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Introduction.

Charles Hopkins (Annals of Math., 1939, pp. 712-730) has shown that a
unital Artinian left R-module over a left Artinian ring $R$ with identity, must be
Noetherian. Moreover, any left Artinian ring with identity must be left Noetherian.
These results are known to be false for rings without identity.

I. S. Cohen (Duke Math. Journal, 1950, pp. 27-42) has shown that a commu $\cdot$

tative Noetherian ring with identity is Artinian if and only if every proper prime
ideal of the ring is maximal. Again, this is false for rings without identity.

In this paper we will invent generalizations of the definitions “Artinian” and
“Noetherian” to obtain analogues of Hopkins’ and Cohen’s theorems that do not
require an identity. For rings with identity “almost left Noetherian (Artinian)”

will be equivalent to “left Noetherian (Artinian)”. We will discover that many
of the well known properties of left Artinian (Noetherian) rings are also properties
of almost left Artinian (Noetherian) rings. In general, every almost left Artinian
ring must be almost left Noetherian. In our analogue of Cohen’s theorem we
will eliminate both the commutativity and the identity. To this end, we invent
”almost prime and almost maximal” ideals. Indeed an almost left Noetherian
ring is almost left Artinian if and only if every proper almost prime ideal is an
almost maximal left ideal.

Our work will incidentally prove the following results.
1. In a left Artinian ring $R$ , any expanding sequence of left ideals $ J_{1}\subseteq J_{2}\subseteq$

$ J_{3}\subseteq\cdots$ satisfying $\cup J_{n}=R(\bigcup_{*}J_{n})$ , must terminate.
2. Any left Artinian ring $R$ with nil radical $W$ satisfying $W=RW$, must be

left Noetherian.
3. A commutative Noetherian ring $R$ is the direct sum of an Artinian ring

with a nilpotent ring if and only if every proper prime ideal of $R$ is a maximal
ideal of $R$ . If $R$ has an identity, then the nilpotent summand vanishes, and this
becomes Cohen’s $th\infty rem$.
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Essay.

Let $ J_{1}\subseteq J_{3}\subseteq J_{3}\subseteq\cdots\subseteq J_{n}\subseteq\cdots$ be an expanding sequence of (left) ideals in a ring
$R$ . We say that the sequence terminates if for some $neZ_{+},$ $J_{n}=J_{n+k}$ for all $k\in Z_{+}$ .
We say that the sequence almost terminates if for some $n,$ $q\in Z_{+},$ $ R^{q}(\cup J.)\subseteq I*\cdot$

(Equivalently, $R^{p}(\cup J_{n})\subseteq J_{p}$ for some $p\in Z_{+}$ ; just let $p$ be the maximum of $q$ and
$m.)$ Of course the sequence almost terminates if it terminates.

Now let $ I_{1}\supseteq I_{2}\supseteq I_{3}\supseteq\cdots\supseteq I_{n}\supseteq\cdots$ be a contracting sequence of (left) ideals of
a ring $R$ . We say that the sequenoe terminates if for some $n\in Z_{+},$ $I_{n}=I_{\hslash+k}$ for
all $k\in Z_{+}$ . We say that the sequence almost terminates if for some $m,$ $q\in Z_{+}$ ,
$R^{q}I_{n}.\subseteq\cap I_{n}$ . (Equivalently, $R^{p}I_{p}\subseteq\cap I$, for some $p\in Z_{+}$ ; just let $P$ be the maximum
of $q$ and $m.$ ) Of course the sequence almost terminates if it terminates.

We say that the ring $R$ is left Artinian if every contracting sequence of left
ideals of $R$ terminates. We say that $R$ is almost left Artinian if every contracting
sequence of left ideals almost terminates. We say that $R$ is left Noetherian if
every expanding sequence of left ideals of $R$ terminates. We say that $R$ is almost
left Noetherian if every expanding sequence of left ideals almost terminates.

Of course in a ring $R$ satisfying $reRr$ for each $r\in R$ (this happens, for
example, if $R$ has an identity), “left Artinian“ is equivalent to “almost left
Artinian” and “left Noetherian“ is equivalent to “almost left Noetherian”. On
the other hand every nilpotent ring is both almost left Artinian and almost left
Noetherian. The reader can easily construct a nilpotent ring that is neither left
Artinian nor left Noetherian.

We show that these properties are invariant under ring homomorphisms.

Proposition 1. Any homomorphic image of an almost left Artinian (Noetherian)

ring is almost left Artinian (Noetherian).

Proof. Let $f$ be a homomorphism of the almost left Artinian ring $R$ . Let
$ J_{1}\supseteq J_{2}\supseteq\cdots\supseteq J_{n}\supseteq\cdots$ be a contracting sequence of left ideals of the ring $fR$ . Then
$ f^{-1}J_{1}\supseteq f^{1}J_{2}\supseteq\cdots\supseteq f^{1}J,\supseteq\cdots$ is a contracting sequence of left ideals of $R$ . By

hypothesis, there is an index $q$ such that $R^{q}f^{1}J_{q}\subseteq\bigcap_{*}f^{1}J_{*}$ and

$(fR)^{q}J_{q}=f[R^{q}f^{1}J_{q}]\subseteq f(\cap f^{1}J,)=\bigcap_{n}J_{n}$ .
Thus $fR$ is also almost left Artinian.

