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Introduction. The Reidemeister-Singer theorem [Rd], [Sg] states that any

two Heegaard splittings of a 3-manifold are stably equivalent. If one deals with

periodic homeomorphism on 3-manifolds, it is natural to ask whether there is an

equivariant version of the Reidemeister-Singer theorem. In this paper we es-

tablish such a theorem in the case of involutions, i.e. periodic homeomorphismS

of order 2.
Let $f:M^{n}\rightarrow M^{n}$ be an involution on an m-manifold $M$. In [BL] Browder

and Livesay define a submanifold $N$ of codimension one in $M$ to be characterlstic
if there are submanifolds $U$ and $V$ such that $M=U\cup V,$ $U\cap V=\partial U=\partial V=N$ and

$f(U)=V$. If $m=3$ , the submanifold $N$ is a surface. $Morver$ if $f$ is an orien-

tation preserving involution, then there exists a characteristic submaniforld $N$ of

$M$ such that $(M, U, V)$ is a Heegaard splitting (see Proposition 2.4): We call such

a splitting a characteristic Heegaard splitting and use the notation $(M;U,$ $V,f7$

to emphasize $f$. Since we are dealing with involutions, a stable equivalence rela-

tion for characteristic Heegaard splittings must involve attaching pairs of handles.

We define an equivalence relation, called ss-equivalence, on the set of character-

istic Heegaard splittings. This corresponds to stable equivalence in the usual

Heegaard $thry$ . Roughly, the ss-equivalence relation is defined by two opera-

tions: (1) An equivalence operation which says that two characteristic Heegaard

splittings $(M;U_{1}, V_{1},f_{1})$ and $(M;U_{2}, V_{2},f_{2})$ are equivalent if there is an equivalence

of Heegaard splittings $h:(M, U_{1}, V_{1})\rightarrow(M, U_{2}, V_{2})$ such that $f_{3}=h\circ f_{1^{\circ}}h^{-1}$ . (2) A

stabilization operation that is a 2-fold stabilization in the usual Heegaard $thry$

and requires that whenever a stabilizing handle is added to one side of a splitting,

the image of the handle be added to the other.

Our main result is the following theorem:

Theorem. Let $M$ be an orientable closed 3-manifold. Then two charaderistic
Heegaard splittings $(M;U_{1}, V_{1},f_{1})$ and $(M;U_{2}, V_{2},f_{2})$ are ss-equivalent $lf$ and only

$11$ The results in this article are contained in the auther’s Ph.D. thesis written at
University of Illinois under the direction of Professor R. Craggs.
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if there is a homeomorphism $h:M\rightarrow M$ such that $f_{2}=h\circ f_{1}\circ h^{-1}$ and $h(\partial U_{1})\cap\partial U_{2}$

contains a neighborhood of the fixed point set for $f_{2}$ in $U_{2}$ . In particular if$f_{1}$ and
$f_{2}$ are conjugate, fixed loint free involutions, then $(M;U_{1}, V_{1},f_{1})$ and $(M:U_{2}, V_{2},f_{2})$

are ss-equivalent.

In \S 2 we give a construction for producing characteristic Heegaard splittings
(CHS-construction) starting with a fixed involution $f$ on $M$ and a fixed triangu-
lation $K$ on $M$ invariant under $f$. Such splittings are said to be standard. In
\S 3 we define the ss-equivalence relation and show that any two standard Heegaard
splittings, starting with the same involution and triangulation, are ss-equivalent
provided that the Heegaard surfaces coincide in a neighborhood of the fixed point
set. In \S 4 we prove our Reidemeister-Singer theorem. The proof is suggested
in part by Craggs’s $prf$ in [Cr].

We wish to thank Professor R. Craggs for helpful discussion and encouragement.

\S 1. Notation and definitions

We work in the piecewise linear category.
Maps are all piecewise linear maps. The interior, closure, and boundary

of $(\cdots)$ are denoted by Int $(\cdots)$ , Cl $(\cdots)$ , and $\partial(\cdots)$ respectively.
For a set $Z$ of simplexes, $|\partial$ denotes the union of simplexes in $Z$. Hence if

$Z$ is a complex than $|Z|$ is the carrier or underlying space of $Z$. For $\overline{a}$ complex
K. $K_{i}$ denotes the i-skeleton of $K$, i.e. the set of simplexes in $K$ whose dimension
are not bigger than $i$. Hence $K_{i}$ is a subcomplex of $K$. For a subset $X$ of $|K|$ ,
$\overline{N}(X;K)$ denotes the smallest subcomplex of $K$ whose carrier $ntains$ a neigh-
borhood of $X$ in $|K|$ , and $N(X;K)$ denotes the carrier of the complex $\overline{N}(X;K)$ .
We denote by $K(X)$ the smallest subcomplex of $K$ whose carrier contains $X$.
Note that for a subcomplex $J$ of $K$ we have $K(|J|)=J$. For a simplex $b$ in $K,\hat{b}$

denotes the barycenter of the simplex $b$, and $\hat{K}$ denotes the barycentric subdi-
vision of $K$. For two joinable subcomplexes $B$ and $C$ of $K,$ $B*C$ denotes the
join of $B$ and $C$ ; hence $B*C$ is a polyhedron in $K$. If $B$ and $C$ are simplexes in
$K$, then we assume that $B*C$ is also a simplex in $K$ (see [Zm] for the definition
of join).

A l-dimensional complex $T$ is called a tree if it is simplicially $1lapsible$ .
Let $M$ be a manifold and $X$ a polyhedron in $M$. In this paper, for a regular

neighborhood $N$ of $X$ in $M$, we always assume that $N$ is small with respect to
things previously defined and that $N$ meets the boundary of $M$ regularly. That
is to say, we construct $N$ as follows: $Chse$ a triangulation $K$ in which all
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subspaces, previously mentioned in the argument, are subcomplexes, let $K^{\prime\prime}$ be

a second derived subdivision of $K$, and let $N=N(X;K^{\prime\prime})$ .
For a monifold $M$ and a submanifold $N$, we say that $N$ is proper in $M$ pro-

vided that $\partial N\subset\partial M$ and Int $N\subset IntM$.
For a closed 3-manifold $M$, a Heegaard splitting of $M$ is a triple $(M;U, V)$

such that each of $U$ and $V$ is a cube-with-handles, $U\cup V=M$, and $U\cap V=\partial U=\partial V$.
A map $f:M\rightarrow M$ is an involution provided that $f\circ f$ is the identity map. We

denote by $F(f)$ the fixed point set of $f$.
A triangulation $K$ of a 3-manifold $M$ is invariant with respect to an involu-

tion $f:M\rightarrow M$ provided that $f:K\rightarrow K$ is simplicial and $F(f)$ is triangulated by $K$.
A Heegaard splitting $(M;U, V)$ is characteristic with respect to $f$ if $f(U)=V$.

To emphasize $f$ we use the notion $(M;U, V,f^{\sim})$ instead of $(M;U, V)$ . Two char-

acteristic Heegaard splittings $(M;U, V,f^{\backslash })$ and $(M;X, Y,f)$ are equivalent if there
is an orientation preserving homeomorphism $g:(M, U, V)\rightarrow(M, X, Y)$ such that
$f\circ g=g\circ f$. Note that if $f$ is an orientation preserving involution, then $(M;U, V,f)$

and $(M;V, U,f)$ are equivalent. The equivalence is induced by $ f:(M, U, V)\rightarrow$

$(M, V, U)$ .
For a map $f:M\rightarrow M$, a subset $Z$ of $M$ is an invariant set for $f$ if $f(Z)=Z$.

Note that for a characteristic Heegaard splitting $(M;U, V,f),$ $\partial U$ is an invariant
set for $f$ and $F(f7\subset\partial U$.

Let $K$ be an invariant triangulation of $M$ with respect to $f$ such that

$N(F(f);K)$ is a regular $neighborhd$ of $ F(f7\cdot$ A proper annulus in $N(F(f);K)$

is admissible provided that the annulus satisfies the following four conditions (see

Fig. 1):

(1) The annulus is an invariant set for $f$.
(2) If $J$ is a $tr$iangulation of $\partial N(F(f);K)$ induced by $K$, then the boundary of

the annulus consists of dual l-cells of l-simplexes of $J$ with respect to the bary-

centric subdivision $\hat{J}$.
(3) For each l-simplex $b$ of $K$, Int $b$ meets the interior of the annulus if

and only if $b$ lies in $F(f)$ .
(4) The annulus contains a component of $F(f)$ .
Throughout this paper we assume that $f:M\rightarrow M$ is a fixed orientation pre-

serving involution and that $ F(f\gamma$ is a disjoint union of l-spheres $S(1),$ $\cdots,$ $S(n)$ .
Furthermore, for any triangulation $K$ of $M$ that we deal with, we assume that
$K$ is invariant with respect to $f$ and that $K$ is sufficiently fine so that $N(F(f);K)$

is a regular $neighborhd$ of $F(f)$ . The existence of such a triangulation can be

shown as follows: Since the orbit space of $f$ is a manifold, let $J$ be a triangu-
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$b$ : a simplex on $\partial N(F(f);K)$

Fig. 1.

lation of the orbit space. Then $J$ induces a triangulation of $M$ by publing back.
Let $K$ be the second barycentric subdivision of the triangulation. Then $K$ is a
desired invariant triangulation of $M$.

We use the sign $\square $ to indicate the end of proofs.

\S 2. Existence of characteristic Heegaard splittings

The main result in this section is $Propo\dot{r}tion2.4$ , a construction for producing
characteristic Heegaard splittings. This construction will provide a very specific
model handling the difficult tasks in proving the Reidemeister-Singer $threm$ .
The notation in the sequence of propositions is cumulative; once introduced,
something will be proper subject matter for future propositions.

