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1. Introduction. Let $\{X_{n}\}$ be a sequence of independent and identically dis-

tributed (iid) random variables belonging to the domain of normal attraction of a
stable distribution function (df) $V_{0}$ of index $\alpha,$

$1<\alpha<2$ . We assume that $EX_{1}=0$ .
Thus there $existsa_{1}-$

constant $a>0$ such that $Z_{n}=(an^{\gamma})^{-1}\Sigma_{\dot{g}=1}X_{j}$ converges in law

to $V_{0}$ , where $\gamma=\alpha$ .
Basu and Maejima [4] recently proved that if the df $V_{1}$ of $X_{1}$ is absolutely

continuous with a probability density function (pdf) $v_{1}$ and its characteristic func-

tion (cf) $\omega_{1}(t)$ of $X_{1}$ is absolutely integrable in r-th power for some integer $r\geqq 1$ ,

then for large $n$ , the df $V_{\iota}$ of $Z_{n}$ is absolutely continuous with a pdf $v_{n}$ such that

(1.1) $sup(1+|x|^{\alpha})|v_{n}(x)-v_{0}(x)|=O(1)$
$x$

as $n\rightarrow\infty,$ $v_{0}$ being the pdf of $V_{0}$ .
The present authors recently came across another result concerning the rate

of convergence in such local limit theorems. From this result, due to Banys [1],

it follows that if the df of $V_{1}$ of $X_{1}$ is absolutely continuous and further if

(1.2) $\int_{-\infty}^{\infty}x^{2}|v_{1}(x)-v_{0}(x)|dx<\infty$ ,

then

(1.3) $\int_{-\infty}^{\infty}|v_{*}(x)-v_{0}(x)|dx=O(n^{1-2\gamma})$

as $ n\rightarrow\infty$ .
In this paper we study the consequence of the condition (1.2) on the pointwise

convergence of $v_{n}$ to $v_{0}$ . In particular, we shall prove the following improved

version of the non-uniform rate of convergence given by (1.1):

Theorem 1. Let $\{X_{n}\}$ be a sequence of iid random variables each with an ab-

solutely continuous $dfV_{1}$ , pdf $v_{1}$ and $cf\omega_{1}$ . Assume that $EX_{1}=0$. If (i) $V_{1}$ belongs
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to the domain of normal attraction of a stable $dfV_{0}$ of index $\alpha,$ $1<\alpha<2$, (ii) $\omega_{1}$

is absolutely integrable in r-th power for some $r\geqq 1$ and (iii) the relation (1.2) holds,
then for all large $n$, the $dfV_{n}$ of $Z_{n}$ is absolutely continuous with pdf $v$. such that
(1.4) $sup(1+|x|^{\alpha})|v,$ $(x)-v_{0}(x)|=O(n^{1-2\gamma})$

as $ n\rightarrow\infty$ , where $v_{0}$ is the pdf of $V_{0}$ and $\gamma=\alpha^{-1}$ .
This $th\infty rem$ also helps us to prove the following theorem concerning pro-

babilities of moderate deviations in situations with $non\cdot normal$ limit distributions:
Theorem 2. Under the conditions of Theorem 1, as $ n\rightarrow\infty$ ,

(1.5) $\frac{1-V_{n}(L_{n})+V_{\hslash}(-L_{f}.)}{1-V_{0}(L_{\hslash})+V_{0}(-L_{n})}=1+O(n^{1-2\gamma}L_{n})$

for any sequence $\{L_{n}\}$ of reals such that $ L_{n}\uparrow\infty$ .
2. Notations and preliminary lemmas. With no loss of generality, the con-

stant $a$ in the previous section may be taken to be equal to 1.
Let $X_{0}$ denote a stable random variable having the df $V_{0}$ and let $\omega_{0}$ denote

its cf. We write $\omega_{n}(t)=E$ exp $(itZ.)$ so that $\omega_{*}(t)=\{\omega_{1}(tn^{-f})\}$ . For any function
$g(t)$ and a positive integer $k$ , we will write $g^{Ik)}(t)$ to denote $(d/dt)^{k}g(t)$ , whenever
such a derivative exists.