Now suppose $R$ is almost left Noetherian. Let $ I_{1}\subseteq I_{a}\subseteq\cdots\subseteq I_{n}\subseteq\cdots$ be any
expanding sequence of left ideals of $fR$ . Then $ f^{1}J_{1}\subseteq f^{1}J,\subseteq\cdots\subseteq\Gamma^{1}j_{n}\subseteq\cdots$ is an
expanding sequence of left ideals of $R$ . By hypothesis, there is an index $q$ such
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that $R^{q}(\bigcup_{n}f^{1}J_{n})\subseteq f^{1}J_{q}$ and

$(fR)^{q}[\cup J_{n}]=f[R^{q}\bigcup_{n}f^{-1}J_{n}]\subseteq f[f^{1}J_{q}]=J_{q}$ .
Thus $fR$ is also almost left Noetherian.

Analogous arguments prove that left Artinian and left Noetherian are also
invariant under homomorphisms. We proceed to the direct sum of two rings.

Proposition 2. Let $R$ be the direct sum of the rings $R_{1}$ and $R_{g};R=R_{1}\oplus R_{2}$ .
Then $R$ is almost left Artinian (Noetherian) if and only if $R_{1}$ and $R_{2}$ are almost
left Artinian (Noetherian).

Proof. The only if part follows from Proposition 1. So suppose $R_{1}$ and $R_{2}$

are almost left Artinian. Let $ J_{1}\supseteq J_{2}\supseteq\cdots\supseteq J_{n}\supseteq\cdots$ be a contracting sequenoe of
left ideals of $R$ . Then $ R_{1}J_{1}\supseteq R_{1}J_{2}\supseteq\cdots\supseteq R_{1}J_{n}\supseteq\cdots$ is a contracting sequenoe of
left ideals of $ R_{1},\downarrow andR_{2}J_{1}\supseteq R_{2}J_{2}\supseteq\cdots\supseteq R_{2}J_{n}\supseteq\cdots$ is a contracting sequenoe of left
ideals of $R_{2}$ . Hence there is an index $q$ such that $R_{i}^{q}R_{i}J_{q}\subseteq\bigcap_{n}R_{i}J_{n}\subseteq\bigcap_{n}I*(i=1,2)$ ;
just let $q$ be the maximum of the indices obtained for $R_{1}$ and $R_{2}$ . Then

$R^{q+1}J_{q}=(R_{1}^{q+1}J_{q})+(R_{2}^{q+1}J_{q})\subseteq\cap J,$ .
Now suppose $R_{1}$ and $R_{2}$ are almost left Noetherian. Let $ J_{1}\subseteq J_{2}\subseteq\cdots\subseteq J,\subseteq\cdots$

be an expanding sequenoe of left ideals in $R$ . As before, there is an index $q$ such
that $R_{i}^{q}(\bigcup_{*}RJ_{n})\subseteq RJ_{q}\subseteq J_{q}(i=1,2)$ , and $R^{q+1}(\bigcup_{n}J_{n})\subseteq R_{1}^{q}(\bigcup_{n}R_{1}J,)+R_{2}^{q}(\bigcup_{f}R_{2}J_{\hslash})\subseteq J_{q}$ .

The corresponding argument for left Artinian (Noetherian) is trickier. Let
$(J_{n})$ be a contracting sequenoe of left ideals of $R$ where $R_{1}$ and $R_{g}$ are left
Artinian. Put $I_{n}=$ {$x\in R_{1}:x+y\in J_{n}$ for some $y\in R_{2}$ }. Evidently $I$, is a left ideal
of $R_{1}$ , and $ I_{1}\supseteq I_{2}\supseteq\cdots\supseteq I_{n}\supseteq\cdots$ . Also $(R_{2}\cap J_{n})$. is a contracting sequenoe of left
ideals of $R_{2}$ . So there is an index $q$ such that $I_{q}=I_{q+k}$ and $R_{2}\cap J_{q}=R_{s}\cap J_{q+k}$ for
all $k\in Z_{+}$ . Now take any $z\in J_{q}$ . Say $z=x+y(x\in R_{1}, y\in R_{2})$ . Then $xeI_{q}=I_{q+k}$

$(k\in Z_{+})$ . But for any $k\in Z_{+},$ $x+w\in J_{q+k}$ for some $w\in R_{2},$ $x+y\in J_{q},$ $y-w=(x+y)-$
$(x+w)\in R_{B}\cap J_{q}=R_{\mathfrak{g}}\cap J_{q+k}$ , and $z=x+y=(x+w)+(y-w)\in J_{q+k}$ . Thus $J_{q}=J_{q+k}$ for
all $k\in Z_{+}$ , and $R$ is left Artinian.

Now suppose $R_{1}$ and $R_{2}$ are left Noetherian and $(J_{n})$ is an expanding sequence
of left ideals of $R$ . Define the left ideals $I_{n}$ of $R_{1}$ as before. This time (I,) is
expanding and $(R_{2}\cap J_{n})_{n}$ is an expanding sequenoe of left ideals of $R_{3}$ . Say $qeZ_{+}$

such that $I_{q}=I_{q+k}$ and $R_{2}\cap J_{q}=R_{2}\cap J_{q+k}$ for all $k\in Z_{+}$ . Fix $k\in Z_{+}$ and take any
$zeJ_{q+k}$ . Say $z=x+y(x\in R_{1}, y\in R_{2})$ . Then [$x\in I_{q\vdash k}=I_{q}$ and so there is a $weR_{t}$

such that $x+weJ_{a}\subseteq J_{\tau+k}$ . Whence
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$(x+y)-(x+w)=y-weR_{2}\cap J_{q+k}=R_{2}\cap J_{q}$ ,

and so $z=x+y=(x+w)+(y-w)\in J_{q}$ . Thus $J_{q}=J_{q+k}$ for all $h\in Z_{+}$ , and $R$ is left

Noetherian.
Of course Proposition 2 can be extended to the direct sum of finitely many

rings. We now come to a result for our “almost“ properties that does not carry
over to “left Artinian” or “left Noetherian.”