Deflnition. A set of annuli $A(1),$ $\cdots,$ $A(n)$ in $N(F(f);K)$ is called a construc-
tive A-set provided that for each $i=1,$ $\cdots,$ $n$ , the annulus $A(i)$ is an admissible
annulus in $N(S(i);K)$ .

Deflnition. A set $\nu$ of vertices in $K$ is called a constructive $V\cdot set$ provided
that the set $\nu$ satisfies the following three conditions:

(1) $\nu\cap f(\nu)=\phi$ .
(2) The union of $\nu$ and $f(\nu)$ is the set of all vertices in $K$ which do not lie

in the fixed point set $F(f)$ .
(3) There is a constructive A-set $\{A(1), \cdots, A(n)\}$ such that for each $i=1,$ $\ldots,$ $n$ ,

$\partial A(i)$ separates the set $\nu\cap N(S(i);K)$ and $f(\nu)\cap N(S(i);K)$ on $\partial N(S(i);K)$ .
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The A-set is called a companion A-set to $\nu$ .
Proposition 2.1. There are an invariant triangulation $K$ of $M$ and a $con$.

structive A-set.

Proof. Any triangulation of the orbit space of $M$ which has the image of
$F(f)$ (under the identification map) in the l-skeleton pulls back to an invariant
triangulation of $M$. Let $K$ be the second barycentric subdivision of such an
invariant triangulation of $M$. Then by an argument similar to the one in

Lemma 1 of [MS] there is, for each $i=1,$ $\cdots,$ $n$ , an admissilble annulus $A(i)$ in
$N(S(i);K)$ . Thus the set $\{A(1), \cdots, A(n)\}$ is a constructive A-set. $\square $

Proposition 2.2. For each constructive A-set a (constructive with respect to

an invariant triangulation $K$ of $M$) there is a constructive V-set $\nu$ such that $a$ is

a compamOn A-set to $\nu$ .
Proof. Let $\alpha$ consist of annuli $A(1),$ $\cdots,$ $A(n)$ . For each $i=1,$ $\cdots,$ $n$ , let $Q(i)$

be a connected component of $N(S(i);K)-A(i)$ . Then there is a tree $T(i)$ in $K_{1}$

such that $|T(i)|\subset Q(i)$ and $T(i)_{0}=K_{0}\cap Q(i)$ . Let $J$ be the complex obtained from
$K$ by identifying each simplex $b$ in $K$ and its image $f(b)$ . Let $g:K\rightarrow J$ be the

identification map. Let $M^{\prime}=C1(M-N(F(f);K))$ . Then $g|M^{\prime}:M^{\prime}\rightarrow g(M^{\prime})$ is a
covering map. Now $g(\cup T(i))$ is a disjoint union of $n$ trees in $g(M^{J})$ . Since $M^{\prime}$

$i=1$

is connected, so is $g(M^{\prime})$ . Hence there is a maximal tree $G$ in $J(g(M^{\prime}))$ which
contains each $g(T(i))$ as a subtree. Since $g|M^{\prime}$ is a double covering, $g^{-1}(G)$ con-
sists of two trees. Let $T$ be one of these. Then $T_{0}$ is the desired constructive
V-set. $\square $

It is easy to check the following proposition.

Proposition 2.3. Suppose that $\nu$ is a constructive V-set in $K$ and $a$ is a com-
panion A-set to $\nu$ . Let $a(1),$ $\cdots,$ $a(m)$ denote the $l$-simplexes of $K$ that intersect

both $\nu$ and $f(\nu)$ . For each $j=1,$ $\cdots,$ $m$ , let $a^{*}(j)$ be the dual 2-cell of the simPlex
$a(\int)$ with respect to $K(M^{\prime})$ . Then $\bigcup_{j=1}^{n}a^{*}(j)$ is a proper surface in $M^{\prime}$ whose

boundary is $\bigcup_{i=1}^{\sim}\partial A(i)$ . $\square $

Deflnition. Let $H$ be the union of $\bigcup_{\ell=1}^{n}A(i)$ and the surface $\bigcup_{\dot{g}=1}^{m}a^{*}(j)$ . We call
$H$ the $(\alpha, \nu)$-surface.

A surface in $M$ is called a standard surface provided that there are a con-
structive V-set $\nu$ and a companion A-set $\alpha$ such that the surface is the $(\alpha, \nu)-$

surface.
Let $U(H)$ be the closure of the union of the connected components of $M-H$
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which intersect $\nu$ . And let $V(H)=C1(M-U(H))$ . Then $f(U(H))=V(H)$ and $H$ is
invariant under $f$. But generally it is not true that $U(H)$ is a cube-with-handles.
Furthermore $U(H)$ may be disconnected. We shall modify $H$ so that $H$ becomes
a Heegaard surface. The following proposition shows a canonical methods for
constructing a characteristic Heegaard surface from a standard surface.

Proposition 2.4 (CHS-construction). There exists a characteristic Heegaard
splitting.

Proof. Let $H$ be an $(a, \nu)$-surface. $L_{9}tU(H)$ be the closure of the union of
the connected $m\varphi nents$ of $M-H$ that intersect the constructive V-set $\nu$ . Let
$Z(H)$ be the union of l-simplexes in $K$ whose interiors intersect Int $U(H)$ . Note
that $Z(H)$ does not $ntain$ any l-simplexes in the fixed point set $F(f)$ . Let $J$

be the complex obtained from $K$ by identifying each simplex $b$ in $K$ and its
image $f(b)$ , and let $g:K\rightarrow J$ be the identification map. Then there is a regular
neighborhood $N$ of $Z(H)\cap U(H)$ in $U(H)$ such that $N\cap H$ is invariant under $f$,
and the image of each connected component of $N\cap H$ under $g$ is a disk.

We modify $N$ to $N^{*}$ as follows; the modification will be called a wedge-
modification (see Fig. 2): First of all, note that for each connected component $C$

of $g(N\cap H),$ $g^{-1}(C)$ is connected if and only if $C$ intersects $g(F(f))$ . This follows
from the fact that $N\cap H$ is also a regular neighborhood of $Z(H)\cap H$ in $H$. We
choose disks in each connected component $C$ of $g(N\cap H)$ as follows. If $C$ inter-
sects $g(F(f))$ , then we choose a disk $B$ in $C$ such that $ B\cap g(F(f))=\phi$ , and
Cl $(\partial B-\partial C)$ is a proper arc in $C$ . If $C$ misses $g(F(f))$ , then we choose two dis-
joint disks $B(1)$ and $B(2)$ in $C$ such that for $i=1,2$, Cl $(\partial B(i)-\partial C)$ is a proper arc
in $C$. Let $E$ be the union of disks $B,$ $B(1),$ $B(2)$ described for the various com-
ponents. Now $N\cap H$ consists of mutually disjoint disks $D(1),$ $\cdots,$ $D(s)$ . For each
$i=1,$ $\cdots,$ $s,$ $D(l)\cap g^{-1}(E)$ consists of two disjoint disks $D(i1)$ and $D(i2)$ . By re-
indexing, we may assume that $f(\bigcup_{i=1}^{l}D(i1))=\bigcup_{i=1}D(i2)$ . Let $P(i)=C1(\partial D(l1)-\partial D(i))$ .

Fig. 2.
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Then $P(i)$ is a proper arc in $D(i)$ . Let $R(i)$ be a regular neighborhood of

Cl $(D(i)-D(i1))inNrelativetoP(i)$ . Let N* $=C1(N-\bigcup_{\ell=1}^{\epsilon}R(i))$ . $Nowf(N^{*})\cap N^{*}=\phi$ .
Let $U=C1(U(H)-N^{*})\cup f(N^{*})$ and $V=C1(M-U)$ . Then $(M;U, V,f)$ is a char-

acteristic Heegaard splitting, because (i) Cl $(U(H)-N^{*})$ is a regular $neighMrhd$

of the union of dual l-cells of 2-simplexes in $K$ whose interiors meet Int $U(H)$ ,

(ii) $f(N^{*})$ is cubes-with-handles, and (iii) Cl $(U(H)-N^{*})\cap f(N^{*})$ consists of disks. $\square $

By the process described in the above proposition, each $(a, \nu)$-surface $H$ in-

duces a characteristic Heegaard splitting. The characteristic Heegaard splitting

is determined up to equivalence by the constructive V-set $\nu$ . Any characteristic
Heegaard splitting induced from the $(a, \nu)$-surface by the CHS-construction will

be called an $(\alpha, \nu)$-Heegaard splitting.
A characteristic Heegaard splitting will be called standard Heegaard splitting

provided that there are constructive V-set $\nu$ and a companion A-set $a$ such that

the splitting is an $(a, \nu)$-Heegaard splitting.

\S 3. An equivalence relation on the set of characteristic Heegaard splittings

In this section we define an equivalence relation on the set of characteristic

Heegaard splittings which corresponds to the stable equivalence relation in the

Heegaard splitting theory. We will consider as fixed a 3-manifold $M$, an invo-

lution $f$ on $M$, and an invariant triangulation $K$ of $M$.
First we define an equivalence relation on the set of constructive V-sets in $K$:

Let $\nu=\{v(1), \cdots, v(t)\}$ and $\nu^{\prime}$ oe constructive V-sets. Suppose that there are inte-

gers $h$ and $j$ such that

$\nu^{\prime}=\{v(1), \cdots, v(j-1),f(v(\int)), v(j+1), \cdots, v(t)\}$

and $f(v(\int))$ and $v(h)$ are the vertices of a l-simplex in $K$. Then we say that $\nu^{\prime}$

is obtained from $\nu$ by an elementary trade of $v(j)$ for $f(v(j))$ , and the elementary

trade is denoted by $\nu\rightarrow\nu^{\prime}$ . Let $\nu$ and $\nu^{\prime}$ be constructive V-set that have a common
A-set $\alpha$ . We say that $\nu$ and $\nu^{\prime}$ are A-equivalent provided that there is a sequence

of elementary trades

$\nu\rightarrow\nu(1)\rightarrow\cdots\rightarrow\nu(k)\rightarrow\nu^{\prime}$

such that the intervening V-sets have the same companion A-set $a$ .
Proposition 3.1. Let $a$ be a constructive A-set. Let $\nu=\{v(1), \cdots, v(\ell)\}$ and $v^{\prime}$

be constructive V-sets that have the common companion A-set $\alpha$ . Suppose that for
each $i=1,$ $\cdots,$ $n$,
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$\nu\cap N(S(i);K)=\nu^{J}\cap N(S(i);K)$ .
Then $\nu$ and $\nu^{\prime}$ are A-equivalent.

