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1. Introduction. Let {X,} be a sequence of independent and identically dis-
tributed (iid) random variables belonging to the domain of normal attraction of a
stable distribution function (df) V, of index a, 1<a<2. We assume that EX,=0.
Thus there exists a constant a>0 such that Z,=(an’)'2}-,X; converges in law
to V,, where r=a™’.

" Basu and Maejima recently proved that if the df V, of X is absolutely
continuous with a probability density function (pdf) »; and its characteristic func-
tion (cf) @.(#) of X, is absolutely integrable in r-th power for some integer r= 1,
then for large #, the df V, of Z, is absolutely continuous with a pdf v, such that

(1.1) sup (1+2")|va(2) — vo(2)| = O(1)

as m—oo, v, being the pdf of V..

The present authors recently came across another result concerning the rate
of convergence in such local limit theorems. From this result, due to Banys 1
it follows that if the df of V, of X, is absolutely continuous and further if

1.2) Slfmm—MWM<m,
then

(1.3) | §:°Iv,.(m)—vo(w)ldx=0(n“”)
as n—oo,

In this paper we study the consequence of the condition on the pointwise
convergence of v, to v,. In particular, we shall prove the following improved
version of the non-uniform rate of convergence given by [(I.1):

Theorem 1. Let {X,} be a sequence of iid random variables each with an ab-
solutely continuous df Vi, pdf v, and cf ,. Assume that EX,=0. If (i) V. belongs
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to the domain of normal attraction of a stable af V, of index a, 1<a<?2, (ii) o,
is absolutely integrable in r-th power for some r=1 and (iii) the relation holds,
then for all large n, the df V, of Z, is absolutely continuous with pdf v, such that

1.4) sup (1+|]")va(@) —vo(@)| = O(n' )
as n—oo, where v, is the pdf of V, and y=a™.

This theorem also helps us to prove the following theorem concerning pro-
babilities of moderate deviations in situations with non-normal limit distributions:

Theorem 2. Under the conditions of Theorem 1, as n—oo,

1 - Vn(Ln) + Vn(—Ln)
(1.5) ~ 1—Vo(Ly)+ Vo(—L,)

=14+0n""""L,)
Jor any sequence {L,} of reals such that L, 1 co.

2. Notations and preliminary lemmas. With no loss of generality, the con-
stant @ in the previous section may be taken to be equal to 1.

Let X, denote a stable random variable having the df V, and let w, denote
its cf. We write w,(f)=FEexp (itZ,) so that 0u(t)={wy(tn"")}*. For any function

9(?) and a positive integer k, we will write g'*'(#) to denote (d/d#)*g(#), whenever
such a derivative exists.

Then since V, belongs to the domain of normal attraction of Ve,

2.1 lim @, () =w(z)
for all ¢£. Also as in Basu [2],
2.2) , lim 0,” () =w,"(t)

=00

for all ¢£. This implies, in particular, that EX,=0, so that from the cannonical
form of w,(#), we have

2.3) wo(2) ={wo(tr"")}"
for all ¢.
For each integer » and real x, we define for k=0, 1,

2.4) Ceall, w)=s exp (itw)dVi(w) ,

lnlSizinr
(205) .Blm(t: $)=0)k(t)—ah.(t, 97) ]
(2.6) Awalt, D)={ars(tn", z)}*,
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@7 Bulth =it~ Ault, 9= & ("} feultn ™, " Buntin”, oY
and
@8 Bult, =0~ Autt, D=2 ("awtn”, ) bontn”, Y .

The last equality in follows from (2.3) and [2.5).

