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1. The purpose of this paper is to investigate the topological entropy $h(f)$

of a piecewise monotone and continuous transformation $f$ of the unit circle $S^{1}$ and
to relate it to the mapping degree deg $(f)$ of $f$. For such a transformation $f,$ $L(f)$

denotes the number of the maximal intervals where $f$ is monotone. Then the
limit $G(f)=\lim_{n\rightarrow\infty}(1/n)$ log $L(f^{n})$ exists and is called the growth number of $f$. Our
main results are the following Theorems 1 and 2.

Here for open coverings $\mathfrak{U},$
$\mathfrak{B}$ of $X,$ $\mathfrak{U}\vee \mathfrak{B}$ denotes the open covering $\{A\cap B|A\in \mathfrak{U}$,

$Be\mathfrak{B}\}$ , and $N(\mathfrak{U})$ is the smallest cardinality of subcoverings of $\mathfrak{U}$ .
2. A nonempty finite subset $\Delta$ of the unit circle $S^{1}$ is called a partitton; its

cardinality is denoted by $m(\Delta)$ ; the closure of a connected component of $ S^{1}-\Delta$ is
called a small interval of $\Delta$ ; for a piecewise monotone and continuous transfor-
mation $f,$ $\Delta_{n}$ denotes the partition $\Delta\cup f^{-1}\Delta\cup f^{-}\Delta\cup\cdots\cup f^{-n+1}\Delta$ . A continuous
transformation $f$ is called piecewise monotone if there exists a partition $\Delta$ such that

Theorem 1. Let $f$ be a piecewise monotone and continuous transformation of
$S^{1}$ . Suppose that $f$ is not a local homeomorphism. Then $h(f)=G(f)$ .

Theorem 2. (1) For a piecewise monotone and continuous transformation
$f,$ $h(f)\geqq\log|\deg(f)|$ .

(2) For a local homeomorphism $f$ of $S^{1},$ $ h(f)=\log$ deg $(f)|$ .
Remark. Theorem 2 (1) is the simplest case of a general theorem of Manning

([4]).

In the case of transformations of the interval, the concept of growth number
is introduced and extensively studied by Milnor and Thurston ([3]). Now let us
recall the definition of the topological entropy of a continuous transformation of
a compact space $X$ ([1]):

$ h(f)=\sup$ {$H(f,$ $\mathfrak{A})|\mathfrak{A}$ is a open covering of $X$}

$H(f, \mathfrak{U})=\lim_{n\rightarrow n}\frac{1}{n}$ log $N(\mathfrak{U}vf^{-1}\mathfrak{U}v\cdots\vee f^{-n+1}\mathfrak{U})$ .
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$f$ is strictly monotone on each small interval of $\Delta$ . Such a partition $\Delta$ is called a
monotone Partition for $f$. Henceforth in this paper, any transformation of $S^{1}$ is
to be piecewise monotone and continuous.

Lemma 3. For a monotone Partition $\Delta$ for $f$,

$h(f)\leqq\lim_{\iota\rightarrow}\inf_{\infty}\frac{1}{n}$ log $m(\Delta_{n})$

Proof. Given an arbitrary covering $\mathfrak{U}$ of $S^{1}$ , one can choose a partition $\Delta^{\prime}$ such
that (1) $\Delta^{\prime}$ contains as a subset the prescribed monotone partition $\Delta$ for $f,$ (2) each
small interval of $\Delta^{\prime}$ is contained in some member of $\mathfrak{U}$ . Then $ m(\Delta_{\hslash}^{\prime})\geqq N(\mathfrak{U}\vee f^{-1}\mathfrak{U}\vee$