Proof. We use downward induction on the number of common vertices of
$\nu$ and $\nu^{\prime}$ . By reindexing vertices we may assume that

$\nu^{\prime}=\{v(1), \cdots, v(k),f(v(k+1)), \cdots,f(v(t))\}$ .
Le$tH$ and $H^{\prime}$ be the $(a, \nu)-$ and $(a, \nu^{\prime})$-surfaces respectively. Let $J(H)$ be the
union of l-simplexes in $K$ that pierce $H$ and similarly let $J(H^{\prime})$ be the union of
k-simplexes in $K$ which pierce $H^{\prime}$ . Note that $H$ determines both the constructive
V-set $\nu$ and the set $J(H)$ . Thus $J(H)=J(H^{\prime})$ if and only if $H=H^{\prime}$ . Hence
$J(H)=J(H^{\prime})$ if and only if $\nu=\nu^{\prime}$ . Without loss of generality we may assume
that there is a simplex $b$ in $J(H)$ that is not in $J(H^{\prime})$ . Then, since $b$ does not
pieroe $H^{\prime}$ , either the two vertices of $b$ lie in $\nu^{\prime}$ or the two vertices of $f(b)$ lie in
$\nu^{\prime}$ . Since $f(b)$ is also an element in $J(H)-J(H^{\prime})$ , we may assume that $t$he two
vertices of $b$ lie in $\nu^{\prime}$ . Then a vertex of the simplex $b$ lies in the set $\{v(1), \ldots, v(k)\}$

and the other vertex of $b$ lies in $t$he set $\{f(v(k+1)), \cdots,f(v(t))\}$ , say it is $f(v(j))$ .
Thus we can make an elementary trade of $v(j)$ for $f(v(j))$ to ge $t$ a new V-set $\nu^{\prime\prime}$

from $\nu$ . Now

$\nu^{\prime\prime}=\{v(1), \cdots, v(k), v(k+1), \cdots, v(j-1),f(v(j)), v(j+1), \cdots, v(t)\}$ .
Hence $\nu^{\prime\prime}$ and $\nu^{\prime}$ have $k+1$ common vertices $v(1),$ $\cdots,$ $v(k),$ $f(v(j))$ , and the number
of common vertices increases. $\square $

We define as follows an equivalence relation on the set of characteristic
Heegaard splittings of $M$. First we define, for an arbitrary splitting $(M;U, V,f)$ ,
three elementary modifications of $(M;U, V,f)$ to a new splitting ($M_{1}X,$ Y. $g$).

Type 1 (equivalence): There is an equivalence of Heegaard splittings $h$ :
$(M, U, V)\rightarrow(M, X, Y)$ (note that $h(U)=X$) such that $g=hfh^{-1}$ .

Type 2 (attaching a pair of handles of index 1): Here $f=g$ and there is a
disk $D$ in $U$ such that $\partial U\cap IntD=\phi$ , Cl $(\partial D-\partial U)$ is a proper arc in $U$, say $P$,
and $ P\cap f(P)=\phi$ . There is a regular $neighborhdN$ of $P$ in $U$ such that
$ f(N)\cap N=\phi$ . Finally $X=C1(U-N)\cup f(N)$ and $Y=C1(M-X)$ .

Type 3 (attaching a pair of handles of index 2): Here $f=g$ and there are
proper disks $D(1)$ and $D(2)$ in $V$ and $U$ respectively such that $ D(1)\cap F(f)=\phi$ ,
and $\partial D(1)\cap\partial D(2)$ consists of one crossing point on $\partial U$. There is a regular neigh-
$borhdN$ of $D(1)$ in $V$ such that $ f(N)nN=\phi$ . Finally $X=C1(U-f(N))\cup N$ and
$Y=C1(M-X)$ .
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Notes. (1) Modifications of Type 2 increase the genus of Heegaard surfaces,

and modifications of Type 3 decrease the genus of Heegaard surfaces. (2) In

the modification of Type3, the only purpose $D(2)$ serves is to guarantee that

we are destabilizing the splittings.

We define two characteristic Heegaard splittings $(M;U, V,f)$ and $(M;X, Y, g)$

to be ss-equivalent provided that there is a sequence of elementary modifications

and their inverses transforming $(M;U, V,f)$ to $(M;X, Y, g)$ .
The notion of ss-equivalence will provide the basis of our formulation, in

the next section, of a Reidemeister-Singer theorem for characteristic Heegaard

splittings. Our plan for obtaining this theorem is as follows: First obtain a
Reidemeister-Singer theorem for a restricted class of splittings–standard charac-

teristic Heegaard splittings with respect to an involution $f$ and an invariant

triangulation $K$ of $M$ under $f$ where the splittings coincide on $t$he set $N(F(f);K)$ .
Second show that every characteristic Heegaard splitting is ss-equivalent to a

standard Heegaard splitting. Finally show that ss-equivalence does not change

twisting numbers which are defined later. The first two steps in this approach

are suggested by Craggs’s proof of the Reidemeister-Singer theorem $[Cr]$ .
The following proposition handles an important special case for the first step

in our plan.

Proposition 3.2. Let $a$ be a constructive $A\cdot set$ . Let $\nu$ and $\nu^{\prime}$ be constructive

V-sets which have the common companion A-set $a$ . Let $(M:U, V,f)$ and $(M;X, Y,f)$

be an $(a, \nu)-$ and an $(a, \nu^{\prime})$-Heegaard sPlitting resPectively. Then the two sPlittings

are ss-equivalent provided that for each $i=1,$ $\cdots,$ $n$ ,

$\nu\cap N(S(i);K)=\nu^{\prime}\cap N(S(i);K)$ .
Proof. By Proposition 3.1, the constructive V-set $\nu$ is A-equivalent to $\nu^{\prime}$ .

We may assume that $\nu^{\prime}$ is obtained by an elementary trade of a vertex $v$ in $\nu$

for $f(v)$ .
Let $L$ be the link of $f(v)$ in $K$. Then $L$ is a $suMomplex$ of $K$. Let $T$ be

a maximal tree in $L$ . Let $b(1),$ $\cdots,$
$b(q)$ be an indexing of the l-simplexes of $T$

so that $T$ collapses to a point $w(O)$ by the collapsing of the successive simplexes

$b(q),$ $b(q-1),$ $\cdots,$ $b(1)$ . For each $k=0,1,$ $\cdots,$ $q$ , let $T(k)$ be the subcomplex of $T$

whose carrier is the union of $w(O)$ and $\bigcup_{\dot{g}=1}^{k}b(j)$ . Then $T(q)=T$ and $T(k)$ collapses

to $T(k-1)$ . Let $w(k)$ be the vertex in $T(k)-T(k-1)$ . And let $a(k)$ be the 1-

simplex of $K$ whose vertices are $f(v)$ and $w(k)$ .
Let $H$ be the $(\alpha, \nu)$-surface. Let $U(H)$ be the closure of the union of the
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connected components of $M-H$ which intersect $\nu$ . Let $V(H)=C1(M-U(H))$ .
Let $Z(H)$ be the union of l-simplexes of $K$ whose interiors intersect Int $U(H)$ .
Let $N^{*}$ be the wedge-modification of a regular neighborhood $N$ of $|Z(H)|\cap U(H)$

in $U(H)$ used to get the $(\alpha, \nu)$ -Heegaard splitting $(M;U, V,f)$ as described in the
CHS-construction. To prove the proposition we consider two cases:

(1) $ L\cap f(\nu)=\emptyset$ .
(2) $ L\cap f(\nu)\neq\phi$ .
Case (1): Suppose that $ L\cap f(\nu)=\phi$ . Let $B$ be the connected component of

$V(H)$ which contains $f(v)$ . Since $ L\cap f(\nu)=\phi$ , every l-simplex of $K$ containing
$f(v)$ runs from $f(v)$ to a vertex in $U(H)$ ; thus $B$ is the 3-ball whose boundary is
made up of the dual cells to the l-simplexes mentioned above. For each $i=1,$ $\ldots,$ $q$,
we choose a subset $M(i)$ of $f(N^{*})$ as follows: Let $D(i)$ be the connected com-
ponent $N\cap H$ which the l-simplex $a(i)$ pierces. Let $D(i2)=D(t)\cap f(N^{*})$ (see Fig.
2). Let $M(i)$ be a regular neighborhood of $D(i2)$ in $f(N^{*})$ . Remember that each
regular $neighborhd$ is small with respect to all things previously defined. Thus
we may assume that $t$he $M(i)s$ are mutually disjoint. Let

$U(1)=C1(U-\bigcup_{i=1}^{q}M(i))\cup\bigcup_{\ell=1}^{q}f(M(i))$ and
$V(1)=C1(M-U(1))$ (see Fig. $3A$).