Then since $V_{1}$ belongs to the domain of normal attraction of $V_{0}$ ,
(2.1)

$\lim_{\rightarrow\infty}\omega_{\hslash}(t)=\omega_{0}(t)$

for all $t$. Also as in Basu [2],

(2.2)
$\lim_{n\rightarrow\infty}\omega_{n}^{tlI}(t)=\omega_{0}^{\{1)}(t)$

for all $t$. This implies, in particular, that $EX_{0}=0$, so that from the cannonical
form of $\omega_{0}(\ell)$ , we have

(2.3) $\omega_{0}(t)=\{\omega_{\theta}(\ell n^{-f})\}^{\prime\prime}$

for all $t$.
For each integer $n$ and real $x$, we define for $k=0,1$ ,

(2.4)
$\alpha_{k},(t, x)=\int_{|u|\leq|ae|*}\gamma$ exp $(i\ell u)dV_{k}(u)$ ,

(2.5) $\beta_{k*}(\ell_{1}x)=\omega_{k}(t)-\alpha_{k},(t_{1}x)$ ,

(2.6) $A_{k},(\ell, x)=\{\alpha_{k}.(\ell n^{-r}, x)\}$ ,
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(2.7) $B_{1n}(t, x)=\omega_{\hslash}(t)-A_{1*}(t, x)=\sum_{\dot{g}=1}^{n}\left(\begin{array}{l}n\\j\end{array}\right)\{\alpha_{1n}(tn^{-\gamma}, x)\}^{n-j}\{\beta_{1n}(tn^{-\gamma}, x)\}^{j}$

and

(2.8) $B_{0\sim}(t, x)=\omega_{0}(t)-A_{0*}(t, x)=\sum_{j=1}^{n}\left(\begin{array}{l}n\\j\end{array}\right)\{\alpha_{0n}(tn^{-\gamma}, x)\}^{n-j}\{\beta_{0\alpha}(tn^{-\gamma}, x)\}^{j}$ .

The last equality in (2.8) follows from (2.3) and (2.5).

Note that for each fixed $n$ and $x,$ $a_{kn}(t, x),$ $k=0,1$ , are differentiable any
number of times under the integral sign. Whenever the following inversion
integrals are absolutely convergent, we set

(2.9) $v_{n}(u)=(2\pi)^{-1}|_{-\infty}^{\infty}\omega_{n}(t)$ exp $(-itu)dt$ ,

(2.10) $a_{kn}(u, x)=(2\pi)^{-1}\int_{-\infty}^{\infty}A_{kn}(t, x)$ exp $(-itu)dt$ , $k=0,1$ ,

(2.11) $b_{k},,(u, x)=(2\pi)^{-1}\int_{-\infty}^{\infty}B_{kn}(t, x)$ exp $(-itu)dt$ , $k=0,1$ ,

for each integer $n$ and reals $u$ and $x$ . In fact, the absolutely convergent integrals
(2.9) provide the continuous pdfs that we shall use and are subjects of our $threm$ .

In what follows, $c,$ $c_{0},$ $c_{1},$ $\cdots$ or $C,$ $C_{0},$ $C_{1},$ $\cdots$ etc. will denote some positive
constants independent of $n$ and $x$ and their meanings are not of much importance
and may change from one step to another.

We need the following lemmas.

Lemma 1. For $k=0,1$ ,

(2.12) $z^{\alpha}R_{k}(z)\equiv z^{\alpha}P(|X_{k}|>z)\rightarrow c_{k}>0$ ,

(2.13) $\int_{|u|>*}|u|dV_{k}(u)=O(z^{-a+1})$

and

(2.14) $\int_{|*|\leq e}u^{l}dV_{k}(u)=O(z^{-\alpha+2})$

as $ z\rightarrow\infty$ .
Proof. While (2.12) is weIl-known (see e.g. Gnedenko and Kolmogorov [5]),

the $pr\infty fs$ of (2.13) and (2.14) can be found in Basu and Maejima [4].

