(\Delta_n) \ge m(f^{-n+1}\Delta) \ge m(f^{-n+1}\{x_0\}) \ge |\deg(f)|^{n-1}$, where $x_0 \in \Delta$. Hence $h(f) = \lim_{n \to \infty} (1/n) \log m(\Delta_n) \ge \log |\deg(f)|$.

Proof of Theorem 2. (2) Let x be an arbitrary point of S^1 . Then $\{x\}$ is a monotone partition for a local homeomorphism f. Thus $h(f) = \lim_{n \to \infty} (1/n) \log m(\{x\}_n)$. Now $m(f^{-i}\{x\}) = |\deg(f)|^i$. Thus $|\deg(f)|^{n-1} \le m(\{x\}_n) \le 1 + |\deg(f)|^2 + |\deg(f)|^2 + \cdots + |\deg(f)|^{n-1}$. Hence we get $h(f) = \log|\deg(f)|$.

References

- [1] R. Adler, A. Konheim and M. Mc'Andrew: Topological Entropy, Trans. A.M.S. 114, 309-319 (1965).
- [2] R. Bowen: Topological Entropy and Axiom A, Proc. Symp. Pure Math. 14, A.M.S. 23-41 (1970).
- [3] J. Milnor and W. Thurston: On Iterated Maps of the Interval, Preprint.
- [4] A. Manning: Topological Entropy and the First Homology Group, Dynamical Systems-Warwick, Springer Lecture Note 468, 185-190.

Dept. of Math.,

Colledge of Science and Technology, Nihon University, Kanda-Surugadai, Tokyo 101, Japan