Then $(M;U(1), V(1),f)$ is equivalen $t$ to $(M:X, Y,f)$ by expanding Cl $(B-((N^{*}\cap B)-$

$\bigcup_{\ell=1}^{q}M(l))$ to $B$.
Claim 1. $(M;U, V,f)$ is ss-equivalent to $(M;U(1), V(1),f)$ .
Proof. For each $k=1,$ $\cdots,$ $q$ , let

$U(k)=C1(U-\bigcup_{l=k}^{q}M(i))\cup\bigcup_{\ell=k}^{q}f(M(i))$ and
$V(k)=C1(M-U(k))$ .

Fig. $3A$ .
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Let $U(q+1)=U$ and $V(q+1)=V$. It is sufficient to show that for each $k=1,$ $\cdots,$ $q$ ,
$(M;U(k+1), V(k+1),$ $f$) is ss-equivalent to $(M;U(k), V(k),f)$ . Now we can assume
that $(f(v)*b(k))\cap V$ ($*denotes$ join) is a proper disk in $V$ and also in $V(k+1)$ .
Sinoe the proper disk intersects the disk $D(k2)$ at one crossing point on $\partial U(k+1)$ ,
$(M;U(k+1), V(k+1),$ $f$) is ss-equivalent to $(M;U(k), V(k),f)$ by $at$taching a pair of
handles of index 2. This completes the proof of the proposition for Case (1).

Case (2): Suppose that $ L\cap f(\nu)\neq\phi$ . We shall establish our claim in $t$hree
steps.

First step: Sinoe $ L\cap f(\nu)\neq\phi$ , we can choose $w(O)$ in $f(\nu)$ . For each $i=1,$ $\ldots,$ $q$ ,
we choose a subset $N(i)$ of $N^{*}$ as follows. If $a(i)\not\in Z(H)$ , let $ N(i)=\phi$ . If $a(i)\in Z(H)$ ,
then $a(i)$ pierces $H$. Let $D(i)$ be the connected component of $N\cap H$ which the
l-simplex $a(i)$ pierces. Let $D(i1)=D(i)\cap N^{*}$ (see Fig. 2). Let $N(i)$ be a regular
$neighborhd$ of $D(i1)$ in $N^{*}$ . Again we assume that the $N(i)s$ are mutually
disjoint. Let

$U(1)=C1(U-\bigcup_{i=1}^{q}f(N(i)))\cup\bigcup_{\ell=1}^{q}N(i)$ and
$V(1)=C1(M-U(1))$ (see Fig. $3B$).

Claim 2. $(M;U, V,f)$ is $ss- equi_{t^{1}}alent$ to $(M;U(1), V(1),f)$ .
Proof. For each $k=1,$ $\cdots,$ $q$ , let

$U(k)=C1(U-\bigcup_{l=k}^{q}f(N(i)))\cup\bigcup_{\ell=k}^{q}N(i)$ and
$V(k)=C1(M-U(k))$ .

Let $U(q+1)=U$ and $V(q+1)=V$. It is sufficient to show that for each $k=1,$ $\cdots,$ $q$ ,
$(M;U(k+1), V(k+1),f)$ is ss-equivalent to $(M;U(k), V(k),f)$ . There are three
cases:

Fig. $3B$ .
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(1) $a(k)\not\in Z(H)$ .
(2) $a(k)\in Z(H)$ and $b(k)$ pierces $H$.
(3) $a(k)\in Z(H)$ and $b(k)\subset U(H)$ .
Case (1): If $a(k)\not\in Z(H)$ then $ N(k)=\phi$ . Hence $U(k+1)=U(k)$ and $V(k+1)=$

$V(k)$ . Thus $(M;U(h+1), V(k+1),f)$ is ss-equivalent to $(M;U(k), V(k),f)$ .
Case (2): If $a(k)\in Z(H)$ and $b(k)$ pierces $H$, we can assume that $(f(v)*b(k))\cap U$

is a proper disk in $U$ and also in $U(k+1)$ . Sinoe the proper disk intersects the
proper disk $D(i1)$ at one crossing point on $\partial U(k+1),$ $(M;U(k+1), V(k+1),f)$ is
ss-equivalent to $(M;U(k), V(k),f)$ by attaching a $pa$ir of handles of index 2.

Case (3): This $ca$se is similar to the second case. This establishes Claim 2.
Second step: Let $L(U)=|L|\cap U(H)$ and $L(V)=|L|\cap V(H)$ . Let $B$ be $a$ 1-

dimensional subcomplex of $L$ such that $|G|$ is a spine of $L(U)$ , and $G$ does not
collapse to any proper l-dimensional subcomplex of $G$ (see Fig. $3C$). Let
$C(1),$ $\cdots,$ $C(t)$ be the connected components of $L(U)-|G|$ . Then for each $i=1,$ $\cdots,$

$t$ ,
$C(i)$ is $hommorphic$ to the half open annulus $S^{1}\times[0,1]$ and the boundary of $C(i)$

lies in $L(V)$ . For each $i=1,$ $\cdots,$
$t$ , let $L(i)$ be a l-dimensional subcomplex of $L$

such that
(1) the carrier of $L(i)$ is a simple arc,
(2) $t$he carrier of $L(i)$ meets $|G|$ and the boundary of $C(i)$ at one point

respectively,
(3) the intersection of $|L(i)|$ and $L(U)$ lies in the closure of $C(i)$ , and
(4) $L(i)-J$ consists of $a$ l-simplex and a vertex. (see Fig. $3D$).

Let $e(1),$ $\cdots,$ $e(h)$ be l-simplexes in $G$ such that $G-\bigcup_{\ell=1}^{h}e(i)$ is a union of trees, and
$h$ is the rank of $H_{1}(G)$ . Let $T^{\prime}$ be a union of trees in $J$ such that each tree is
a maximal tree in a connected component of $J,$ $T_{0}^{\prime}=J_{0},$ $J\cap L(i)\subset T^{\prime}$ for each
$i=1,$ $\cdots,$

$t$ , and $G-T^{\prime}=\bigcup_{l=1}^{h}e(i)$ (see Fig. $3D$). Let $d(1),$ $\cdots,$ $d(P)$ be an indexing

$L(U)$ : shaded area,

$L(V)$ : unshaded area
$G$ : heavier graph

Fig. $3C$ .
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$L(\ell)$ : broken graph $e(\ell)$ : broken graph
$T$ : heavier graph

Fig. $3D$ .

of l-simplexes of $T^{\prime}$ so that $T^{\prime}$ collapses to $a$ union $P$ of points by the col-
lapsing of successive simplexes $d(p),$ $d(p-1),$ $\cdots,$ $d(1)$ . For each $k=1,$ $\cdots,$ $p$ , let
$T^{\prime}(k)=P\cup\bigcup_{\ell=1}^{k}d(i)$ . Then $T^{\prime}(p)=T^{\prime}$ and $T^{\prime}(k)$ collapses to $T^{\prime}(k-1)$ . For each
$k=1,$ $\cdots,$ $p$ , let $r(k)$ be the 2-simplex $(f(v)*d(k))$ . We can assume that for each
$k=1,$ $\cdots,$ $p,$ $r(k)\cap V(1)\cap V(H)$ is a proper disk in $V(1)$ . Let $R(k)$ be a regular
neighborhood of the disk in $V(1)$ . Let

$U(2, p)=C1(U(1)-\bigcup_{i=1}^{p}f(R(i)))\cup\bigcup_{\ell=1}^{p}R(i)$ and
$V(2, p)=C1(M-U(2, p))$ .

Claim 3. $(M;U(1), V(1),f)$ is ss-equivalent to $(M;U(2, p),$ $V(2, p),f)$ .
Proof. For each $k=1,$ $\cdots,$ $p$ , let

$U(2, k)=C1(U(1)-\bigcup_{i=1}^{k}f(R(i)))\cup\bigcup_{l=1}^{k}R(i)$ and
$V(2, k)=C1(M-U(2, k))$ .

Let $U(2, O)=U(1)$ and $V(2, O)=V(1)$ . It is sufficient to show that for each $k=$

$0,1,$ $\cdots,$ $p-1,$ $(M;U(2, k),$ $V(2, k),f)$ is ss-equivalent to $(M;U(k+1), V(k+1),f)$ .
Let $w(j(k))$ be the vertex in $T^{\prime}(k+1)-T^{\prime}(k)$ . Then one of the two disks $D(j(k)1)$

and $D(j(k)2)$ is a proper disk in $U(2, k)$ and meets $r(k)\cap V(1)\cap V(H)$ at one
crossing point on $\partial U(2, k)$ . Thus $(M;U(2, k),$ $V(2, k),f)$ is ss-equivalent to
$(M;U(2, k+1),$ $V(2, k+1),f)$ by attaching a pair of handles of index 2. This
establishes Claim 3.

Now after aPplying an equivalenoe isotopy if necessary, we may assume that
for each $i=1,$ $\cdots,$

$h$ , where $h$ is the rank of $H_{1}(G),$ $(f(v)*e(i))\cap V(2, P)\cap V(H)$ is a
proper disk in $V(2, p)$ . Let $E(i)$ be a regular $neighborhd$ of $t$his proper disk
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$P(\ell)$ : heavier graph

Fig. $3E$ .
in $V(2, p)$ . Let

$U(3,1)=C1(U(2, p)-\bigcup_{i=1}^{h}f(E(i)))\cup\bigcup_{i=1}^{h}E(i)$ and
$V(3,1)=C1(M-U(3,1))$ .

Claim 4. $(M:U(2, p),$ $V(2, p),f)$ is $ss\cdot equivalent$ to $(M;U(3,1),$ $V(3,1),f)$ .
Proof. For each $k=1,$ $\cdots,$

$h$ , let

$U(3, k)=C1(U(2, p)-\bigcup_{\ell=k}^{h}f(E(i)))\cup\bigcup_{i=k}^{h}E(i)$ and
$V(3, k)=C1(M-U(3, k))$ .

