YOROHAMA MATHEMATICAL
JoURNAL VoL. 27, 1979

CONVERGENCE RATES OF THE INVARIANCE PRINCIPLE
FOR ABSOLUTELY REGULAR SEQUENCES

By
KEN-ICHI YOSHIHARA
(Received December 19, 1978)

1. Introduction. Let {£;} be a strictly stationary sequence of random variables
which are defined on a probability space (2, %, P). For a=<b, let A, denote the
o-algebra of events generated by &,,...,§. We shall say that the sequence
satisfies the absolute regularity (a.r.) condition if
(1.1) Bm)=E{ sup |P(A|-A£°)—PA)N} 10  (n—c0).

Aeay
For any T(0<T=oo), let Cr=C[0, T'] be the space of all continuous functions

on [0,T]. We give the uniform topology by defining the distance between two
points £ and ¥ in Cr as

1.2) or(z, y)= sup ly®)—x(?)| .
’ 0stsT

: ) -
Let Sk:jzlej and Sy=0. Define a random element Sr={Sr(¢): 0=¢=T} in Cr by

Si for t=k, k=0,1,...,[T],
(1.3) Sr(f)=1{linearly interpolated for te[k—1,k], k=1,...,[T],
S[T] for [T]étéT .

where [s] denotes the largest integer m such that m<s. Further, let X,=
{Xa(): 0=t=<1} be the random elements in C, defined by

L4 X(O="0) RS, Osts))
P

where

(1.5) F=E&i+2 §1E$o~55>0 .

In what follows, we assume that ¢=1.

It is known that if E£,=0 and for some >0, E|&|*** < oo and T {8()}*'***' < oo,
then X, converges weékly to a standard Wiener process w={w(t): 0=¢=<1}. So,
if we put |
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(1.6) Fh(2)=P(sup |Xa()|=2)
- 0sts1
and
1.7 F(z)=P(sup |w(t)|=2)
0ostsl

4 5 i)t exp | GiHDR

= ,-§o 2j+1) exp{ 37 } ’
then
(1.8) 31.12 Fo(2)=F(2) .

In this paper, we shall prove the following theorems using Rosenkranz’s
method in [3].

Theorem 1. Let {§;} be a strictly stationary, a.r. sequence of random variables
such that E€,=0 and for some 6>0 El&|'"* <o and X n{fn)}*’“** <co. Then

1.9) sup |Fu(&)— F@)|=0(n"""*(log n)"") .

Next, we denote by Py the Wiener measure on C;. As in [3], by a “functional”
F, we mean a real-valued function F with domain C,. We define

(1.10) Vu(2)=P(—o<F(X,)=2)
and
(1.11) : VU(2)=Pw(—oc<F(w)=2) .

Then, we can extend as follows.

Theorem 2. Let the conditions of) Theorem 1 be satisfied. Let F be a uni-
Sformly continuous functional, i.e.,

112 |F(f)—~F@)|=Kp:\(f, 9) (f,9eCy)
and suppose that for some positive constant L

(1.13) |@(z+h)—T(2)|=L|h| .
Then

1.14) T u(2) T (2)| =00 "(log )""*) .

2. Auxiliary results. In this and following sections, by the letter K, with
or without subscript, we shall denote various positive constants.
We shall consider some lemmas.

Lemma 2.1. If the conditions of Theorem 1 are statisﬁed, then for any posi'-
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tive integer m
2.1 E{max |S;|'}Y<Km’ .
1Sism
Hence, for any >0
2.2) P(max |S;|>7)=Km'/r* .
1sism

is the-special case of Theorem 3 in [5).

Next, let {5;} be a strictly stationary, a.r. process such that E7;=0, Var 5=
>0, and Elp|*"’ < oo for some 6>0. Let w={w(f): 0=¢< oo} be a standard Wiener
process defined on the probability space (2, %, P). '

Lemma 2.2. Let {7;} be the sequence defined above. Let k>0 and i, <is<---<i;
“be arbitrary integers. Let g(y,, ..., y:) be any bounded Borel function on the k-
dimensional Euclidean space R*, say, g, ..., yo)|=<Ko. Then, there exists a
sequence of nomnegative i.i.d. random variables t,, ...,t. with the following pro-
perties:

2.3) |Eg(ni,s iy -« +» D) — Egw(T), w(Ta)—w(T), ..., w(Te)—w(Ti-1))|
=2K,kB(d)

where T;=t:++--+1; (=1, ..., k), To=0 and d=1sr?siil—1 (t5+1—1;). Moreover, we
have
Er;=c
and
Edi<K;Eln|¥ (j=1,2,...).
Proof. Let {Y;} be the sequence of i.i.d. random variables, each Y; having

the same distribution function as that of 7;. Then, from the proof of Lemma 1
in [4] it follows that

IEg(v‘p 77‘3! sy vik)_Eg(Y"ll Yl’g, ce ey Y‘g)I§2K0k;8(d) .

So, applying Rosenkranz’s general version of the Skorokhod representation theorem
(Theorem 4 in [3) to {Y;, Y5, ..., ¥3,}, we have the lemma.

Remark. We can easily show that [Lemma 2.2 remains true, if we use a func-
tion g of the type in Lemma 1 in instead of the bounded function.

3. Proof of Theorems. For any positive integer », we define the following
numbers: ’



52 KEN-ICHI YOSHIHARA

01, r=lam™],

m=[n
~1/8 1/2

e=e,=n ' (log n)
r=ra=(1/4)esn""

To prove [Theorem 1, we need some lemmas.
Firstly, we note that the following lemma is easily proved by Lemma 2.1.