Lemma 2. There exist Positive constants $\epsilon,$ $suffic\dot{te}ntly$ small, $c$ and $C$ such
that for $k=0,1$ ,
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$|A_{k’*}(t, x)|\leqq C$ exp $(-c|t|^{\alpha})$

for all $t$ in the range $|t|\leqq\epsilon n^{\gamma}$ , all $x$ with $|x|\geqq 1$ and all large $n$ .
Proof. See Basu and Maejima [4].

Lemma 3. Let $\epsilon>0$ and $c>0$ be as in Lemma 2. Then under (1.2) there exists
a constant $C>0$ such that

$|\omega_{n}(\ell)-\omega_{0}(t)|\leqq Cn^{1-2\gamma}t^{2}$ exp $(-c|t|^{\alpha})$

for all $t$ in the range $|t|\leqq\epsilon n^{\gamma}$ , all $x$ with $|x|\geqq 1$ and all large $n$ .
Proof. This is Lemma 1 in Banys [1].

Lemma 4. Let the positive constants $\epsilon$ and $c$ be as in Lemma 2. Then under
(1.2), there exist polynomials $P_{1}(\cdot),$ $P_{2}(\cdot)$ and $P_{3}(\cdot)$ with non-negative coefficients
indePendent of $n$ and $x$ such that for all large $n$ , the relations

$|a_{1}^{n-j}(tn^{-\gamma}, x)-\alpha_{0n}^{n-j}(tn^{-\gamma}, x)|\leqq n^{1-2\gamma}P_{1}(|t|)$ exp $\{-c|t|^{a}(n-j)/n\}$ , $1\leqq j\leqq n$

and
$|A_{1n}^{t2}(t, x)-A_{0f}^{t2)}(t, x)|\leqq n^{1-2\gamma}\{P_{2}(|t|)+|x|^{2-\alpha}P_{s}(|t|)\}$ exp $(-c|t|^{\alpha})$

hold for all $t$ in the range $|t|\leqq\epsilon n^{\gamma}$ and all $x$ with $|x|\geqq 1$ .
Proof. The proof is similar to that of Lemma 2.3 of Basu and Maejima [4].

In fact, the adjustments necessary are rather easy in view of the condition (1.2).

The follwing lemma is being quoted here from Smith and Basu [11] for ready
reference.

Lemma 5. Let $\epsilon>0$ and integer $n_{0}$ be fixed. Then $\prime f\Theta$ is the set where $|x|\geqq 1$ ,
$|t|\geqq\epsilon,$ $n\geqq n_{0}$ and

$\lambda_{k}\equiv\sup_{e}|\alpha_{kn}(t, x)|$ ,

it follows that $0\leqq\lambda_{k}<1,$ $k=0,1$ .

3. Proof of Theorem 1. Observe that because of assumption (ii) in $Threm$
$1$ , the integral (2.9) is absolutely convergent for all large $n$ . Further a direct
application of Parseval’s identity reveals that under the assumptions of the $threm$ ,

the integrals in (2.10) and (2.11) are absolutely convergent for all large $n$ and
$x\neq 0$ (see e.g. Smith and Basu [11]) so that for all large $n$ ,

(3.1) $v_{n}(x)=a_{1}.(x, x)+b_{1’*}(x, x)$

and
(3.2) $v_{0}(x)=a_{0*}(x, x)+b_{0n}(x, x)$ .
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We shall first prove the relation

(3.3) $\sup_{x}|v_{n}(x)-v_{0}(x)|=O(n^{1-2\gamma})$

as $ n\rightarrow\infty$ . In view of (3.3), then it is enough to prove that

(3.4) $\sup_{|x|\geq 1}|x|^{\alpha}|b_{1n}(x, x)-b_{0n}(x, x)|=O(n^{1-2\gamma})$

and
(3.5) $\sup_{|x|}|x|^{\alpha}|a_{1n}(x, x)-a_{0n}(x, x)|=O(n^{1-2\gamma})$

as $ n\rightarrow\infty$ . The relations (3.3), (3.4) and (3.5) together imply (1.4).