Let $U(3, h+1)=U(2, P)$ and $V(3, h+1)=V(2, p)$ . It is sufficient to show that for
each $k=1,$ $\cdots,$

$h$ , $(M;U(3, k+1),$ $V(3, k+1),$ $f$) is ss-equivalent to $(M;U(3, k)$ ,
$V(3, k),f)$ . Let

$\tilde{Z}(h)=(|T^{\prime}|\cup\bigcup_{j=1}^{\ell}|L(j)|)\cap L(U)$ and

$\tilde{Z}(h)=Z(h)\bigcup_{l=k+1}^{h}e(i)$ , $1\leq k\leq h$ .
For each $k=1,$ $\cdots,$

$h$ , let $M(k)$ be a regular neighborhood of $\tilde{Z}(k)$ in $L(U)$ . Then
there are two disjoint simple $a$rcs on $\partial M(k)$ which are proper arcs in $L(U)$ and
cross $e(k)$ onoe each. Let $P(k)$ be one of these (see Fig. $3E$). Let $Q(k)$ be a
simple arcs on $|L|$ such that $P(k)\subset Q(k),$ $\partial Q(k)\subset L(v)\cap L_{0}$ , and each interior of a
connected component of $Q(k)-P(k)$ lies in the interior or a 2-simplex of $L$ . Let
$Q^{\prime}(k)$ be the cone of $Q(k)$ with cone point $f(v)$ . After applying an equivalnece
isotopy if necessary, we may assume tha$tQ^{\prime}(k)\cap U(3, k+1)$ is a proper disk in
$U(3, k+1)$ which meets the proper disk $(f(v)*e(k))\cap V(2, P)\cap V(H)$ at one crossing
point on $\partial U(3, k+1)$ . Hence $(M;U(3, k+1),$ $V(k+1),f)$ is ss-equivalent to $(M;U(3, k)$ ,
$V(3, k),f)$ by attaching a $pa$ir of handles of index 2. This establishes Claim 4.

Third step: We shall prove that $(M;U(3,1),$ $V(3,1),f)$ is ss-equivalent to
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$\langle f(v)*b\{\iota J$ ) $\cap U\langle H^{\prime}$); shaded area
Fig. $3F$ .

$(M;X, Y, f)$ by a sequenoe of attaching pairs of handles of index 1. This will

be done by $t$he CHS-construction around the vertex $f(v)$ .
Let $B^{*}$ be a regular neighborhood of $f(v)$ in $U(3,1)$ . Let

$U^{*}(3,1)=C1(U(3,1)B^{*})\cup f(B^{*})$ .
For each $k=1,$ $\cdots,$ $q$, and $i=0,1,$ $\cdots,$ $q$ , let

$B^{*}(k)=(f(v)*b(k))\cap U^{*}(3,1)$ and
$L^{*}(i)=a(i)\cap U^{*}(3,1)$ .

After applying an equivalenoe $isoto_{\Gamma}y$ if necessary, we may assume $t$hat for each

$i=0,1,$ $\cdots,$ $q,$ $L^{*}(i)$ is a proper arc in $U^{*}(3,1)$ (see Fig. $3F$). Furthermore we
may assume that for each $k=1,$ $\cdots,$ $q,$ $B^{*}(k)$ is a disk, $a$nd Cl $(\partial B^{*}(k)-\partial U^{*}(3,1))$

consists of two proper arcs in $U^{*}(3,1)$ . For each $i=0,1,$ $\cdots,$ $q$ , let $N^{*}(i)$ be $a$

regular neighborhood of $L^{*}(i)$ in $U^{*}(3,1)$ . For each $k=0,1,$ $\cdots,$ $q$ , let

$U(4, k)=C1(U^{*}(3,1)-\bigcup_{i=0}^{k}N^{*}(i))\cup\bigcup_{i=0}^{k}f(N^{*}(i))$ and

$V(4, k)=C1(M-U(4, k))$ .
Then $(M;U(3,1),$ $V(3,1),f)$ is equivalent to $(M;U(4,0),$ $V(4,0),f)$ by pushing

the $ba11B^{*}\cup L^{*}(0)$ off from $U(3,1)$ . And $(M;U(4, q),$ $V(4, q),f)$ is equivalent to

$(M;X, Y, f)$ . We shall show that for each $k=1,$ $\cdots,$ $q,$ $(M;U(4, k-1),$ $V(k-1),f)$

is ss-equivalent to $(M;U(4, k),$ $V(4, k),$ $f$). Sinoe for each $k=1,$ $\cdots,$ $q,$ $B^{*}(k)$ is a
disk in $U(4, k-1)$ , and Cl $(\partial B^{*}(k)-\partial U(4, k-1))$ is a proper arc in $U(4, k-1)$ , we
conclude that $(M;U(4, k-1),$ $V(4, k-1),$ $f$) is ss-equivalent to $(M;U(4, k),$ $V(4, k),f)$

by attaching $a$ pair of handles of index 1. Thus $(M;U(4,0),$ $V(4,0),f)$ is ss-equivalent
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to $(M;U(4, q),$ $V(4, q),f)$ . Henoe $(M;U(3,1),$ $V(3,1),f)$ is ss-equivalent to $(M;X, Y,f)$ .
By Claim 2, 3, and 4, $(M;U, V,f)$ is ss-equivalent to $(M;U(3,1),$ $V(3,1),f)$ .

Therefore $(M, U, V,f)$ is ss-equivalent to $(M;X, Y,f)$ . This completes the $prf$
of the Prowsition for Case (2). $\square $

\S 4. A Reidemeister-Singer theorem for characteristic Heegaard splittings

In this section we establish the promised Reidemeister.Singer $threm$ for
characteristic Heegaard splittings. Since characteristic Heegaard splittings are
more special than the usual ones, we should expect the Reidemeister-Singer theorem
to be more delicate. More precisely, it will be seen that characteristic Heegaard
splittings are determined, up to ss-equivalence, by the nature of the Heegaard
surfaoe near $F(f)$ . But ss-equivalenoe can not modify the embedding type of the
$neighborhd$ of $F(f)$ in $M$. Thus to get the full picture we will have to look
at twisting of the annuli $A(i)$ about the components $S(i)$ of $t$he fixed point set
$F(f)$ .

As a corollary to our Reidemeister-Singer theorem for Heegaard splittings.
A sketch of the proof for our main theorem is given in Diagram 4.

In order to apply Chillingworth’s theorem, as Craggs does in $[Cr]$ , we have
change the definition of standard surfaces. Let $H$ be the $(\alpha, \nu)$ -surfaoe associated
with an invariant triangulation $K$. Now $H$ satisfies the following four conditions:

(1) There is a wlyhedron $U(H)$ in $M$ such $t$hat $U(H)\cup f(U(H))=M$ and
$U(H)\cap f(U(H))=H$.

(2) The fixed point set $F(f)$ is the union of l-simplexes in $K$ which lie
in $H$.

(3) Any l-simplex $b$ in $K$ which misses $F(f)$ either misses $H$ or pierces $H$.
$(M;U, V,f)$ $(M;X, Y,f)$

$\{||\downarrow$ $Standardizing(Prop.45)$ $1||\downarrow$

$(M;U^{\prime}, V^{\prime},f)_{K_{1}}$ $(M;X^{\prime}, Y^{\prime},f)_{K_{2}}$

$(M;U,V^{\prime\prime},f)_{K}-(M;X.Y^{\prime\prime},f)_{K}|||\downarrow_{Prop.32}^{Subdivisi.\cdot on}(Prop\cong 44)|||\downarrow$

$\cong$ denotes $\epsilon\epsilon\cdot equivalence$ ,
$K_{1}$ and $K_{2}$ are triangulations of $M$,
$K$ is a common 8ubdivision of $K_{1}$ and $K_{2}$ ,
$(;, ,)_{J}$ denotes a standard Heegaard
splitting with respect to the triangulation $J$.

Diagram. 4.
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(4) For any 3-simplex $c$ in $K$ which meets $H$ at an interior point, $H\cap c$ is

a proper disk in $c$.
Suppose that $\tilde{H}$ is an invariant surfaoe in $M$ which satisfies the above four

conditions and the following condition:
A $1\cdot simplexb$ in $K$ pierces $\tilde{H}$ if and only if $b$ pierces $H$.