Proposition 3. Let I be a left ideal in an almost left Artinian (Noetherian)

ring R. Then $I$, as a ring, is almost left Artinian (Noetherian).

Proof. Suppose $R$ is almost left Artinian and $(J_{n})$ is a contracting sequence
of left ideals of the ring $I$. Then $(IJ_{n})$ is a contracting sequence of left ideals

of $R$ . So $R^{q}(IJ_{q})\subseteq\bigcap_{n}IJ_{n}$ for some $q\in Z_{+}$ . We have

$I^{q+1}J_{q}\subseteq R^{q}(IJ_{q})\subseteq\cap IJ_{n}\subseteq\bigcap_{n}J_{n}$ .
Thus $I$ is almost left Artinian. The argument for “almost left Noetherian” is

analogous and is left to the reader.
Consider the ring of 2 by 2 matrices of the form $\left(\begin{array}{ll}a & 0\\b & c\end{array}\right)$ where $b$ and $c$ are

real numbers and $a$ is a rational number. Let $I$ be the left ideal composed of

those matrices with $a=c=0$ . The reader can show that $R$ is left Artinian and

left Noetherian, but the ring $I$ is neither.
Now we find alternative ways of defining our properties.

Proposition 4. Let $R$ be a ring. Then $R$ is almost left Artinian (Noetherian)

if and only if for each nonvoid family $J$ of left ideals, there is a member I of
$J$ and a $q\in Z_{+}$ such that $R^{q}I\subseteq J(R^{q}J\subseteq I)$ for any $J$ in $J$ satisfying $J\subseteq I(I\subseteq J)$ .

Proof. The condition implies almost left Artinian (Noetherian); just let $\mathcal{J}$

be the set of left ideals occurring in the sequence. Suppose $R$ is almost left
Artinian, and let $\mathcal{J}$ be a nonvoid family of left ideals. Suppose further that the

condition does not hold for Y. Choose any $ I_{1}\in$ Y. Then there is an $I_{2}\in \mathcal{J}$

such that $I_{1}\supseteq I_{2}$ but $RI_{1}\not\in h$ . There is an $I_{3}\in \mathcal{J}$ such that $I_{2}\supseteq I_{s}$ but $ R^{2}I_{2}\not\in I_{3}\cdots$ .
There is an $I,$ $\in J$ such that $I_{n-1}\supseteq I_{n}$ but $R^{n-1}I_{n-1}\not\in I_{n}$ , and so forth. The con-
tracting sequenoe $ I_{1}\supseteq I_{2}\supseteq\cdots\supseteq I_{n}\supseteq\cdots$ violates the hypothesis that $R$ is almost left

Artinian.
Suppose that $R$ is almost left Noetherian and $\mathcal{J}$ is a nonvoid family of left

ideals for which the condition does not hold. Pick any $I_{1}\in \mathcal{J}$. Then there is an
$I_{2}\in \mathcal{J}$ such that $I_{1}\subseteq I_{2}$ but $R^{2}I_{2}\not\in I_{1}$ . There is an $I_{3}\in \mathcal{J}$ such that $I_{2}\subseteq I$, but
$ R^{s}I_{3}\not\in I_{2}\cdots$ . There is an $I_{n}\in J$ such that $I_{n-1}\subseteq I_{n}$ but $R^{n}I_{n}\not\in I_{n-1}$ , and so forth.
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The expanding sequenoe $ I_{1}\subseteq I_{2}\subseteq\cdots\subseteq I_{n}\subseteq\cdots$ violates the hypothesis the $R$ is

almost left Noetherian.
Likewise $R$ is left Artinian if and only if every nonvoid family of left ideals

has a minimal member, and $R$ is left Noetherian if and only if every nonvoid

family of left ideals has a maximal member.
Next we come to several results on our “almost” properties, culminating in

Theorem 1, that are usually associated with “left Artinian” and “left Noetherian”.

By the nil radical $W$ of a ring $R$ , we mean the sum of all the nilpotent

ideals of $R$ . Of course, $W$ is a nil ideal. It is also known that $W$ equals the

sum of the nilpotent left ideals of $R$ , and $W$ equals the sum of the nilpotent

right ideals of $R$ . Consult M. Gray, A radical Approach to Algebra, p. 28.

Lemma 1. Let $W$ be the nil radical of an almost left Noetherian ring $R$ .
Then $W$ is nilPotent.

Proof. Let $\mathcal{J}$ denote the family of all nilpotent left ideals. For example,

(0) $\in \mathcal{J}$, so $\mathcal{J}$ is nonvoid. By Proposition 4, there is a nilpotent left ideal $I$ and

a $q\in Z_{+}$ such that $R^{q}J\subseteq I$ for any nilpotent left ideal $J\supseteq I$. Say $\Gamma=(0)$ . Then

$J^{nq+n}\subseteq(R^{q}J)^{n}\subseteq l^{n}=(0)$ ,

and $J^{nq+n}=(0)$ for any nilpotent left ideal $J\supseteq I$.
Now let $x_{1},$ $\cdots,$ $x_{nq+n}\in W$. Since the sum of two nilpotent left ideals is

nilpotent, it follows that $x_{i}\in J_{\ell}$ for some nilpotent left ideals $J_{i}(i=1, \cdots, nq+n)$ .
Put $J=J_{1}+\cdots+J_{nq+},$ $+I$. Then $J$ is nilpotent and $J\supseteq I$. By the preceding para-

graPh, $J^{nq+n}=(0)$ so $x_{1}\cdots x_{nq+},$ $=0$ . It follows that $W^{nq+n}=(0)$ .
Lemma 2. (Hopkins) Let I be any nil left ideal of an almost left Artinian

ring R. Then I is nilpotent. In particular, the nil radical of $R$ is nilpotent.