Note that for each fixed » and =, aw.(t, %), k=0, 1, are differentiable any
number of times under the integral sign. Whenever the following inversion
integrals are absolutely convergent, we set

2.9) va(t0)=(27) ™" S” walt) exp (—itw)dt ,
(2.10) Qia(u, £)=2m)"" r Arn(t, ) exp (—itu)dt , k=0,1,
2.11) Din(ne, ) =(2r)™" Sw By..(¢, x) exp (—itu)dt , k=0,1,

for each integer » and reals # and z. In fact, the absolutely convergent integrals
provide the continuous pdfs that we shall use and are subjects of our theorem.
In what follows, c, ¢, ¢y, -+ or C, Co, Cy, -+ etc. will denote some positive
constants independent of # and x and their meanings are not of much importance
and may change from one step to another.
We need the following lemmas.

Lemma 1. For k=0, 1,

(2.12) 2°Ri(2)=2"P(| X}| >2)—c >0,

2.13) S luld V() =0(z"""")
|u|>2

and

2.14) S BdVy(0)=0(z""")
[xlss

as zZ—oo,

Proof. While is well-known (see e.g. Gnedenko and Kolmogorov [5)),
the proofs of [2.13) and [2.14) can be found in Basu and Maejima [4].

Lemma 2. There exist positive constants s, sufficiently small, ¢ and C such
that for k=0, 1,
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| Akalt, )| =C exp (—clt]")

for all t in the range |t|<en”, all x with |x|=1 and all large n.

Proof. See Basu and Maejima [4].

Lemma 3. Let ¢>0 and ¢>0 be as in Lemma 2. Then under (1.2) there exists
a constant C>0 such that
| (wa(t) —n(®) SCHiV exp (i)

for all t in the range |t|<en’, all © with |x|=1 and all large n.

Proof. This is in Banys [1].

Lemma 4. Let the positive constants ¢ and ¢ be as in Lemma 2. Then under
(1.2), there exist polynomials Pi(-), Py(-) and P,(-) with non-negative coefficients
independent of n and x such that for all large n, the relations

lalai@n, x)—ab (tn7, B)|=n' " Py(t)) exp (—clt|*(n—j)/n}, 1=j=n
and
|AL2' ¢, £)— Aon' ¢, 2)| <0 "2 {Py(|t]) + 2> * Ps(l¢])} exp (—c|t|)

hold for all t in the range |t|<en” and all x with |x|=1.

Proof. The proof is similar to that of Lemma 2.3 of Basu and Maejima [4].
In fact, the adjustments necessary are rather easy in view of the condition [1.2).

The follwing lemma is being quoted here from Smith and Basu for ready
reference.

Lemma 5. Let ¢>0 and integer n, be fixed. Then if O is the set where |x|=1,
[t|=e, n=n, and

A =sup lawa?, 2)| ,

it follows that 0=, <1, k=0, 1.

3. Proof of Theorem 1. Observe that because of assumption (ii) in Theorem
1, the integral is absolutely convergent for all large n. Further a direct
application of Parseval’s identity reveals that under the assumptioﬁs of the theorem,
the integrals in and are absolutely convergent for all large » and
£#0 (see e.g. Smith and Basu [11]) so that for all large #,

(3.1) V(%) =a14(%, %)+ b1a(z, %)
and
(3.2 Vo(2)=aon(%, £)+bon(2, ) .
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We shall first prove the relation

(3.3 SUP |va(®) — o(x)| =0 (' )

as n—oo. In view of [(3.3), then it is enough to prove that
3.4) sup |%|%1b1a(@, %) —bon(z, 2)| =0 "*")
and

(3.5) sup |2]%|@1a(, %) — o2, ©)|=O0@' ")

as n—oo. The relations (3.3), and together imply [(1.4).
To prove [(3.3) we observe that

(3.6) 270 (2) — 0o(2)| S Lin+ Lon+ Lsn
where

11,.=S |wa(t)—wo(B)ldt ,
ItIsen?

I2n= Iw'n(t)ldt
1tI>enT
and

13,.=S |wo(t)ldt ,
ItI>en?