To prove (3.3) we observe that

(3.6) $2\pi|v_{n}(x)-v_{0}(x)|\leqq I_{1n}+I_{2n}+I_{3n}$

where

$I_{1n}=\int_{|\ell|\leq\epsilon n^{\gamma}}|\omega_{n}(t)-\omega_{0}(t)|dt$ ,

$I_{2n}=\int_{|\ell|>\epsilon n^{\gamma}}|\omega_{n}(t)|dt$

and
$I_{\$ n}=\int_{|\ell|>\epsilon n}\gamma|\omega_{0}(t)|dt$ ,

$\epsilon>0$ being as in Lemma 3.
By Lemma 3 it now follows that

(3.7) $I_{1\hslash}=O(n^{1-2\gamma})$

as $ n\rightarrow\infty$ . That

(3.8) $I_{2n}=O(n^{1-2\gamma})$

and
(3.9) $I_{3n}=O(n^{1-2\gamma})$

as $ n\rightarrow\infty$ , follow as consequences of the fact that both $V_{1}$ and $V_{0}$ are absolutely

continuous and also the relation (2.3) holds. Thus (3.3) follows from relations

(3.6) through (3.9).

We now turn to the $prf$ of (3.4). Towards that we first note that as in

Smith and Basu [11], for all $x\neq 0$ and $k=0,1$ ,

(3.10) $\int_{-\infty}^{\infty}|\alpha_{kn}(t, x)|^{n}dt=O(n^{-\gamma})$ ,

(3.11) $\int_{-\infty}^{\infty}|\beta_{k}(t, x)|^{\iota}dt=O(1)$ ,
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where $s$ is a very large number.
Now

(3.12) $2\pi\{b_{1f}.(x, x)-b_{0n}(x, x)\}=\{\Sigma^{\prime}+\Sigma^{\prime\prime}+\Sigma^{\prime\prime\prime}\}\left(\begin{array}{l}n\\j\end{array}\right)|_{-\infty}^{\infty}\{\alpha_{1n}^{n-j}(tn^{-\gamma}, x)\beta_{1’*}^{j}(\ell n^{-\gamma}, x)$

$-\alpha_{0\hslash}^{n-j}(tn^{-\gamma}, x)\beta_{0n}^{j}(\ell n^{-\gamma}, x)\}$ exp $(-itx)dt$

$\equiv J_{1n}(x)+J_{2n}(x)+J_{3n}(x)$ ,

say, where $\Sigma^{\prime},$ $\Sigma^{\prime\prime},$
$\Sigma^{\prime\prime\prime}$ denote summation over ranges $1\leqq j\leqq[n/2],$ $[n/2]+1\leqq j\leqq$

$n-2s$ and $n-2s+1\leqq j\leqq n$ respectively, $s$ being some fixed integer with $n>2s$.
Here $[y]$ means ’the integer part of $y’$ .

Next

(3.13) $J_{1n}(x)=\Sigma^{\prime}\left(\begin{array}{l}n\\j\end{array}\right)\int_{-\infty}^{\infty}\alpha_{1n}^{n-j}(tn^{-\gamma}, x)\{\beta_{1n}^{j}(tn^{-\gamma}, x)-\beta_{0n}^{j}(tn^{-\gamma}, x)\}$ exp $(-itx)dt$

$+\Sigma^{\prime}\left(\begin{array}{l}n\\j\end{array}\right)\int_{-\infty}^{\infty}\beta_{0n}^{j}(tn^{-\gamma}, x)\{a_{1n}^{n-j}(tn^{-\gamma}, x)-a_{0n}^{n-j}(tn^{-\gamma}, x)\}$ exp $(-itx)dt$

$\equiv J_{11n}(x)+J_{12i}(x)$ ,

say.
In view of the condition (1.2) and Lemma 1 for $j\geqq 1$ and $|x|\geqq 1$ ,