Proof. Assume $I$ is not nilpotent. We first claim that there is a minimal

nonnilpotent left ideal contained in $I$. Suppose there is not. Put $I_{1}=I$. Then

(0) $\neq I_{1}^{2}\subseteq RI_{1}$ and $RI_{1}$ is not nilpotent sinoe $I_{1}$ is not. So there is a nonnilpotent

left ideal $I_{2}\subsetneqq RI_{1}\subseteq I_{1}$ . Then (0) $\neq I_{2}^{3}\subseteq R^{2}I_{2}$ and $R^{2}I_{2}$ is not nilpotent since $I_{2}$ is not.

. . . So there is a nonnilpotent left ideal $I_{n}\subsetneqq R^{n-1}I_{n-1}\subseteq I_{n-1}$ . Then (0) $\neq\Gamma^{+1}\subseteq R’ I_{\iota}$ and
$R^{n}I_{n}$ is not nilpotent sinoe $I_{n}$ is not. And so forth. Finally, the contracting

sequenoe $ I_{1}\supseteq I_{2}\supseteq\cdots\supseteq I_{n}\supseteq\cdots$ conflicts with the hypothesis that $R$ is almost left

Artinian. Thus there is such a minimal left ideal; call it $K$. But $K^{2}\subseteq K$ and
$K^{2}$ is not nilpotent since $K$ is not. Then $K^{2}=K$ by the minimality of $K$.

Now let $S$ denote the family of all left ideals $J\subseteq K$ such that $KJ\neq(O)$ . For
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example, $K\in S$. We claim that $S$ has a minimal element. Suppose not. Put
$K_{1}=K$. Then

(0) $\neq KK_{1}=K^{2}K_{1}\subseteq K(RK_{1})$ ,

so $RK_{1}\in S$. $ChseK_{2}\in S$ such that $K_{2}\subsetneqq RK_{1}\subseteq K_{1}$ . Then

(0) $\neq KK_{2}=K^{3}K_{2}\subseteq K(R^{2}K_{2})$ ,

so $ RK_{2}\in S\ldots$ . Choose $K_{n}\in S$ such that $K_{n}\subsetneqq R^{n-1}K_{n-1}\subseteq K_{n-1}$ . Then

(0) $\neq KK_{n}=K^{n+1}K_{n}\subseteq K(R^{n}K_{\hslash})$ ,

so $R^{n}K_{*}\in S$. $ChseK_{n+1}\in S$ such that $K_{n+1}\subsetneqq R^{n}K_{n}\subseteq K_{n}$ . And so forth. The
contracting sequenoe of left ideals $ K_{1}\supseteq K_{2}\supseteq\cdots\supseteq K_{n}\supseteq\cdots$ conflicts with the hy-
pothesis that $R$ is almost left Artinian. Thus $S$ has a minimal element; call it $J$.

Now $KJ\neq(O)$ , so $chse$ an element $x\in J$ such that $Kx\neq(O)$ . Then $Kx$ is a
left ideal of $R$ , and $K(Kx)=K^{2}x=Kx\neq(0)$ . But $Kx\subseteq K$ since $x\in J\subseteq K$, so $Kx\in S$.
Also $Kx\subseteq J$ since $x\in J$. But $J$ is minimal in $S$, so $Kx=J$. Thus there is an
$a\in K$ such that $ax=x$ . It follows that

$ 0\neq x=ax=a^{2}x=\cdots=a^{n}x=\cdots$

for all $n\in Z_{+}$ . Henoe $a^{n}\neq 0$ for all $n\in Z_{+}$ and $a$ is not nilpotent. But a $eK\subseteq I$,
contrary to the hypothesis that $I$ is nil.

Proposition 5. Let $R$ be an almost left Noetherian ring and let I be a nonzero
nil right ideal of R. Then $R$ has a nonzero nilpotent left ideal.

Proof. For each $x\in R$ , let $f(x)$ denote the left ideal $\{y\in R:yx=0\}$ . We may
assume, without loss of generality, that $f(x)\neq R$ if $x\neq 0$ ; for otherwise the right
annihlator of $R$ is the desired left ideal. Let $S$ be the family of left ideals $\{f(x)\}$

where $x$ runs over the nonzero elements of $I$. By Proposition 4, there exists a
nonzero $x_{0}\in I$ and a $q\in Z_{+}$ such that $R^{q}f(x)\subseteq f(x_{0})$ for any nonzero $x\in I$ satisfying

$flx_{0})\subseteq flx)$ .
Suppose now $v\in R$ and $x_{0}v\neq 0$ . Then $x_{0}v$ is a nonzero element of $I$ since

$x_{0}\in I$ and $I$ is a right ideal. So $x_{0}v$ is nilpotent. Say $0=(x_{0}v)^{k}\neq(x_{0}v)^{k-1}$ . Of
course $k\geq 2$ and $x_{0}v\in f((x_{0}v)^{k-1})=f(x_{0}r)$ , so $R^{q}x_{0}v\subseteq R^{q}f(x_{0}r)\subseteq f(x_{0})$ sinoe $f(x_{0})\subseteq f(x_{0}r)$ .
Hence $(R^{q}x_{0}v)x_{0}=R^{q}x_{0}vx_{0}=(0)$ .

Even if $x_{0}v=0$ , we still have $R^{q}x_{0}vx_{0}=(0)$ . In other words, $R^{q}x_{0}Rx_{0}=(0)$ .
Whenoe $(Rx_{0}+Zx_{0})^{q+3}=(0)$ and $Rx_{0}+Zx_{0}$ is a nilpotent left ideal containing $x_{0}\neq 0$ .