¢>0 being as in
By it now follows that

(3.7) L,=0(n'"")
as n—oco. That

(3.8) La=0(n""")
and

(3.9) Lin=0(n'""")

as n—oo, follow as consequences of the fact that both V, and V, are absolutely
continuous and also the relation (2.3) holds. Thus follows from relations
through (3.9).

We now turn to the proof of [3.4). Towards that we first note that as in
Smith and Basu [1I], for all #+0 and k=0, 1,

(3.10) S“’ \aalt, D"dt=0") ,

(3.11) S” |Bualt, @) dt=0Q1) ,
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where s is a very large number.
Now

il)-
W(nT, @)Bintn™, x)} exp (—itx)dt
E]ln(w) +]2n(w) +j8n(w) ’

say, where 2', 3", 3'"" denote summation over ranges 1=<j=<[n/2], [72]+1=sj<
n—2s and n—2s+1=<j=n respectively, s being some fixed integer with #>2s.
Here [y] means ‘the integer part of y’.

Next

3.12)  2n{bin(®, ©)—boa(, w)}={2'+2”+z”’}(")§°° (altn™, 2)Bintn™, z)

n
—Qop

(3.13) me):z’(’;)gf Wi tnT, ) Bntn™, @) — Bin(tn", %)) exp (—itz)dt

”/(’:‘) Sw Bonltn™", )y (tn™7, @) —aly (tn™", @)} exp (—itw)dt
= Jua(®) + Jiza(z) ,

say.
In view of the condition and Lemma 1 for j=1 and |z|=1,

B.14)  |Biatn, 2)—Biutn, z)|
=|{Bnltn™7, ®)—Poaltn”7, x)}

X{Bla (™", @)+ Bla*tn™T, @)oaltn™!, @)+ - -+ Bin'(tn, @)
<{Cix”*n YR (wln")+ RI*(laln")Ro(|aln”) + - - - + Ri™(|an”)}
<{Cix~*n " Hj(Cala|"n~Y) )
=Cn~*j(Cy/n) 22 .

Using and (3.14), we then have, as n—co,
(3.15) lfm<x>|gc»z-*'w-’Z'(’;)j(c,/n)“

=Cz%n'™?7,

Now, by for all x in the range |#|=1, as #—oo,

(3.16) S {aliitn™, 3)—alsi(tn", ®)} exp (—itz)dt
ItISen?
=0(n1"27') 3
provided 1<j<[n/2]. Further for each j, 1<j=<[#n/2),

3.17) lasatn ™, BT a7, @)™ < [aaltn T, @),
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where k=1 or 0 according as 1=m=[n/4] or [#n/4]+1<m=n—j—1. Also from the
integrability of |w(#)|", =1, £=0, 1 and the relation it follows that for all
large # and some fixed 2>0,

(3.18) [, lawn, fdesca
1t1>en?

where A=max (A, 4;), 4 and 2, being defined as in In view of
5, then [(3.17) and [(3.18) imply that

(3.19) Sm {7, m)—ala(en™, ) exp (—ito)dt
Zom"”’)
as n—oo,
Using (3.16), and Lemma 1, we now observe that for all |z|=1,
(3.20) l]m(w)léCn"”S'(’;)Rﬂ(len’)
<Cla|™*n'™,

for all large .
Similarly, again because of and Lemma 1|

(3.21) l]an(x)léCS”C’.){R{(len’)+R€(lxln’)}n’
<Clz|™*n'™?",

for all large »# and all ¢ in the range |z]=1.
Finally using [(3.11), we find that for #>6s, |2|=1,

3.22) [Jan(@)| S CZ"" 0 R (') + RS (i)}
é cnzc—z(lxl—an—l)n—n+l
<Clo|™*n'™*" .

The relation [(3.4) now follaws from relations (3.12) through |(3.22).