(3.14) $|\beta_{1}^{\dot{f}},(tn^{-\gamma}, x)-\beta_{0n}^{j}(tn^{-\gamma}, x)|$

$=|\{\beta_{1n}(tn^{-\gamma}, x)-\beta_{0n}(tn^{-\gamma}, x)\}$

$\times\{\beta_{1n}^{j-1}(tn^{-\gamma}, x)+\beta_{1n}^{\dot{g}-2}(tn^{-\gamma}, x)\beta_{0n}(tn^{-\gamma}, x)+\cdots+\beta_{0n}^{j-1}(tn^{-\gamma}, x)\}|$

$\leqq\{C_{1}x^{-2}n^{-2\gamma}\}\{R_{1}^{j-1}(|x|n^{\gamma})+R_{1}^{j-2}(|x|n^{\gamma})R_{0}(|x|n^{\gamma})+\cdots+R_{0}^{\dot{g}-1}(|x|n^{\gamma})\}$

$\leqq\{C_{1}x^{-2}n^{-2\gamma}\}\{j(C_{2}|x|^{-\alpha}n^{-1})^{j-1}\}$

$=Cn^{-2\gamma}j(C_{2}/n)^{j-1}x^{-2}$

Using (3.10) and (3.14), we then have, as $ n\rightarrow\infty$ ,

(3.15) $|J_{11n}(x)|\leqq Cn^{-2\gamma}x^{-R}\Sigma^{\prime}\left(\begin{array}{l}n\\j\end{array}\right)j(C_{l}/n)^{j-1}$

$\leqq Cx^{-2}n^{1-2\gamma}$

Now, by Lemma 4, for all $x$ in the range $|x|\geqq 1$ , as $ n\rightarrow\infty$ ,

(3.16) $\int_{|t|\epsilon}\leqq’\gamma\{\alpha_{1n}^{n-j}(tn^{-\gamma}, x)-a_{0n}^{n-j}(tn^{-\gamma}, x)\}$ exp $(-itx)dt$

$=O(n^{1-2\gamma})$ ,

provided $1\leqq j\leqq[n/2]$ . Further for each $j,$ $1\leqq j\leqq[n/2]$ ,

(3.17) $|\alpha_{1n}(tn^{-\gamma}, x)|^{n-j-n-1}|\alpha_{0n}(\ell n^{-\gamma}, x)|^{n}\leqq|\alpha_{kn}(tn^{-\gamma}, x)|^{[n\prime 4]}$ ,
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where $k=1$ or $0$ according as $1\leqq m\leqq[n/4]$ or $[n/4]+1\leqq m\leqq n-j-1$ . Also from the

integrability of $|\omega_{k}(t)|^{\prime},$ $r\geqq 1,$ $k=0,1$ and the relation (3.11) it follows that for all

large $n$ and some fixed $h>0$ ,

(3.18) $\int_{|\ell|>en^{\gamma}}|\alpha_{kn}(tn^{-\gamma}, x)|^{[n\prime\iota]}dt\leqq C\lambda^{[n/4]-h}$ ,

where $\lambda=\max(\lambda_{0}, \lambda_{1}),$ $\lambda_{0}$ and $\lambda_{1}$ being defined as in Lemma 5. In view of Lemma
5, then (3.17) and (3.18) imply that

(3.19) $\int_{|\ell|>\epsilon n^{\gamma}}\{\alpha_{1n}^{\alpha-j}(tn^{-\gamma}, x)-\alpha_{0}^{n-j}(tn^{-\gamma}, x)\}$ exp $(-itx)dt$

$=O(n^{1-2\gamma})$

as $ n\rightarrow\infty$ .
Using (3.16), (3.19) and Lemma 1, we now observe that for all $|x|\geqq 1$ ,

(3.20) $|J_{12n}(x)|\leqq Cn^{1\prec\gamma_{\Sigma^{\prime}}}\left(\begin{array}{l}n\\j\end{array}\right)R_{0}^{j}(|x|n^{\gamma})$