Before our next result we make an observation. If $I$ is a nonzero nil left
ideal of $R$ , then $R$ has a nonzero nil right ideal. To see this we can suppose,
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without loss of generality, that $IR\neq(O)$ ; for otherwise $I$ is a right ideal. Choose

some $x\in I$ such that $xR\neq(O)$ . For any $r\in R,$ $rx$ is nilpotent, $(xr)^{k}=x(rx)^{k-1}r$ , and

clearly $xr$ is also nilpotent. Thus $xR$ is a nonzero nil right ideal. The converse
is proved analogously. If $R$ has a nonzero nil right ideal, $R$ must also contain a

nonzero nil left ideal. We employ this immediately.

Proposition 6. Let the ring $R$ be almost left Artinian or almost left Noetherian.

Then any nil one sided ideal of $R$ is nilpotent.

Proof. The nil radical $W$ of $R$ is nilpotent by Lemmas 1 and 2. Also $R/W$

is either almost left Artinian or almost left Noetherian. Now suppose $I$ is a nil

one sided ideal that is not nilpotent. Then $J=(I+W)/W$ is a nil one sided ideal

of $R/W$ that is nonzero. By the remark preceding this proposition, by Proposition

5, and by Lemma 2, $R/W$ has a nonzero nilpotent left ideal. But this is impossible.

Next we generalize a result of Brauer concerning Artinian rings and idempo-

tent elements.

Lemma 3. (Brauer) Let I be a nonnilpotent left ideal in an almost left
Artinian ring R. Then I contains a nonzero idempotent element.

Proof. In view of Lemma 2, $I$ is nonnil. Just as in the proof of Lemma 2,

there is a minimal nonnilpotent left ideal $K\subseteq I$. For each $x\in K$, let $g(x)$ denote

the left ideal $\{y\in K:yx=0\}$ . Of course $K$ is nonnil by Lemma 2.
Suppose $a$ is any nonnilpotent element of $K$. Then $a^{z}\in Ra$ and $a^{2}$ , and hence

$Ra$ , is not nilpotent. But $Ra\subseteq K$, and by minimality, $Ra=K$. Likewise $ a^{3}\in$

$Ra^{l}\subseteq K$ and $Ra^{a}=K$. There is a $b\in Ra=K$ such that $ba=a$ . Then $ba=ba=a$

so $(b^{a}-b)a=0$, and $b^{2}-b\in g(a)$ . Put $c=a+b-ab\in K$; note that

$ca=(a+b-ab)a=a^{2}+ba-aba=a^{2}+a-a^{2}=a$ .
Sinoe $ca=a\neq 0,$ $c$ is not nilpotent. Henoe $Ra=K$ and $g(c)\subseteq g(a)$ .

In the last paragraph, we showed that for any nonnilpotent $a\in K$, there exist
$b,$ $c\in K$ such that $ba=ca=a,$ $c=a+b-ab,$ $b-b^{2}\in g(a)$ , and $g(c)\subseteq g(a)$ . Of course
$c$ is not nilpotent sinoe $ca=a\neq 0$ .

Put $a_{1}=a,$ $b_{1}=b,$ $a_{2}=c$ and proceed by induction to produoe sequences $(a_{n})$ ,
$(b,.)\subseteq K$ such that each $a_{\#}$ is nonnilpotent, $b_{n}a_{n}=a_{n+1}a,$ $=a_{*},$ $a_{n+1}=a,+b_{l}-a,b,$ ,
$b.-b,.\in g(a_{*}),$ $g(a,.+1)\subseteq g(a_{n})$ for all $n\in Z_{+}$ . The contracting sequenoe of left ideals
$ g(a_{1})\supseteq g(a_{2})\supseteq\cdots\supseteq g(a,)\supseteq\cdots$ must almost terminate. So there is a $q\in Z_{+}$ such

that $R^{q}g(a_{q})\subseteq g(a_{q+1})$ . Thus $R^{q}(b_{q}-b_{q}^{2})\subseteq R^{q}g(a_{q})\subseteq g(a_{q+1})$ and $b_{q}^{q+1}-b_{q}^{q+B}\in g(a_{q+1})$ .
But
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$0=(b_{q}^{q+1}-b_{q}^{q+2})a_{q+1}=(b_{q}^{q+1}-b_{q}^{q+2})(a_{q}+b_{q}-a_{q}b_{q})$

$=b_{q}^{q+1}a_{q}+b_{q}^{q+2}-b_{q}^{q+1}a_{q}b_{q}-b_{q}^{q+2}a_{q}-b_{q}^{q+3}+b_{q}^{q+2}a_{q}b_{q}$

$=a_{q}+b_{q}^{q+2}-a_{q}b_{q}-a_{q}-b_{q}^{q+3}+a_{q}b_{q}$

$=b_{q}^{q+2}-b_{q}^{q+}$

From $b_{q}^{q+2}=b_{q}^{q+3}$ obtains $(b_{q}^{q+2})^{2}=b_{q}^{q+2}$ . Moreover, $b_{q}\in K\subseteq I$, so $b_{q}^{q+2}\in L$ Finally,
$b_{q}^{q+2}a_{q}=a_{q}\neq 0$, so $b_{q}^{q+2}\neq 0$ .

Lemma 4. Let $W$ be the nil radical of an almost left Artinian ring R. Let
$\mathcal{J}$ be a left ideal of $R/W$. Then $\mathcal{J}$ has an idempotent generator $E$ such that
$E=e+W$ for some idempotent element $e\in R$ . Moreover, if $\mathcal{J}$ is an ideal of $R/W$,
$E$ is the identity of the ring $\mathcal{J}$.