It now remains to prove [3.5). For each k=0, 1, simple calculation together
with the integrability of |w(#)|", =1, informs us that Ay (¢, %) is also absolutely
integrable for all large #» and x+0. Hence

(3.23) 2r|x|*|@1n(®, %) —aos(, )|
SN (ALY (¢, z)— A% (¢, ©)} exp (—itx)dt

a—2

=|x|

<|2|* *{Ln(@) + ()} ,
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where

Ir,<m>=§ AL, 5)— AR, o)ldt

ItiSen?
and

()= |AL% (8, x)— Ao (¢, 2)\dt ,

ItI>en?

¢>0 being as in
Since a <2, we observe that as #n—co,

(3.24) sup || 2 In(2) =O(n* ")
as a consequence of That
3.29) sup ¢l (@) =0(r" ™),

as n—oo, follows by exactly the same way as in Basu and Maejima [4] Relations

through imply [(3.5).
This completes the proof of the theorem.
4. Proof of Theorem 2. In view of our result (1.4),

(4.1) sup |z|* ! V(@) — Vo(@)| =00 ™) .
now easily follows from and [2.12).

5. Remarks. Given the above results, it seems natural to ask if similar
results (stated in Theorem 3 below) can be obtained for the case 0<a=1 through
similar calculations. Of course the lemmas necessary in this case have to be modi-
fied accordingly (see Basu and Maejima [4]). In this case, we need the following.

Definition. A df V, is called stfictly stable if for any a,, a;>0, there exists
a constant ¢ >0 such that

Vo(a1)* Vi(asx) = Vol(az) ,

where means the convolution of distributions.
We recall the representation of cf of a stable df:

(5.1) wolt)=exp {ite—cltl“(l—iﬁ%gb(t, a))} ,

where a, B, & c are constants (¢ is any real number, 0<a<2, |8|<1, c=0) and
o(t, a)=tan (za/2) or 2z log |¢| according as a#1 or a=1. Then V, is strictly
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stable if and only if

p=0 in [(5.1) for a=1,
£=0 in for a=+1.

(See Lukacs [6].) It is easily seen that if V, is strictly stable then the correspond-
ing cf w, satisfies (2.3), on which our method of proof of Theorem 1 depended
largely. Also, in the case 1<a<2, if EX;=0, then V, is strictly stable and
conversely. _

The assumption that EX;=0 in Theorem 1 was made merely to give some
simplifications in its proof and it does not in any way restrict the scope of our
result. In fact, at the expense of a little more algebra (see Section 2 in Basu and
Maejima [4]), a similar approach leads to the following theorem. This time, it is
assumed that Z,=(an"'*)"3}..X;—M, converges in law to a stable df V, for some
sequence of reals {M,}, although M,=0 in Theorem 1.

Theorem 3. Let {X,} be a sequence of iid random variables each with an ab-
solutely continuous df Vi, pdf v, and cf o.. Suppose that (i) V. belongs to the
domain of normal attraction of a stable df V, of index a or of a strictly stable df
Vo of index a, according as 1<a<2 or 0<a=<l, (ii) o, is absolutely integrable in
r-th power for some r=1 and (iii)

S 12|57 |0y () — vol(or)|da < o0 ,

—00

where v, is the pdf of V,. Then for large n, the df V, of Z, is absolutely con-
tinuous with pdf v, such that

sup (1+2]%)|va(@) — vo(x)| =O(n*~ T2y |

Finally, it may be mentioned here that in the case a=2 (i.e. equivalently
when EXZ< o and V, is the standard normal df) much stronger results concern-
ing the non-uniform rate of convergence in the local limit theorem are available.
For example, Maejima gave a necessary and sufficient condition for

(5.2) sup {142 M(|z|n'"®)| M(n"*)} va(w) — vo(2)|
=0 (n")

to hold as n—oo, when M(z)=|z|’, 0<é=<1, and further Basu [3] has generalized
it for a more general class of M(x).

Also, results concerning probabilities of moderate deviations are well-known
(see e.g. Rudin and Sethuraman [I0], Michel [8], Patra and Basu [®). Our
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above seeks to provide counterparts of such results in the set up dis-
cribed above.
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