$\leqq C|x|^{-\alpha}n^{1-a\gamma}$ ,

for all large $n$ .
Similarly, again because of (3.10) and Lemma 1,

(3.21) $|J_{a},(x)|\leqq C\Sigma^{\prime\prime}\left(\begin{array}{l}n\\j\end{array}\right)\{R_{1}^{j}(|x|n^{\gamma})+R_{0}^{\dot{f}}(|x|n^{\gamma})\}n^{\gamma}$

$\leqq C|x|^{-\alpha}n^{1-2\gamma}$ ,

for all large $n$ and all $x$ in the range $|x|\geqq 1$ .
Finally using (3.11), we find that for $n>6s,$ $|x|\geqq 1$ ,

(3.22) $|J_{s\sim}(x)|\leqq C\Sigma^{\prime\prime\prime}n^{2\iota-2}\{R_{1}^{\dot{g}-8}(|x|n^{\gamma})+R_{0}^{j-2}(|x|n^{\gamma})\}$

$\leqq Cn^{2\cdot-2}(|x|^{-a}n^{-1})^{-4\iota+1}$

$\leqq C|x|^{-\alpha}n^{1_{\ulcorner}2\gamma}$

The relation (3.4) now follows from relations (3.12) through (3.22).

It now remains to prove (3.5). For each $k=0,1$ , simple calculation together

with the integrability of $|\omega_{k}(t)|^{r},$ $r\geqq 1$ , informs us that $A_{kn}^{Il)}(t, x)$ is also absolutely

integrable for all large $n$ and $x\neq 0$ . Hence

(3.23) $2\pi|x|^{\alpha}|a_{1n}(x, x)-a_{0},.(x, x)|$

$=|x|^{\alpha-}|\int_{-\infty}^{\infty}\{A_{1n}^{t21}(t, x)-A_{0’*}^{t21}(t, x)\}$ exp $(-\dot{t}tx)dt|$

$\leqq|x|^{\alpha-S}\{I_{1}^{*},(x)+I_{*}^{*}(x\rangle\}$ ,
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where

$\Gamma_{1n}(x)=\int_{|\ell|\leq en^{\gamma}}|A_{1}^{I2t}(t, x)-A_{0n}^{t2)}(t, x)|dt$

and

$P_{n}(x)=\int_{\mathfrak{l}\ell I>\cdot n}\gamma|A_{1n}^{(2)}(t, x)-A_{0\sim}^{t21}(t, x)|dt$ ,

$\epsilon>0$ being as in Lemma 4.
Since $\alpha<2$, we observe that as $ n\rightarrow\infty$ ,

(3.24) $\sup_{|a|\geq 1}|x|^{\alpha-2}I_{1n}^{*}(x)=O(n^{1-2\gamma})$

as a consequence of Lemma 4. That

(3.25) $\sup_{|r|\geqq 1}|x|^{\alpha-2}I_{n}^{*}(x)=O(n^{1-2}$
‘

$)$ ,

as $ n\rightarrow\infty$ , follows by exactly the same way as in Basu and Maejima [4]. Relations
(3.23) through (3.25) imply (3.5).

This completes the $prf$ of the theorem.

4. Proof of Theorem 2. In view of our result (1.4),

(4.1) $\sup_{l}|x|^{\alpha-1}|V,(x)-V_{0}(x)|=O(n^{1-2\gamma})$ .
Theorem 2 now easily follows from (4.1) and (2.12).

5. Remarks. Given the above results, it seems natural to ask if similar
results (stated in $Th\infty rem3$ below) can be obtained for the case $0<\alpha\leqq 1$ through
similar calculations. Of course the lemmas necessary in this case have to be $mMi$.
fied accordingly (see Basu and Maejima [4]). In this case, we need the following.