Proof. Say $\mathcal{J}=I/W$ for an appropriate left ideal $I\supseteq W$ of $R$ . We may
suppose, without loss of generality, that $\mathcal{J}\neq(0)$ ; otherwise just let $e=0,$ $E=W$.
So $I$ is not nilpotent. For each $x\in I$, let $f(x)$ denote the left ideal $\{y\in I;yx=0\}$ .
We claim that there exists a nonzero idempotent element $e\in I$ such that $f(e)\subseteq W$.
Suppose not. By Lemma 3, there is a nonzero idempotent element $a\in I$. Then
$f(a)\not\in W$. By Lemma 3, there is a nonzero idempotent element $b\in f(a)$ . Put
$c=a+b-ab\in L$ Then $bc=b(a+b-ab)=ba+b^{2}-bab=b\neq 0$ , so $b\not\in f(c)$ . Also

$c^{2}=(a+b-ab)^{2}=a^{2}+b^{l}+abab+ab+ba-a^{2}b-aba-bab-ab^{l}$

$=a+b+ab-ab$-ab
$=a+b-ab=c$

and $c$ is a nonzero idempotent element of $L$ But

$ca=(a+b-ab)a=a^{2}+ba-aba=a$

so $f(c)\subseteq f(a)$ .
In the preceding paragraph we have shown that for any nonzero idempotent

element $a\in I$, there exist nonzero idempotent elements $b,$ $c\in I$ such that $b\in f(a)$ ,
$b\not\in f(c),$ $f(c)\subseteq f(a)$ .

Let $a_{1}$ be any nonzero idempotent element of $I$ and by induction define
sequences $(a.),$ $(b.)\subseteq I$ of idempotent elements such that $b_{n}\in f(a_{n}),$ $b_{n}\not\in f(a_{n+1})$ ,
$f(a_{n+1})\subseteq f(a_{n})$ . Then the contracting sequence $ f(a_{1})\supseteq f(a_{2})\supseteq\cdots\supseteq f(a_{*})\supseteq\cdots$ of left
ideals must almost terminate. Say $q\in Z_{+}$ such that $R^{q}f(a_{q})\subseteq f(a_{q+1})$ . Whenoe $b_{q}=$

$b_{q}^{q}\cdot b_{q}\in R^{q}f(a_{q})\subseteq f(a_{q+1})$ , which is impossible. Thus there is a nonzero idempotent
element $e\in I$ such that $f(e)\subseteq W$.

For any $x\in I$, $xe-- x\in f(e)$ evidently, so $xe-- x\in W$. Thus $(x+W)(e+W)=x+W$
for all $x\in I$. Put $E=e+W$ in $I/W$. Then $XE=X$ for any $X\in \mathcal{J}$. Thus $E$ is
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an idempotent generator of the left ideal $\mathcal{J}$ of $R/W$.
Finally, let $\mathcal{J}$ be an ideal of $R/W$. Let $J$ denote the right ideal of $R/W$

composed of all elements of the form $E$Y-Y for some Ye $\mathcal{J}$. For any $X\in \mathcal{J}$

and any $EY-Y\in J$, we have

$X(EY-Y)=XE(EY-Y)=X(EY-EY)=0$

in $R/W$. But $J\subseteq \mathcal{J}$, so $J^{2}=(0)$ . Sinoe $R/W$ has no nonzero nilpotent right
ideal, $\mathcal{J}=(0)$ . Thus $EY=Y=YE$ for each $Y\in \mathcal{J}$. This completes the proof.

We remark that if $W$ is any nil ideal of $R$ and if $D$ is any idempotent element
of $R/W$, then there is an idempotent element $d$ of $R$ such that $d+W=D$ . Consult
N. Jacobson, The Structure of Rings, pp. 53-4.

We reach our first major conclusion about almost left Artinian rings.

Theorem 1. Let $W$ be the nil radical of an almost left Artinian ring $R$ that is

not nilpotent. Then $W$ is nilpotent and $R/W$ is a left Artinian ring with identity.

Proof. By Lemma 2, $W$ is nilpotent. Let $\mathcal{J}=R/W$ in Lemma 4. Then
$R/W$ has an identity. But $R/W$ is almost left Artinian by Proposition 1, so $R/W$

must also be left Artinian.
Let $W$ be the nil radical of a ring $R$ which has some nonzero idempotent

elements. We say that the idempotent element $x$ is greater than the idempotent

element $y$ if $xy- y\in W$ and $yx-y\in W$. The reader can easily verify that this is
a reflexive transitive ordering of the idempotent elements of $R$ . The least idem-

potent element is $0$ . Lemma 4 assures us that if $R$ is almost left Artinian, the

set of idempotent elements has at least one upper bound, namely an idempotent

element $e$ for which $e+W$ is the identity of $R/W$.
The direct sum of any left Artinian ring with any nilpotent ring is necessarily

almost left Artinian. This follows from Proposition 2. We have a partial converse.

Theorem 2. Let $R$ be an almost left Artinian ring. Then $R$ is the direct

sum of a left Artinian ring with identity and a nilpotent ring if and only if the

center of $R$ contains an upper bound for the set of idempotent elements of $R$ .
Proof. Suppose $R$ is such a direct sum. Then every idempotent element

lies in the left Artinian summand. The identity of the left Artinian summand is
an upper bound of the set of idempotent elements, and it lies in the center of $R$ .