$f^{-2}\mathfrak{U}v\cdots\vee f^{-n+1}\mathfrak{U})$ . (Each small interval of $\Delta_{n}^{\prime}$ is contained in at least one member
of $\mathfrak{U}\vee f^{-1}\mathfrak{U}\vee\cdots\vee f^{-n+1}\mathfrak{U}.$ ) Let $J$ be a small interval of $\Delta_{n}$ . Then because $\Delta$ is a
monotone partition for $f,f^{i}$ maps $J$ homeomorphically into some small interval
of $\Delta$ for each $i\in\{0,1, \ldots, n-1\}$ . Thus $m(\Delta_{n}^{\prime}\cap j)\leqq nb$ , where $b$ is so chosen that
$b\geqq m(\Delta^{\prime}nI)$ for each small interval $I$ of $\Delta$ . Hence $m(\Delta^{\prime}.)\leqq(nb+1)m(\Delta_{\hslash})$ . Thus

$N(\mathfrak{U}vf^{-1}\mathfrak{A}v\cdots\vee f^{-n+1}\mathfrak{A})\leqq(nb+1)m(\Delta_{n})$ .
Letting $ n\rightarrow\infty$ , we have

$H(f, \mathfrak{U})\leqq\lim_{\rightarrow}\inf_{\infty}\frac{1}{n}$ log $m(\Delta_{n})$ .
Now as $\mathfrak{U}$ was an arbitrary covering of $S^{1}$ we have done with the $pr\ovalbox{\tt\small REJECT} f$.

3. A partition $\Delta$ is called a fine partition for a transformation $f$ of $S^{1}$ , in
case (1) $f$ embeds each small interval of $\Delta$ into $S^{1},$ (2) the length of each small
interval of $\Delta$ , as well as that of its image by $f$, is smaller than 1/3 of the whole
length of $S^{1}$ . Thus a fine partition for $f$ is automatically a monotone partion for
$f$. The next lemma is a converse of lemma 3,

Lemma 4. For a fine partition $\Delta$ for $f$,

$h(f)\geqq\lim_{\hslash\rightarrow}\sup_{\infty}\frac{1}{n}$ log $m(\Delta_{n})$ .

Proof. Our proof is analogous to the argument employed by Bowen in his
paper [2].

Given a positive integer $N$, we shall construct an open covering, say $\mathfrak{A}_{N}$ , out
of the partition $\Delta=\{x_{1}, x_{2}, \ldots, x_{r}\}$ . For each point $x_{j}$ of $\Delta$ , consider the open
interval $U_{j}$ whose endpoints are those points of $\Delta_{N}$ which are next to $x_{j}$ . These
$U_{j}’ s$, together with interiors of small intervals $\dot{I}_{j}’ s$ of $\Delta(1\leqq j\leqq r)$ , constitute an
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open covering $\mathfrak{U}_{N}$ of $S^{1}$ . For each member $B=A_{0}\cap f^{-1}A_{1}\cap\cdots\cap f^{-f*+1}A_{n-1}$ of
$\mathfrak{A}_{N}\vee f^{-1}\mathfrak{A}_{N}\vee\cdots\vee f^{-n+1}\mathfrak{U}_{N}$ ($A_{\ell}$ is either some $U_{j}$ or some $I_{j}$)

$\circ$

, we shall count the
number of the small intervals of $\Delta_{n}$ which intersects $B$. Notice that a small
interval of $\Delta_{n}$ is of the form $I_{i_{0}}\cap f^{-1}I:_{1}\cap f^{-2}I_{i_{2}}\cap\cdots\cap f^{-n+1}I_{t_{n-1}}$ . (Here we use the
assumption that $\Delta$ is fine.) Now look at the sequence $A_{0},$ $A_{1},$

$\ldots,$
$A_{n-q}$ which

defines $B$. We shall construct a subsequence in the following way. Let $i_{1}$ be the
smallest number, if any, such that $A_{i_{1}}$ is equal to some $U_{j}$ . Then delete the $(N-1)$

terms $A_{i_{1}+1},$
$\ldots,$ $A_{i_{1}+N-1}$ from the sequence. Consider the new sequence, and let

$i_{2}$ be the next number, if any, such that $A_{i_{2}}=U_{j}$ for some $U_{j}$ . Then delete the
$N-1$ terms $A_{:_{2}+1},$

$\ldots,$ $A:_{2}+N-1$ from the sequence. Proceeding in this fashion,
one obtains finally a subsequence, say, $A_{j_{1}},$ $A_{j_{2}},$

