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1. The purpose of this paper is to investigate the topological entropy A(f)
of a piecewise monotone and continuous transformation f of the unit circle S* and
to relate it to the mapping degree deg (f) of f. For such a transformation f, L( f)
denotes the number of the maximal intervals where f is monotone. Then the
Hmit G(f)= 11m (1/n) log L(f™) exists and is called the growth number of f. Our
main results are the following Theorems 1 and 2.

Theorem 1. Let f be a piecewise monotone and continuous transformation of
S'. Suppose that f is not a local homeomorphism. Then h(f)=G(f).

Theorem 2. (1) For a piecewise mohotone and continuous transformation
S h(f)zlog |deg (f)I.
(2) For a local homeomorphism f of S*, h(f)=Ilog |deg (f)|.

Remark. Theorem 2 (1) is the simplest case of a general theorem of Manning
([4D.

In the case of transformations of the interval, the concept of growth number
is introduced and extensively studied by Milnor and Thurston ([3]). Now let us
recall the definition of the topological entropy of a continuous transformation of
a compact space X ([1]):

h(f)=sup {H(f, )|Y is a open covering of X}
H(f, %)=lim —nl— log NIV F7V -+ v £77090)

Here for open coverings %, 8 of X, AV B denotes the open covering {ANBJA e,
Be B}, and N(¥) is the smallest cardinality of subcoverings of 2.

2. A nonempty finite subset 4 of the unit circle S* is called a partition; its
cardinality is denoted by m(d); the closure of a connected component of S*—4 is
called a small interval of 4; for a piecewise monotone and continuous transfor-
mation f, 4, denotes the partition dUf'dUf*4U---Uf™'4. A continuous
transformation f is called piecewise monotone if there exists a partition 4 such that
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f is strictly monotone on each small interval of 4. Such a partition 4 is called a
monotone partition for f. Henceforth in this paper, any transformation of S is
to be piecewise monotone and continuous.

Lemma 3. For a monotone partition 4 for f,
h(f)<lim inf % log m(d,)

Proof. Given an arbitrary covering % of S*, one can choose a partition 4’ such
that (1) 4’ contains as a subset the prescribed monotone partition 4 for f, (2) each
small interval of 4’ is contained in some member of 9. Then m(4L)=N@ v f Ay
FAV v, (Each small interval of 4., is contained in at least one member
of AVSTAV--- VL ™UA) Let J be a small interval of 4,. Then because 4 is a
monotone partition for f, f * maps J homeomorphically into some small interval
of 4 for each i1€{0,1, ...,n—1}. Thus m(ALn])_S_nb, where b is so chosen that
b=m(d’ nI°) for each small interval I of 4. Hence m(d,)<(nb+1)m(4,). Thus

NEAVFUAV - VW< b+ 1)m(d,) .
Letting #n—co, we have

H(f, %)<lim inf % log m(dy) .

Now as % was an arbitrary covering of S' we have done with the proof.

3. A partition 4 is called a fine partition for a transformation f of S*, in
case (1) f embeds each small interval of 4 into S, (2) the length of each small
interval of 4, as well as that of its image by f, is smaller than 1/3 of the whole
length of S'. Thus a fine partition for f is automatically a monotone partion for
J. The next lemma is a converse of lemma 3.

Lemma 4. For a fine partition 4 for f,
h(f)=lim sup—’lz— log m(4,) .

Proof. Our proof is analogous to the argument employed by Bowen in his
paper [2].

Given a positive integer N, we shall construct an open covering, say %y, out
of the partition 4={w,, s, ...,2,}. For each point z; of 4, consider the open
interval U; whose endpoints are those points of 4y which are next to x;. These
U;’s, together with interiors of small intervals I",-’s of 4 (1=j<r), constitute an
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open covering Ay of S'. For each member B=A,Nf*A;N:--Nf "4, of
AnV Uy V- VU (A; is either some U; or some I;), we shall count the
number of the small intervals of 4, which intersects B. Notice that a small
interval of 4, is of the form L nf™' L, nf"L,n---nf "L, . (Here we use the
assumption that 4 is fine.) Now look at the sequence A,, 4,,..., A, which
defines B. We shall construct a subsequence in the following way. Let 7, be the
smallest number, if any, such that A4; is equal to some U;. Then delete the (N—1)
terms A.-1+1, . A.-1+N_1 from the sequence. Consider the new sequence, and let
i; be the next number, if any, such that A;,=U; for some U;. Then delete the
N—1 terms A+, ..., Aiyen-1 from the sequence. Proceeding in this fashion,
one obtains finally a subsequence, say, 4;, 4;,, ..., 4;,. Notice that if A;=U;,
then A;, is contained in a union of two small intervals of 4y. Thus
f_jl(Ajl)n --+Nf7(A;,), hence a fortiori B, is contained in a union of at most
2"N*1 small intervals of 4,. Thus

NNV - VU2V 2 90(4,) .
Letting #—oo, one gets

1

log 2=1im sup—nl— log m(4,) .
As N is arbitrary, one obtains A(f)=lim sup (1/x) log m(4,), as is desired.

4. In this paragraph we shall complete the proof of Theorems 1 and 2. To
begin with one has the following easy consequence of Lemmas 3 and 4.

Proposition 5. Let 4 be an arbitrary monotone partition for a transformation

fof S'. Then the following limit exists and is equal to h(f):

lim 1 log m(d4,) .

n—oo #

Proof. Given a monotone partition 4 for f, there exists a fine partition 4’
for f such that 4'54. Then

h(f)=lim sup —’lz— log m(4,)=lim inf 712_ log m(4x)
>1lim inf % log m(4,)=h(f) .

Hence A(f)=I1im (1/n) log m(4,), as is desired.
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Proof of Theorem 1. Let f be a transformation of S*, which is not a local
homeomorphism. Let 4, be a monotone partition for f with the smallest cardina-
lity. Of course such a partition is unique and each small interval of 4, is a
maximal interval where f is monotone. Then clearly L(f")=m((4s),). Thus

is implied by [Proposition 5|

Proof of Theorem 2. (1) Notice that m(f '{z})=|deg (f)| for each point x of
S'. Thus for a monotone partition 4 for £, one has m(d,)=m(f " H=m(f " {x.}) =
|deg (f)|*™*, where x,€ 4. Hence k(f)=lim (1/n) log m(4,)=log |deg (f).

Proof of Theorem 2. (2) Let x be an arbitrary point of S'. Then {x} is a
monotone partition for a local homeomorphism f. Thus k(f)=lim (1/2) log m({x}a).
Now m(f~*{z})=Ideg (/). Thus|deg (/)" Sm({w})<1+|deg (H)+Ideg (NI +---+
|deg (f)|**. Hence we get A(f)=logldeg (1)
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