Then $\tilde{H}$ separates the constructive V-set $\nu$ from its image $f(\nu)$ . Let $U(\tilde{H})$ be the

closure of the union of connected components of $M-\tilde{H}$ which intersect $\nu$ . Let

$Z(H)$ be $t$he union of l-simplexes in $K$ whose interiors meet Int $U(H)$ and simi-

larly $Z(\tilde{H})$ the union of l-simplexes in $K$ whose interiors meet Int $U(\tilde{H})$ . Then

we have $Z(H)=Z(\tilde{H})$ . Let $\tilde{N}^{*}$ be $a$ wedge-modification of $a$ regular $neighborhd$

of $Z(\tilde{H})\cap U(\tilde{H})$ in $U(H)$ as in the CHS-construction. Let $\tilde{U}=C1(U(\tilde{H})-\tilde{N}^{*})\cup f(\tilde{N}^{*})$

and $\tilde{V}=C1(M-\tilde{U})$ . Then the standard Heegaard splitting $(M;U, V,f)$ , formed

from $Z(H)$ and $U(H)$ , is equivalent to $(M;\tilde{U},\tilde{V},f)$ since, in $t$he orbit space, the

images of $H$ and $\tilde{H}$ are ambient isotopic fixing $F(f)$ . Henoe from now on a

standard surfaoe with respect to an invariant triangulation $K$ means an invariant

surfaoe $H$ which satisfies the following four conditions:
(1) There is $a$ polyhedron $U(H)$ in $M$ such that $U(H)\cup f(U(H))=M$ and

$U(H)\cap f(U(H))=H$.
(2) The fixed point set $F(f)$ is the union of l-simplexes in $K$ which lie in $H$.
(3) Any $1\cdot simplexb$ in $K$ which misses $F(f)$ either misses $H$ or pierces $H$.
(4) For any 3-simplex $c$ in $K$ which meets $H$ at an interior point, $H$ sepa-

$ra$tes $c$ into $t$wo convex se$ts$ .
For any surfaoe $H$ which is standard in the old sense, there is a new stand-

ard surface $\tilde{H}$ such that a l-simplex $b$ in $K$ pierces $\tilde{H}$ if and only if $b$ pierces

$H$. There are infinitely many such new standard surfaces for each standard

surfaces in $t$he old sense. For example, we can construct as follows a new standard

surfaoe $\tilde{H}$: Suppose that $H$ is the $(a, \nu)$ -surfaoe in the old sense. Let $h:K\rightarrow[0,1]$

be the map such that $h$ is affine on each simplex of $K$ and for each vertex $v$

in $K$

$h(v)=\left\{\begin{array}{ll}1 & if v\in\nu\\ 1/2 & if veF(f)\\0 & if vef(v).\end{array}\right.$

Then for each 3-simplex $c$ in $K$, the intersection of $h^{-1}(1/2)$ and $c$ is a proper

convex disk in $c$ provided that $c$ meets $H$ at an interior point of $c$ . Henoe $h^{-1}(1/2)$

separates $c$ into two convex sets. Let $\tilde{H}=h^{-1}(1/2)$ .
For any new standard surfaoe $H$, there is a standard surfaoe $H$ in the old
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sense such that a l-simplex $b$ in $K$ pierces $H$ if and only if $b$ pierces $\tilde{H}$. Hence
all Propositions in Sections 2 and 3 hold for new standard surfaces. We need
Condition (4) to apply Chillingworth’s theorem.

In [Ch], Chillingworth proves the following $threm$ :
Theorem. Let $K$ be a finite simpljcial complex which is topologically a closed

ball of dimension $m\leq 3$ , embedded rectilinearly as a convex subset of Euclidean $n$

sPace $(m\leq n)$ . Let $L$ be a subcomplex of the boundary of $K$ which is connected
and simply connected and not the whole of the boundary of K. Then $K$ simplicially
collapses to $L$ .

The following proposition, which is derived from Chillingworth’s theorem, is
a special case of Lemma 1 in [Cr].

ProPosItIon 4.1. Let $a$ be a 3-simplex. SuPpose that $K$ is a subdivision of $a$ .
Let $L$ be the union of all $l$-simplexes in $K$ whose interiors lie in Int $a$ . Then
there is a $2\cdot dimensionat$ subcomplex $J$ of $K$ containing $L$ such that $J$ simplicially
collapses to $J\cap K(\partial a)$ .

$ProposIt\ddagger on4.2$ . SuPpose that $(M;U, V,f)$ is a characteristic Heegaard split-
ting of M. Let $D$ be a proper disk in U. SuPpose that $L$ is a connected l-com-
Plex in $D$ such that $|L|\cap\partial D\neq\phi$ . Let $N$ be a regular neighborhood of $|L|$ in $U$

such that $ f(N)\cap N=\phi$ . Let $X=C1(U-N)\cup f(N)$ and $Y=C1(M-X)$ . Then
$(M;U, V,f)$ is ss-equivalent to $(M;X, Y,f)$ .

Proof. There is a subcomplex $J$ of $L$ such that $|L|\cup\partial D$ collapses to $|J|\cup\partial D$,
and $|J|\cup\partial D$ has no free face. Now $J$ induces an open cell complex structure on
$D$. Then the cell complex collapses cellwise to a point in $\partial D$ . Equivalently a
point in $\partial D$ expands cellwise to the cell complex. Let $W$ be a regular neighbor-
hood of $|J|$ in $U$ such that $ f(W)\cap W=\phi$ . Let $U(1)=C1(U-W)\cup f(W)$ and $V(1)=$

$C1(M-U(1))$ . The existenoe of the cellwise expansions allows us to conclude
$t$hat $(M;U, V, f)$ is ss-equivalent to $(M;U(1), V(1),f)$ . The argument is similar
in style to the argument in Proposition 3.2. In the sequenoe of expansions, each
expansion along a l-cell corresponds to a Type 1 modification and each expansion
along 2-cell corresponds to a Type 2 modification in the definition of ss-equivalence.
It is easy to check that $(M;U(1), V(1),f)$ is equivalent to $(M;X, Y,f)$ . $\square $

The following proposition follows from the usual argument in Heegaard
theory.

Proposition 4.3. Let $(M;U, V,f)$ be a characteristic Heegaard splitting.
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SuPpose that $K$ is $d$ 2-dimensional complex in $U$ and $L$ is a subcomplex of $K$ such

that $K$ collapses to $Land|K|\cap\partial U=|L|$ . Let $N^{*}be$ a wedge-modification of a regular

neighborhood of Cl $(|K_{1}|-|L|)$ in U. Let $U^{\prime}=C1(U-N^{*})\cup f(N^{*})$ and $V^{\prime}=C1(M-U)$ .
Then $(M;U, V,f)$ is ss-equivalent to $(M;U^{\prime}, V^{\prime},f)$ . $\square $

Proposition 4.4 (Subdivision Process). Let $K$ be an invariant triangulation

of $M$ under $f$. Let $\nu$ be a constructive V-set and $\alpha$ a companion A-set. Let

$(M;U, V,f)$ be a standard Heegaard splitting (with respect to $K$ ) defined by an
$(a, \nu)$-surface H. Let $K^{\prime}$ be an invariant subdivision of $K$.

Define as follows a new Partition $(M;U^{\prime}, V^{\prime})$ of M. Let $U(H)$ be the closure

of the union of the connected components of $M-H$ which meet $\nu$ . Let $Z^{\prime}$ be the

union of $l$ -simplexes in $K^{\prime}$ whose interiors meet Int $U(H)$ . Let $N^{J*}$ be a wedge-

modification of a regular neighborhood $N^{\prime}$ of $Z^{\prime}\cap U(H)$ in $U(H)$ such that $N^{\prime}\cap H$

is invariant under $f$. Let $U^{\prime}=C1(U(H)-N^{\prime*})\cup f(N^{\prime*})$ and $V^{\prime}=C1(M-U^{\prime})$ . Then
$(M;U^{\prime}, V^{\prime}, f)$ is a characteristic Heegaard splitting and is ss-equivalent to

$(M;U, V,f)$ .
Proof. Let $N^{*}=C1(U(H)-U)$ and let $Z(H)$ be the union of l-simplexes in

$K$ whose interiors meet Int $U(H)$ . Let

$ Z(2)=\cup$ { $b\in K^{\prime}$ : dim $b=1,$ $b\subset Z^{\prime},$ $b\not\subset|K_{1}|$ , and $b\subset|K_{2}|$ } and
$ Z(3)=\cup$ {$b\in K^{\prime}$ : dim $b=1,$ $b\subset Z^{\prime}$ , and $b\not\subset|K_{2}|$ }.

Let $N^{\prime}(2)$ be a regular neighborhood of $Z(2)\cap U$ in $U$ , and $N^{\prime*}(2)$ a wedge-

modification of $N^{\prime}(2)$ . Let $U(O)=C1(U-N^{\prime*}(2))$ and $V(O)=C1(M-U(O))$ . Propo-

sition 4.2 shows that $(M;U, V, f)$ is ss-equivalent to $(M;U(O), V(O),f)$ by attaching

$pa$irs of handles of index 2.
Let $e(1),$ $\cdots,$ $e(p)$ be the 3-simplexes of $K$ whose interiors meet Int $U(H)$ . Let

$N(1),$ $\cdots,$ $N(p)$ be regular neighborboods of $e(1)\cap Z(3)\cap U(0),$ $\cdots,$
$e(P)\cap Z(3)\cap U(0)$

in $U(O)$ respectively which are mutually disjoint. Let $N$ be a regular $neighborhd$

of $Z(H)\cap U$ in $U$ such that $N^{*}$ is a wedge-modification of $N$. If necessary,

modify $N(1),$ $\cdots,$ $N(p)$ so that $N\cup N^{\prime}(2)\cup\bigcup_{i=1}^{p}N(i)=N^{\prime}$ . For each $i=1,$ $\cdots,$ $p$ , let
$N^{*}(\iota)=N(i)\cap N^{;*}$ and let

$U(l)=C1(U(i-1)-N^{*}(i))\cup f(N^{*}(i))$ and
$V(i)=C1(M-U(i))$ .

Of course $U(p)=U^{\prime}$ and $V(p)=V^{\prime}$ .
Claim. For each $i=1,$ $\cdots,p,$ $(M;U(i-1), V(i-1),f)$ is ss-equivalent to $(M;U(i)$ ,

$V(i),f)$ .
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Proof. There are two cases:
(1) $e(i)\subset U(H)$ .
(2) $ e(i)-U(H)\neq\phi$ .
Case (1): Suppose $t$hat $e(i)\subset U(H)$ . Then by Proposition 4.1 there is a 2-

dimensional subcomplex $C$ of $K^{\prime}(e(i))$ such that $e(i)\cap Z(3)\subset|C|$ , and $C$ collapses to
$C\cap K^{\prime}(\partial e(i))$ . Henoe by Proposition 4.3 $(M;U(i-1), V(i-1),f)$ is ss-equivalent to
$(M;U(i), V(i),f)$ by attaching pairs of handles of index 1.