Lemma 3.1. If the conditions of Theorem 1 are satisfied, then
(3.1 mP(max IS/l =27)=0(n"""*(log n)''*) .
Lemma 3.2. Assume that the conditions of Theorem 1 are satisfied. Let

S=1{S.(t): 0=<t=mn} be the random element C, defined by

S,; for t=rj, j=1,...,m,
3.2) Sat)={Smr  for mr<t=n

linearly interpolated for tel[(j—1)r,jr), ji=0,1,...,m.
Then

(3.3) P(0a(Sn, Sw)=ean'*)=0(n"""*(log n)'"*) .

Proof. It follows from the method used in the proof of (10) in [I] that

(3:4) on(Sns S)=sup |S,(5)—S,(t)
=2max{ sup |S;—Si-n}+ sup [S;—Sm.l .
18ism (i-1)rsisir mrsiSe
So
(3.5) P(on(Sn, Sw)=41)

< ZP( max |Sj—Su-1e=7)+P( max |S;—Sml=2p)

=1 (t-1rsistr mrsisn
<(m+1)P(max |S;|=7) .
ossisr

Hence, follows from and [3.5), and the proof is completed.
Lemma 3.3. Let g=[n'"*] and p=r—q. Put |
p .
7)6=’_§1 Els-11r+i (=1, ...,m)
(3.6) Ci=3§'1€(4—1)r+p+i (=1, ...,m)

n—me
Cm+1= 2 Emrti
t=1
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Further, let S.=(S.(t): 0<t<n} be the random element in C, defined by

j
El 9 for t=rj, j=0,1,...,m,

Sy Saty= El 9 for mr<tsn,

linearly interpolated for tel(j—1)r,jr), j=1...,m
Then
(3.8)

P(pa(Sa, Sa)=47)=0(n"""* log n)'*) .
Proof. Since

0a(5a, 8= max | 5 Gl -+ Gl ,
1S5sm =1

so from the method of the proof of Theorem 3 in (cf. the proof of
(below)) and

PlouSs, S0 24r) S P(max | £ 042212+ PGmel 227

< K{(m*EC/rA+ mB(p)) -+ ECms1/ra}
< Kmg*lri+ 7 [ra+mB(D))

—1/8

=o(n *(log n)'"*) .

Lemma 3.4. Let {7;} be the random variables defined by (3.6).

Then, there
exists a sequence of non-negative i.i.d. random variables ©

Mot (v=1,2) with
the following properties:
3.9) P( max |w(T5")| = z2—¢)+o(n~""*(log n)'"*)
Jam '
< P(sup |S,(nt)|<z2)
osts1
< P(max lw(T )| <z+¢)+o(n " "*(log n)'"*)
Iam
Where T(’y,'— (y) (y)

e boee ko (§=1,...,m), To"'=0 and

W) __, —~1p 2
(3.10) Bel =n Ep
E@"Y <Kn Eq}

(J=1y 2’ .. -) ’
=1, 2).

Proof. We note that {7, ..., 7m} satisfies the a.r. condition and from Lemmal
3.1 E(p”*p)'<K. So putting
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9.(Y1, --J,ﬂm)={1 if 1rsn3£xm (" mz yo=z+(—1),
0

otherwise, .
(v=1,2)

by Lemmas 3.2 and 2.2 we can conclude that there exists a sequence of i.i.d.
random variables t,, ..., r, satisfying (3.10) such that

P(sup Su(nt)| < 2n'*) = P( sup 1Sa(nt)) < (2—e)n""%)— P(00(S, Sp)zen'?)

‘=P(max | IZI 7l < (@2—eyn'*)+o(n™%(log n)''*)
2 P(max | w(T}“)I <z—e)—Kmp(g)+o(n"""*(log n)''*)

and

P(sup |Su(t)|szn'’")< P sup 1Sa(nt)| < (2+)0*"2) + P(on(S,, Su) = en'’?)

_P(I?jax IZ 77‘!s(z+e)n1/$)+o(n—1/8(log n)l/l)

§P(11;1jasx Iw(T?’)I§z+e)+Kmﬁ(q)+o(n‘”°(log n)''%) .

Since mB(g)=0(»"*""*), (3.9) follows from the above inequalities.

Lemma 3.5. Let To, Ty, ..., Tw be one of two families (T, T, ..., T")
(v=1, 2) obtained in Lemma 3 4. Then

3.11) P( max
1Sism

w(T;)-—w(—;;)i = e) =0m""*(log n)'"*) .
Proof. We define random variables Z; (j=1, ..., m) by
Z;= é T.-——l*) =T;—-L.
=1 m m
Then, we can rewrite w(T';) as

W(T)=w ( +Z,) G=1, ..., m).
We note here that

|Eqt—p| gzp[’_ijp Egit; +1>“j>:j1 IE&t]

ézp{Eleolfw}s/uH)[jg:p {ﬁ(j)}(z+a)/(4+a)+p—1j‘€:1 j{ﬁ(j)}uwmua)]

=0(1)
and so
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|Eey—m ™= Egi—m Y =ln"'p(1+O(p™)}—m~'| s Kn”"(g+O1)
_____O(n~3l4) .

On the other hand
Var (r)<Ecl<Kn*Epi<Kn°p* .

Hence, if we put A=»"'*, then by Kolmogorov’s inequality
El m
P(max |Z;|>)<P(max |3 (r;—Ery)|>2— X Im™ —Erjl)
1S5sm 1Sfsm t=1 i=1

<P(max | 3, (ci—Er|>/2)

1sjsm i=1

~-1/8 l/l)

<17 3 Var r,< KX *mn~p* =o(n"""*(log #)

=1
The rest of the proof is the same as the proof of Lemma 6 in [3] and so is omitted.
Proof of Theorem 1. The proof is easily followed from Lemmas B.2,B8.4andB.5.

Proof of Theorem 2. The proof is the same as that of Theorem 5 in [3] and
so is omitted.
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