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1. Introduection. The concentration function of a real-valued random varia-
ble X is defined to be

.1) Q(X; N)=sup P(e=X=<x+4) .
Some properties of Q(X; 1) are shown in Hengartner and Theodorescu [3] and
Petrov [5].

Let {¢&;} be a strictly stationary, absolutely regular sequence of random varia-
bles, i.e., {¢;} satisfies the absolute regularity condition

(1.2 B(m)=E{ sup |P(A|#2)—P(A)|}10  (n—)
Ade. et ’
where .#; denotes the o-algebra of events generated by &,, ..., & (@<b).
Next, let
1.3) Se=%& and S=0.

i=1

In this paper, we shall estimate Q(S,; i#''%) (>0, 2>0).

2. Main result. Let {§;} be a strictly stationary, absolutely regular process
with coefficient B(n).

2.1 Elgy|"<oo .
Let
a if O<axl,
22 r={a’ if l<a'<a=2,
2 if a>2,
and put
(2.3) Ba(r)=cn'""

where ¢ is a positive constant.
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We shall consider the following conditions:

Condition A. (AI). {¢;} is absolutely regular, holds with a (O<a=<1)
and B(») is arbitrary; ‘ '

(AIl). {¢;} is absolutely regular, holds with a (1<ax2), Ef=0 and
i:} (B}~ '*"'* < oo for some a’ (0<a’<a);

(AIII). {&;} is absolutely regular, holds with « («>2), E¢,=0 and
$ {ﬁ(n)}(a—2)/a<oo.

Condition B. There exist functions p=p(n) and g=g(») for which the follow-
ing relations hold: |

(i) p—oo, g—oo, k—oo, and p/g—oo as n— oo;

(i) max {kg/n, kB(g)}=0F% ')
where k=[n/(p+q)] and [s] denotes the largest integer m such that m=s.

We shall prove the following theorem.

Theorem. Let {§;} be a strictly stationary absolutely regular process with coef-
ficient B(n). Let Condition B and one of Conditions (Al)-(AIll) be sdtisﬁed. Sup-
pose that the distribution of S./B.(r) converges weakly to a stable distribution with
exponent y then the inequalities

(2.4) KWk "<Q(Sa: AB(r)=M(A]+1)k™V7

hold, where 2 is a positive number, K(2) is some positive constant depending on 2
and M is an absolute constant.

3. Auxiliary results. In what follows, by the letter M, we shall denote any
quantity (not always the same) which is bounded in absolute value. Let {&;} be
a strictly stationary, absolutely regular process with coefficient (). The following
lemma is easily proved by the method of the proof of Theorem 1 in Yoshihara [6].

Lemma 1. Let p, g and k be arbitrary positive integers. Let {y;} be a family of
random variables such that for each j 7; is measurable with respect to A =3IV,
Then, for any k

@ PUZ, Yie A-2kAASPUZ e ASP(E Vile A)+248(0)

where A is a Borel set of the real line and (Y} is a family of independent random
variables such that for each j Y; has the same distribution as that of ;.

Next, we shall prove the following

Lemma 2. Let {§;} be absolutely regular. Suppose that one of Conditions (AI)-l
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(AIILl) is satisfied. Then, for any positive integer m
3.2) E|Z &d'<Mm

where y is the number defined in [(2.2).
Proof. holds obviously under Condition (AI) or (AIII).
Now, we shall prove under Condition (AII). Let

o=fs el <m®™
=10  otherwise,

;=C;—EC; and §;=&;—{;. Since, by assumption, E¢;=0, so E{;=0. We note that
1«:(j>':="1 Z)=MmEC .
So
3.3) Bl % LA <(BI E L < Mm™ B
i= j=
nga'n[{mI/u’}2—a’Elelltx']a’lzéMmElellu’

Since the inequality |a+b| <la|"+]b|" holds for any two numbers @ and b and for
any 0<r<1, so we have |Z Lol Z [Z;*'~. Hence, by Lemma 2.1 in Davydov
[1] and Condition (AII) we have

G EE LT SEE EDIE G SBE RS 0
=B(E 16"+ 2, GG
éMlélElf;!"’+gj{ElfolElfol“"‘Jr10(E|fot“)“"“(ﬁ(|j—im‘-‘a'/«*}]

<M[mE|\Z|* +m*m=**=2""*"(E\Ty|")*
+m(EL" " T (B = Mm .

Hence, from and (3.4)
BIE &1 <MIE| S L7+ EI 5 5l 1= Mm,
which implies (3.2). Thus, the proof is completed.

4. Proof of Theorem. Let 6=4,=(logn)*?(n=2). Let x be arbitrary. By
Lemma 1 ’
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@D Pe=P—BpRsSso+Bu)2)
SP@—Bun(1+/25 5 £ €ynirarniso+ Bur)L+0)2)
FPUZ, B Eutiprarssed 2B+ PUSs—Suipea | 23BA))
SP@—B,()1+3)25 5 Yiso+ B +0)/2)
P 5, Zi 288+ PSa—Suipsol 20Bur14)+ 4450
=P1+Py+Py+O®™")  (say)

where (Y3, ..., Yi} ({Zy, ..., Zu)} is a family of i.i.d. random variables such that
the d1str1but10n of Yi(Z,) has the same distribution as that of Z: E,(Z: &;).

Firstly, we shall estimate P,. As Zy, ..., Zy are i.i.d. random varlables, %)
from Marcinkiewicz-Zygmund inequalities [4] and

4.2) Elg_}él Z <ME"E\Z,' < Mk'"*q

and so

4.3) | P, M5By (K "q< Mk
Next, from

(4.4) Py< Mo B (r)(n—k(p+q) = ME™'T .

Finally, since from E|Y./Bu(7)I" is bounded and Y,;/B.(r)’s are
i.i.d., so from Theorems 4.3 and 5.1 in Esseen [2] we have

@5 Pi=P(Bla—T10s 5 (ulBur) < B+ L5 ) ar
Thus, from (4.15 and (4.3)-(4.5)
(4.6) P(@—Bu(1)/2=Sp=a+B.(1/2) = ME™'"

which implies
4.7) Q(S»: B(N=METT,
In general, for arbitrary positive numbers ¢ and 2
QX; 2)=M([2]+1)Q(X: c)

holds. So, from we have the right-hand side inequality of [2.4).
Similarly, we have



CONCENTRATION FUNCTION 61

4.8) Po%PrP(I’?i.‘l Z,i| 2 Bu(1)8/4)— P(ISa—Stip+0| Z Bu(r)9/4) = P+ O% ')

where
Pi=P@—B.()1~8)25 % YoSo+Bap)1—-0)2) .

As from E|Y,|'<MBi(y) and Y,,'s are i.i.d., so from Theorems 4.3 and
5.1 in Esseen we have

4.9) P =ME™",

Hence, from (4.8) and [4.9), we have the left-hand inequality in {2.4). Thus the
proof is completed.
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