Definition. A df $V_{0}$ is called strictly stable if for any $a_{1},$ $a_{8}>0$, there exists
a constant $a>0$ such that

$V_{0}(a_{1}x)*V_{0}(a_{1}x)=V_{0}(ax)$ ,

where $*means$ the convolution of distributions.
We recall the representation of cf of a stable df:

(5.1) $\omega_{0}(\ell)=\exp\{i\ell\xi-c|t|^{\alpha}(1-i\beta\frac{|t|}{t}\phi(t, \alpha))\}$ ,

where $\alpha,$
$\beta,$ $\xi,$ $c$ are constants ( $\xi$ is any real number, $0<\alpha<2,$ $|\beta|\leqq 1,$ $c\geqq 0$) and

$\psi(t, \alpha)=\tan(\pi\alpha/2)$ or $2\pi^{-1}\log|t|$ according as $\alpha\neq 1$ or $a=1$ . Then $V_{0}$ is strictly
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stable if and only if

$\beta=0$ in (5.1) for $\alpha=1$ ,
$\xi=0$ in (5.1) for $\alpha\neq 1$ .

(See Lukacs [6].) It is easily seen that if $V_{0}$ is strictly stable then the correspond-

ing cf $\omega_{0}$ satisfies (2.3), on which our method of proof of Theorem 1 depended

largely. Also, in the case $1<a<2$ , if $EX_{1}=0,$ . then $V_{0}$ is strictly stable and

conversely.
The assumption that $EX_{1}=0$ in Theorem 1 was made merely to give some

simplifications in its $prf$ and it does not in any way restrict the scope of our
result. In fact, at the expense of a little more algebra (see Section 2 in Basu and
Maejima [4]), a similar approach leads to the following theorem. This time, it is
assumed that $Z_{n}=(an^{1/\alpha})^{-1}\Sigma_{\dot{g}=1}^{n}X_{j}-M_{n}$ converges in law to a stable df $V_{0}$ for some
sequence of reals $\{M_{n}\}$ , although $M_{n}=0$ in Theorem 1.

Theorem 3. Let $\{X_{n}\}$ be a sequence of iid random variables each with an ab $\cdot$

solutely continuous $dfV_{1}$ , pdf $v_{1}$ and $cf\omega_{1}$ . SuPpose that (i) $V_{1}$ belongs to the
domain of normal attraction of a stable $dfV_{0}$ of index $\alpha$ or of a strictly stable $df$

$V_{0}$ of index $\alpha$ , according as $1<a<2$ or $0<a\leqq 1$ , (ii) $\omega_{1}$ is absolutely integrable in
r-th power for some $r\geqq 1$ and (iii)

$\int_{-\infty}^{\infty}|x|^{[\alpha]+1}|v_{1}(x)-v_{0}(x)|dx<\infty$ ,

where $v_{0}$ is the pdf of $V_{0}$ . Then for large $n$ , the $dfV_{n}$ of $Z_{n}$ is absolutely con-
tinuous with Pdf $v_{n}$ such that

$\sup_{l}(1+|x|^{\alpha})|v_{n}(x)-v_{0}(x)|=O(n^{\iota-([\alpha]+1I/\alpha})$ .

Finally, it may be mentioned here that in the case $a=2$ (i.e. equivalently

when $ EX_{1}^{2}<\infty$ and $V_{0}$ is the standard normal df) much stronger results concern-
ing the non-uniform rate of convergence in the local limit theorem are available.

For example, Maejima [7] gave a necessary and sufficient condition for

(5.2) $\sup_{l}\{1+x^{2}M(|x|n^{1/2})/M(n^{1/2})\}|v_{n}(x)-v_{0}(x)|$

$=O(M^{-1}(n^{1\prime 2}))$

to hold as $ n\rightarrow\infty$ , when $M(x)=|x|^{\delta},$ $0<\delta\leqq 1$ , and further Basu [3] has generalined

it for a more general class of $M(x)$ .
Also, results concerning probabilities of moderate deviations are well-known

(see e.g. Rudin and Sethuraman [10], Michel [8], Patra and Basu [9]). Our
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Theorem 2 above seeks to provide counterparts of such results in the set up dis-
cribed above.
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