Now suppose $e$ is an upper bound of the set of idempotent elements and $e$

lies in the center of $R$ . Thus $ue-- u=eu-u\in W$ for any idempotent element $u$ of
$R$ .
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Take any $x\in R$ . By Lemma 4, there is an idempotent element $ueR$ such
that $u+W$ is the identity of the ring $R/W$. Thus $(x+W)(u+W)=x+W$ and
$xu-- x\in W$. So

$xe- x=(xe-xue)+(xue-xu)+(xu-x)$

$=(x-xu)e+x(ue-u)+(xu-x)\in W$ .
Let $R_{1}=Re$ and $R_{2}=\{xe-x:x\in R\}$ . Sinoe $e$ is in the center of $R$ , both $R_{1}$

and $R_{2}$ are ideals of $R$ . Indeed if $y\in R_{1}\cap R_{2}$ , then $y=xe-x$ for some xeR and
$y=ye=xe-xe=0$ . Thus $R_{1}\cap R_{2}=(0)$ . For any $r\in R,$ $r=(r-re)+re\in R_{1}+R_{2}$ .
Finally $R=R_{1}\oplus R_{a}$ . By the preceding paragraph, $R_{8}\subseteq W$, so $R_{2}$ is nilpotent.
Moreover, $e$ is evidently the identity of the ring $R_{1}$ . By Proposition 1, $R_{1}$ is
almost left Artinian, but $R_{1}$ has an identity. So $R_{1}$ is left Artinian.

Next we characterize commutative almost Artinian rings.

Theorem 3. A commutative ring $R$ is almost Artinian $tf$ and only $tfR$ is
the direct sum of an Artinian ring with identity and a nilpotent ring.

The proof follows from Proposition 2 and Theorem 2. We leave the details
to the reader.

Unfortunately the analogue of Theorem 3 for Noetherian rings is false. Let
$F$ be the real field. Then $xF[x]$ is almost Noetherian with (0) nil radical (note

that $xF[x]$ is an ideal of $F[x]$ and $F[x]$ is Noetherian), but $xF[x]$ is not Noetherian
or the direct sum of two nonzero rings. And $xF[x]$ is also an example of an
ideal of a Noetherian ring that is not the direct sum of a Noetherian ring with
a nilpotent ring.

Now let $R$ be the ring of all 2 by 2 matrices over $F$ whose second column
entries are $0$ . Then $R$ is almost left Artinian ($R$ is a left ideal of a left Artinian
ring) but $R$ is not the direct sum of a left Artinian ring with a nilpotent ring.
Thus commutativity is essential in Theorem 3.

These two examples were supplied by Prof. Lawrenoe Levy of the Uni-
versity of Wisconsin.

Corollary 1. Let I be a left ideal of an almost left Artinian ring $R$ such that
the ring I is commutative. Then I is the direct sum Of an Artinian ring with a
nilpotent ring.

The $prf$ is left to the reader.

Corollary 2. Let I be a left ideal of an almost left Artinian ring $R$ such that
the ring I has an identity. Then I is a left Artinian ring.
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The proof is left to the reader.
Before we obtain the major results of this paper, we must discuss left R-

modules.
Let $M$ be a left R-module of the ring $R$ . We make several definitions for

submodules of $M$ analogous to our definitions for left ideals of the ring $R$ . We
say that a contracting or expanding sequenoe of submodules $(N_{n})_{n}$ of $M$ terminates
if $N_{q}=N_{q+k}$ for some $q\in Z_{+}$ and all $keZ_{+}$ . We say that an expanding sequence
of submodules $(N_{n})_{n}$ almost terminates if $R^{q}(\bigcup_{n}N_{n})\subseteq N_{m}$ for some $m,$ $qeZ_{+}$ (equiv-

alently, $R^{q}(\cup N_{n})\subseteq N_{q}$ for some $q\in Z_{+}$). We say that a contracting sequenoe of
submodules $(N,)$, almost terminates if $R^{q}N_{m}\subseteq\bigcap_{n}N_{n}$ for some $q,$ $meZ_{+}$ (equiv-

alently, $R^{q}N_{q}\subseteq\bigcap_{n}N_{n}$ for some $qeZ_{+}$). We say that $M$ is Artinian (almost Artinian)

if every contracting sequenoe of submodules of $M$ terminates (almost terminates).

And we say that $M$ is Noetherian (almost Noetherian) if every expanding sequence
of submodules of $M$ terminates (almost terminates).

Just as in Propositions 1, 2, 3 we can prove that any (module) homomorphic

image of a left R-module with one of these 4 properties has the same property,

and the direct sum of 2 R-modules with one of these 4 properties has the same
property. Also a submodule of a module with one of these 4 properties has the

same property. Proofs are quite analogous to those of Propositions 1, 2, 3, so
the arguments are left to the reader. Note that if $K$ is a submodule of $N$ and
$N$ is a submodule of $M$, then $K$ is a submodule of $M$. It is not in general true

that if $N$ is a left ideal of a ring $M$ and if $K$ is a left ideal of the ring $N$, that
$K$ is a left ideal of $M$.

Note also that $R$ is a left R-module in a natural way, and the ring $R$ has

any one of these 4 properties if and only if the R-module $R$ has the same
property. If $R^{q}M=(0)$ for some $q\in Z_{+}$ , then the R-module $M$ is almost Artinian
and almost Noetherian. If $R$ has identity $e$ and if $M$ is a unital R-module (this

means $em=m$ for all $meM$), then “almost Artinian (Noetherian)” is equivalent

to ”Artinian (Noetherian)”.

We begin with

Proposition 7. Let $N$ be a submodule of a left R-module $M$ and $suPPose$ the
R-modules $N$ and $M/N$ are both almost Artinian (Noetherian). Then $M$ is almost
Artinian (Noetherian).