Case (2): Suppose that $ e(i)-U(H)\neq\phi$ . Note that $e(i)\cap U(H)$ is a convex
linear cell. Thus by intersecting the simplexes of $K^{\prime}$ with this cell we can ex-
hibit $e(i)\cap U(H)$ as the carrier of a convex linear cell complex. Now use Lemma
1 in Chapter 1 in [Zm] to subdivide this cell complex into a simplicial complex
$J$ without adding vertices. Let

$ W=\cup$ {$b\in J_{1}$ : (Int $ b)\cap(IntU(H))\neq\phi$ , and $b\subset Z(2)\cup Z(3)$}.

Let $P^{*}$ be $a$ wedge-modification of a regular neighborhood of $W\cap U(\ell)$ in $U(\ell)$ .
Let $U^{*}=C1(U(i)-P^{*})\cup f(P^{*})$ and $V^{*}=C1(M-U^{*})$ . Then by the same argument
as $t$he first case, $(M;U(i-1), V(i-1),$ $f$) is $ss\cdot equivalent$ to $(M;U^{*}, V^{*},f)$ . Simi-
larly $(M;U(i), V(i),f)$ is ss-equivalent to $(M;U^{*}, V^{*},f)$ . Hence $(M;U(i-1)$ ,
$V(i-1),f)$ is ss-equivalent to $(M;U(i), V(i),f)$ . This establishes the claim.

Therefore $(M;U, V, f)$ is ss-equivalent to $(M;U^{\prime}, V^{\prime},f)$ and $(M, U^{\prime}, V^{\prime},f)$ is
a characteristic Heegaard splitting. This completes the $prf$ of Proposition 4.4. $\square $

Proposition 4.5 (Standardizing process). Suppose that $(M;X, Y,f)$ is a charac-
teristic Heegaard sPlitting of $M$ and that $\partial X$ is a standard surface with respect
to an invariant triangulation $K$ of M. Then there are an invariant subdivision
$K^{\prime\prime}$ of $K$ and a standard Heegaard splitting $(M;U^{\prime\prime}, V^{\prime\prime},f)$ (standard with re-
spect to $K^{\prime\prime}$ and $\partial X$) so that $\partial X$ is a standard surface with respect to $K^{\prime\prime}$ and
$(M;X, Y, f)$ is ss-equivalent to $(M;U^{\prime\prime}, V^{\prime\prime},f)$ .

Proof. Let $K^{\prime}$ be an invariant subdivision of $K$ such that $\partial X$ is a standard
surfaoe with respect to $K^{\prime}$ , and $N(\partial X;K^{\prime})$ is a bicollar $neighborhd$ of $\partial X$. It
is possible to find such a subdivision by Condition (4) in the definition of standard
surface. Let $X^{\prime}=C1(X-N(\partial X;K^{\prime}))$ and $Y^{\prime}=C1(Y-N(\partial X;K^{\prime}))$ . Let $J=K^{\prime}(X^{\prime})$ .
Of course $|J|=X^{\prime}$ . Sinoe $X^{\prime}$ is a $cube- with\cdot handles$ , there are a subdivision $J^{\prime}$

of $J$ and a 2-dimensional subcomplex $L$ of $J^{\prime}$ such that $L_{1}=(J^{\prime})_{1}$ , and $L$ sim-
plicially collapses to $L\cap J(\partial X^{\prime})$ (see the argument in the $prf$ of Lemma 1 in
[Cr]). Sinoe the map $f:K^{\prime}(X^{\prime})\rightarrow K^{\prime}(Y^{\prime})$ is an isomorphism, $J^{\prime}$ induces $a$ sub-
division of $K^{\prime}(Y^{\prime})$ whic$h$ maps simplicially onto $J^{\prime}$ under $f$. These subdivisions
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induoe an invariant subdivision $K^{\prime}$ of $K^{\prime}$ such that

$(K^{\prime\prime})_{0}\cap U=(J^{\prime})_{0}\cup((K^{\prime})_{0}\cap F(f))$ and
$K^{\prime\prime}(X^{\prime})=J^{\prime}$ .

We construct as follows a new partition $(M;X(1), Y(1))$ of $M$. Let

$ G(1)=\cup$ {$b\in K^{\prime\prime}$ : dim $b=1$ , Int $b\subset N(\partial X;K^{\prime})-F(f)$ } and
$ G(2)=\cup$ { $b\in J^{\prime}$ : dim $b=1,$ $b\not\subset G(1)$ }.

Let $N(1)$ be a regular neighborhood of $G(1)\cap X$ in X. Let $N^{*}(1)$ be $a$ wedge-

modification of $N(1)$ . Let

$X(1)=C1(X-N^{*}(1))\cup f(N^{*}(1))$ and
$Y(1)=C1(M-X(1))$ .

Then by the same argument as in the second case for the claim in Proposition

4.4, $(M;X, Y,f)$ is ss-equivalent to $(M;X(1), Y(1),f)$ .
Let $N(2)$ be a regular $neighborhd$ of $G(2)$ in $X^{\prime}$ . Let $N^{*}(2)$ be a wedge-

modification of $N(2)$ . We can assume that $N(1)\cup N(2)$ is a regular $neighMrhd$

of $(G(1)\cup G(2))\cap X$ in $X$. Let

$U^{\prime\prime}=C1(X(1)-N^{*}(2))\cup f(N^{*}(2))$ and
$V^{\prime\prime}=C1(M-U^{\prime\prime})$ .

Then $(M;U^{\prime\prime}, V^{\prime\prime},f)$ is $a$ standard Heegaard splitting of $M$ with respect to $\partial X$

and $K^{\prime\prime}$ . By Proposition 4.3 and the existence of the complex $L$ , we can conclude
tha$t(M;X(1), Y(1),$ $f$) is ss-equivalent to $(M;U^{\prime\prime}, V^{\prime\prime}, f)$ . Therefore $(M, X, Y, f)$

is $ss\cdot equivalent$ to $(M;U^{\prime\prime}, V^{\prime\prime}, f)$ . $\square $

Proposition 4.6. Let $(M;X, Y, f),$ $K,$ $K^{\prime\prime}$ , and $(M;U^{\prime\prime}, V^{\prime\prime},f)$ be as above.

Let $(M;U, V, f)$ be a standard Heegaard splitting of $M$ with respect to the stand-
ard surface $\partial X$ and the triangulation K. Then $(M;X, Y,f)$ is ss-equivalent to

$(M;U, V,f)$ .
Proof. By Proposition 4.4, $(M;U, V, f)$ is ss-equivalent to $(M;U^{\prime\prime}, V^{\prime\prime}, f)$ .

By Proposition 4.5, $(M;X, Y,f)$ is ss-equivalent to $(M;U^{\prime\prime}, V^{\prime\prime},f)$ . Therefore
$(M;X, Y,f)$ is ss-equivalent to $(M;U, V,f)$ . $\square $

Proposition 4.7. Let $(M;U, V, f)$ and $(M;X, Y, f)$ be characteristic Heegaard

splittings of M. SuPpose that there is an invariant triangulatim $K$ of $M$ such

that both $\partial U$ and $\partial X$ are standard surfaces with respect to $K$, and $U\cap N(F(f);K)=$

$X\cap N(F(f);K)$ . Then $(M;U, V,f)$ is ss-equivalent to $(M;X, Y,f)$ .
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Proof. Let $(M;U^{\prime}, V^{\prime}, f)$ and $(M;X^{\prime}, Y^{\prime},f)$ be standard Heegaard splittings
of $M$ with respect to the standard surfaces $\partial U$ and $\partial X$, and the triangulation $K$

respectively. By Proposition 4.6, $(M,\cdot U, V, f)$ is ss-equivalent to $(M;U^{\prime}, V^{\prime}, f)$ ,
and $(M;X, Y, f)$ is ss-equivalent to $(M;X^{\prime}, Y^{\prime}, f)$ . $ByProposition3.2,$ $(M;U^{\prime}, V^{\prime},f)$

is ss-equivalent to $(M;X^{\prime}, Y^{\prime}, f)$ . Therefore $(M;U, V,f)$ is ss-equivalent to
$(M;X, Y,f)$ . $\square $

Let $h:M\times I\rightarrow M$ be $a$ map. For each $t\in I$, let $h_{\ell}:M\rightarrow M$ denote the map
$h_{\ell}(x)=h(x, t)$ for all $x\in M$.