$\ldots,$
$A_{\dot{J}\iota}$ . Notice that if $A_{j_{k}}=U_{j}$,

then $A_{j_{k}}$ is contained in a union of two small intervals of $\Delta_{N}$ . Thus
$f^{-j_{1}}(A_{j_{1}})\cap\cdots\cap f^{-j}\cdot(A_{\dot{f}}.)$ , hence a fortiori $B$, is contained in a union of at most
$2^{n\prime N+1}$ small intervals of $\Delta_{n}$ . Thus

$N(\mathfrak{U}_{N}v\cdots vf^{-n+1}\mathfrak{A}_{N})\cdot 2^{n/N+1}\geqq m(\Delta_{n})$ .
Letting $ n\rightarrow\infty$ , one gets

$H(f.\mathfrak{U}_{N})+\frac{1}{N}$ log $2\geqq\lim_{n\rightarrow}\sup_{\infty}\frac{1}{n}$ log $m(\Delta_{n})$ .

As $N$ is arbitrary, one obtains $h(f)\geqq\limsup(1/n)$ log $m(\Delta_{n})$ , as is desired.

4. In this paragraph we shall complete the proof of Theorems 1 and 2. To
begin with one has the following easy consequence of Lemmas 3 and 4.

Proposition 5. Let $\Delta$ be an arbitrary monotone partition for a transformation
$f$ of $S^{1}$ . Then the following limit exists and is equal to $h(f)$ :

$\lim_{n\rightarrow\infty}\frac{1}{n}$ log $m(\Delta_{n})$ .

Proof. Given a monotone partition $\Delta$ for $f$, there exists a fine partition $\Delta^{\prime}$

for $f$ such that $\Delta^{\prime}\supset\Delta$ . Then

$h(f)\geqq\lim_{\hslash\rightarrow}\sup_{\infty}\frac{1}{n}$ log $m(\Delta_{\hslash}^{\prime})\geqq\lim_{n\rightarrow}\inf_{\infty}\frac{1}{n}$ log $m(\Delta_{n}^{\prime})$

$\geqq\lim_{n\rightarrow}\inf_{\infty}\frac{1}{n}$ log $m(\Delta.)\geqq h(f)$ .

Hence $h(f)=\lim_{\rightarrow\infty}(1/n)$ log $m(\Delta, )$ , as is desired.



76 SHIGENORI MATSUMOTO

Proof of Theorem 1. Let $f$ be a transformation of $S^{1}$ , which is not a local
homeomorphism. Let $\Delta_{f}$ be a monotone partition for $f$ with the smallest cardina-
lity. Of course such a partition is unique and each small interval of $\Delta_{f}$ is a
maximal interval where $f$ is monotone. Then clearly $L(f^{n})=m((\Delta_{f})_{n})$ . Thus
Theorem 1 is implied by Proposition 5.

Proof of Theorem 2. (1) Notice that $m(f^{-1}\{x\})\geqq|\deg(f)|$ for each point $x$ of
$S^{1}$ . Thus for a monotone partition $\Delta$ for $f$. one has $ m(\Delta_{n})\geqq m(f^{-n+1}\Delta)\geqq m(f^{-\hslash+1}\{x_{0}\})\geqq$

$|\deg(f)|^{n-1}$ , where $ x_{0}\in\Delta$ . Hence $h(f)=\lim_{\hslash\rightarrow\infty}(1/n)$ log $m(\Delta_{\hslash})\geqq\log|\deg(f)|$ .
Proof of Theorem 2. (2) Let $x$ be an arbitrary point of $S^{1}$ . Then $\{x\}$ is a

monotone partition for a local homeomorphism $f$. Thus $h(f)=\lim(1/n)$ log $m(\{x\}.)$ .
Now m$(f^{-i}\{x\})=|\deg(f)|^{i}$ . Thus ldeg $(f)|^{n-1}\leqq m(\{x\}_{n})\leqq 1+|\deg(f)|+|\deg(f)|^{2}+\rightarrow\infty\cdots+$

$|\deg(f)|^{n-1}$ . Hence we get $h(f)=\log|\deg(f)|$ .
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