Proposition 4.8. Let $(M;U(1), V(1),f)$ and $(M;U(2), V(2),f)$ be characteristic
Heegaard splittings of M. SuPpose that, for some neighborhood $N$ of $F(f)$ in $M$,
we have $U(1)\cap N=U(2)\cap N$. Then there are an invariant triangulation $K$ of $M$

and ambient isotopies $h(1),$ $h(2):M\times I\rightarrow M$ fixing $F(f)$ such that for each $x\in M$,
$t\in I$, and $i=1,2$ :

(1) $h(i)_{t^{\circ}}f=f\circ h(i)_{\ell}$ .
(2) $h(i)_{1}(\partial U(i))$ is a standard surface with respect to $K$.
(3) $h(1)_{1}(U(1))\cap N(F(f);K)=h(2)_{1}(U(2))\cap N(F(f);K)$ .
Proof. Let $Z$ be the orbit space of $f$. Let $g:M\rightarrow Z$ by the identification

map. Le$tG(i)=g(\partial U(i)),$ $F=g(F(f))$ . Let $J$ be a triangulation of $Z$ such that:
(1) The set $F$ is triangulated by $J$.
(2) The set $N(F;J)$ is $a$ resular neighborhood of $F$.
(3) On $t$he se$tN(F;J)$ we $ha$ve $G(1)\cap N(F;J)=G(2)\cap N(F;J)$ and this poly-

hedron is an annulus.
There are an ambient isotopy $k:Z\times I\rightarrow Z$ fixing $F$ and a subdivision $J^{\prime}$ of $J$

such that $t$he following conditions hold:
(1) The set $N(F;J^{\prime})$ is a regular $nei4hborhood$ of $F$ .
(2) The intersection $k_{1}(G(i))\cap(J^{\prime})_{0}$ is contained in $F$.
(3) For each 3-simplex $c$ of $J^{\prime}$ in $N(F;J^{\prime})$ , if $ k_{1}(G(i))\cap(c-F)\neq\phi$ , the inter-

section $k_{1}(G(i))\cap c$ is a proper disk $a$nd splits $c$ into $t$wo convex cells.
There are ambient isotopies $k(1),$ $k(2):Z\times I\rightarrow Z$ fixing $N(F;J^{j})$ such that $(^{*})$

below holds:

For each $i=1,2$ , and each l-simplex $b$ in $J^{\prime}-J^{\prime}(F)$ , the intersection
$(*)$ $k(i)_{1}\circ k_{1}(G(i))\cap b$ consists of at most finitely many points at which Int $b$

pierces the surfaoe $k(i)_{1}\circ k_{1}(G(i))$ .
If necessary, further apply ambient isotopies fixing $N(F;J^{\prime})$ and replaoe $J^{\prime}$ by
a further subdivisions so that for each 3-simplex $c$ in $J^{\prime}$ , the intersection
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$k(i)_{1^{o}}k_{1}(G(i))\cap c$ consists of at most one proper disk in $c$ , and $(^{*})$ still holds.

Further, if necessary, apply other ambient isotopies fixing $(J^{\prime})_{2}$ and subdivide $J^{\prime}$

so that $(^{**})$ below holds:

For each 3-simplex $c$ in $J^{\prime}$ , the intersection $k(\dot{\iota})_{1^{\circ}}k(G(i))\cap c$ consists of
$(^{**})$ at most one disk, and for each l-simplex $b$ in $J^{\prime}-J^{\prime}(F)$ , the intersection

$k(i)_{1}\circ k_{1}(G(t))nb$ consists of $at$ most one point which lies in Int $b$ .
Applying further ambient isotopies fixing $F$ , we may assume that for each 2-

simplex $b$ in $J^{\prime}$ , the intersection $h(i)_{1}\circ k_{1}(G(i))\cap b$ consists of at most one proper

line segment in $b$ whose end points are $ba$rycenters of l-simplexes in $J^{\prime}$ or vertices

of $J^{\prime}$ in $F$, and $(^{**})$ still holds. And finally applying further ambient isotopies

fixing $(J^{\prime})_{2}$ , we may assume that for each 3-simplex $c$ in $J^{\prime}$ , if $ k(i)_{1}\circ k_{1}(G(i))\cap c\neq\phi$ ,

then the surface $k(i)_{1}\circ k_{1}(G(i))$ separates $c$ into two convex sets.

Let $\overline{h}(1),\tilde{h}(2):Z\times I\rightarrow Z$ be ambient isotopies defined by

$\tilde{h}(i)(z, t)=\left\{\begin{array}{ll}k(z, 2t) & if t\leq 1/2\\k(i)(k_{1}(z), 2t-1) & if 1/2\leq t.\end{array}\right.$

Pull back the triangulation $J^{\prime}$ and the ambient isotopies $\tilde{h}(1)$ and $\tilde{h}(2)$ to get

$t$he triangulation $K$ of $M$ and ambient isotopies $h(1)$ and $h(2)$ . It is easy to check

that $K$ and $h(1)$ and $h(2)$ satisfy the conditions. $\square $

Theorem. Let $M$ be an orientable closed 3-manifold. Let fi, $f_{2}:M\rightarrow M$ be

orientation preserving involutions. Then $(M;U_{1}, V_{1}, f_{1})$ and $(M;U_{2}, V_{2},f_{2})$ are ss-

equivalent if and only if there is a homeomorphism $h:M\rightarrow M$ such that $f_{2}=$

$h\circ f_{1}\circ h^{-1}$ and the intersection $h(\partial U_{1})\cap\partial U_{2}$ contains a neighborhood of the fixed
point set for $f_{2}$ in $\partial U_{2}$ .

In particutar if $f_{1}$ and $f_{2}$ are conjugate fixed point free involutions, then
$(M;U_{1}, V_{1},f_{1})$ and $(M;U_{2}, V_{2}, f_{2})$ are ss-equivalent.

Proof. Suppose that the two splittings are ss-equivalent. Then there is a
$hommorphismh:M\rightarrow M$ such that $f_{2}=h\circ f_{1}\circ h^{-1}$ and $(M;h(U_{1}), h(V_{1}),$ $f_{2}$) and
$(MU_{2}, V_{2},f_{2})$ are ss-equivalent by modifications of Type 2 or 3. Since modifica-

tions of Type 2 or 3 can not modify a $neighborhd$ of the fixed point set $F(f_{2})$ ,

there is $a$ regular $neighborhdN$ of $F(f_{2})$ such that $N\cap h(\partial U_{1})=N\cap\partial U_{2}$ . There-

fore the intersection $h(\partial U_{1})\cap\partial U_{2}$ contains a $neighborhd$ of $F(f_{2})$ in $\partial U_{2}$ .
Suppose that there is a homeomorphism $h:M\rightarrow M$ such that $f_{t}=h\circ f_{1}\circ h^{-1}$ and

$h(\partial U_{1})\cap\partial U_{2}$ contains $a$ neighborhood of $F(f_{2})$ in $\partial U_{2}$ . Let $U(1)=h(U_{1}),$ $V(1)=$

$h(V_{1})$ , $U(2)=U_{a}$ , $V(2)=V_{2}$ , and $f^{\prime}=f_{2}$ . Then it is sufficient to show that
$(M;U(1), V(1),f^{\prime})$ and $(M;U(2), V(2),f^{\prime})$ are $ss\cdot\Re uivalent$ .
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By Proposition 4.8, there are an invariant triangulation $K$ and ambient iso-
topies $h(1),$ $h(2):M\times I\rightarrow M$ such that for each $x\in M,$ $t\in I$, and $i=1,2$ , the follow-
ing conditions hold:

(1) $h(i)_{\ell^{\circ}}f^{\prime}=f^{\prime}\circ h(i)_{\ell}$ .
(2) $h(i)_{1}(\partial U(i))$ is a standard surfaoe with respect to $K$.
(3) $h(1)_{1}(U(1))\cap N(F(f^{\prime});K)=h(2)_{1}(U(2))\cap N(F(f^{\prime});K)$ .
Sinoe $h(i)_{1}\circ f^{\prime}=f^{\prime}\circ h(i)_{1}$ , we have $(M;U(i), V(i),$ $f^{\prime}$ ) equivalent to $(M_{1}h(i)_{1}(U(l))$ ,

$h(i)_{1}(V(i)),$ $f^{\prime}$ ). By Proposition 4.7, $(M;h(1)_{1}(U(1)), h(1)_{1}(V(1)),$ $f^{\prime}$ ) is ss-equivalent
to $(M;h(2)_{1}(U(2)), h(2)_{1}(V(2)),f^{\prime})$ . Therefore $(M;U(1), V(1),$ $f^{\prime}$ ) is ss-equivalent to
$(M;U(2), V(2),f^{\prime})$ . $\square $

Notes. (1) Theorem holds for disconnected closed 3-manifolds if we change,
as follows, the definition of characteristic Heegaard splittings: A tuple $(M;U, V,f)$

is a characteristic Heegaard splitting provided $t$hat (i) $(M;U, V)$ is a partition of
$M$ into regular neighborhoods of graphs (possibly disconnected) so that $\partial U=\partial V$

and (ii) $f(U)=V$. (2) For the $ca$ses of fixed point free involutions, Theorem
does not require orientability of $M$ if we change the definition as in (1).

As a special case of Theorem we give a proof of the usual Reidemeister-Singer
$t$heorem for Heegaard splittings.

Theorem (Reidemeister-Singer). Any two Heegaard splittings of a closed 3-
manifold $M$ are stably equivalent.

Proof. Let $M^{\prime}$ be a copy of $M$. Let $h:M\rightarrow M^{\prime}$ be $a$ homeomorphism. Let
$N$ be the disjoint union of $M^{\prime}$ . Then $N$ is a closed 3-manifold. Let $f^{\prime}:N\rightarrow N$

be the involution defined by

$f^{\prime}(x)=\left\{\begin{array}{ll}h(x) & if xeM\\h^{-1}(x) & if xeM^{\prime}\end{array}\right.$

Let $(M;U, V)$ and $(M;X, Y)$ be Heegaard splittings of $M$. Then $h$ induces char-
acteristic Heegaard splittings $(N;U^{\prime}, V^{\prime}, f^{\prime})$ and $(N;X^{\prime}, Y^{\prime}, f^{\prime})$ of $N$ (as indicated
in the preceding notes) such that $U^{\prime}\cap M=U$ and $X^{\prime}\cap M=X$.

Sinoe $f^{\prime}$ is a fixed point free involution on $N$, the splittings $(N;U^{\prime}, V^{\prime}, f^{\prime})$

and $(N;X^{\prime}, Y^{\prime},f^{\prime})$ are ss-equivalent by $Threm$ . Henoe there is a sequenoe of
elementary modifications as in the definition of $ss\cdot equivalence$ which conver$ts$ the
splitting to the other. The restriction of the sequenoe to $M$ exhibits the desired
stable equivalenoe of $(M;U, V)$ and $(M;X, Y)$ . $\square $
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