Proof. Let $N$ and $M/N$ be almost Artinian and let $K_{1}\supseteq K_{2}\supseteq\cdots\supseteq K,$ $\supseteq\cdots$ be a
contracting sequenoe of submodules of $M$. Then $ K_{1}nN\supseteq K_{2}\cap N\supseteq\cdots\supseteq K.\cap N\supseteq\cdots$

is a contracting sequenoe of submodules of $N$, and $(K_{1}+N)/N\supseteq(K_{2}+N)/N\supseteq\cdots\supseteq$
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$(K_{n}+N)/N\supseteq\cdots$ is a contracting sequenoe of submodules of $M/N$. So there is an
index $q\in Z_{+}$ such that $R^{q}[(K_{q}+N)/N]\subseteq\bigcap_{n}[(K_{n}+N)/N]$ and $R^{q}(K_{q}\cap N)\subseteq\cap(K_{n}\cap N)$ .
Take any $jeZ_{+}$ and any $r_{1},$ $\cdots,$ $r_{q}\in R$ and any $m\in K_{q}$ . Then $\gamma_{1}\cdots r_{q}(m+N)\subseteq$

$R^{q}(K_{q}+N)\subseteq K_{q+j}+N$. Say $k\in K_{q+j},$ $seN$, such that $r_{1}\cdots r_{q}m=k+s$ . But $seK_{q}$

and so $seK_{q}\cap N$. Thus $R^{q}s\subseteq R^{q}(K_{q}\cap N)\subseteq K_{q+j}\cap N$. Finally.

$R^{q}r_{1}\cdots r_{q}m\subseteq R^{q}k+R^{q}s\subseteq K_{q+j}$ .
So $R^{2q}m\subseteq K_{q+j}$ . And $R^{2q}K_{q}\subseteq K_{q+j}$ . Sinoe $j\in Z_{+}$ was arbitrary, $R^{2q}K_{q}\subseteq\cap K_{n}$ .

Let $N$ and $M/N$ be left Noetherian and let $ K_{1}\subseteq K_{a}\subseteq\cdots\subseteq K_{n}\subseteq\cdots$ be an ex-
panding sequenoe of submodules of $M$. Then $ K_{1}\cap N\subseteq K_{2}\cap N\subseteq\cdots\subseteq K_{n}\cap N\subseteq\cdots$

is an expanding sequenoe of submodules of $N$, etc. There is a $q\in Z_{+}$ such that
$R^{q}(\bigcup_{n}K_{n}\cap N)\subseteq K_{q}\cap N$ and $R^{q}(\bigcup_{n}[(K_{n}+N)/N])\subseteq(K_{q}+N)/N$. Take any $j\in Z_{+}$ and
any $r_{1},$ $\cdots,$ $r_{q}eR$ and any $meK_{q+j}$ . Then $r_{1}\cdots r_{q}(m+N)\subseteq R^{q}(K_{q+j}+N)\subseteq K_{q}+N$.
Say $k\in K_{q},$ $seN$, such that $r_{1}\cdots r_{q}m=k+s$ . But $s\in K_{q+j}$ and so $s\in K_{q+j}\cap N$.
Thus $R^{q}s\subseteq R^{q}(K_{q+j}\cap N)\subseteq K_{q}\cap N$. Finally,

$R^{q}r_{1}\cdots r_{q}m\subseteq R^{q}k+R^{q}s\subseteq K_{q}$ ,

so $R^{2q}m\subseteq K_{q}$ . And $R^{2q}K_{q+j}\subseteq K_{q}$ . But $j\in Z_{+}$ was arbitrary, so $R^{2q}(\bigcup_{n}K_{n})\subseteq K_{q}$ .
The analogous results for “Artinian” and “Noetherian” left R-modules are

proved in the same way, so we leave these arguments to the reader.

Theorem 4. Let $J$ be a left ideal of the ring R. If the left R-modules $J$ and
$R/J$ are almost Artinian (Noetherian), then the ring $R$ is almost left Artinian
(Noetherian).

Proof. Proposition 7.

Again the corresponding statements for “Artinian” and ”Noetherian” can be
proved.

We apply Proposition 7 immediately.

Proposition 8. Let $R$ be a ring with nil radical W. Then $R$ is almost left
Artinian (Noetherian) if and only if $W$ is nilpotent and each of the R-modules
$R/W,$ $W/W^{2},$ $W^{2}/W^{3},$ $W^{3}/W^{4},$ $\cdots$ is almost Artinian (Noetherian).

Proof. Suppose $R$ is almost left Artinian. Then the left R-modules $R,$ $W$,
$W^{2},$ $W^{3},$ $\cdots$ are almost Artinian. The quotient $R\cdot modulesR/W,$ $W/W^{2},$ $W/W^{\theta},$ $\cdots$

are likewise almost Artinian. Of course, $W$ is nilpotent by Lemma 2.
Now suppose each of $R/W,$ $W/W^{2},$ $W^{2}/W^{3},$ $\cdots$ is almost Artinian and $W$ is

nilpotent. Say $W^{k-1}\neq(0)=W^{k}$ . Then $W^{k-1}=W^{k-1}/W^{k}$ is almost Artinian. So
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are $W^{k-2}/W^{k-1}$ and $W^{k-2},$ $W^{k-3}/W^{k-2}$ and $W^{k-3},$
$\cdots,$ $R/W$ and $W$, and finally $R$,

by Proposition 7. So $R$ is an almost Artinian R-module. $R$ is an almost left

Artinian ring.
The $prf$ for “almost Noetherian” is quite analogous. We leave the details

to the reader.
In Lemmas 5 and 6 and in Theorem A we will suppose that $J$ is a proper

left ideal of $R,$ $M$ is a left R-module such that $JM=(O)$ , and we will assume that

$R/J$ is the sum of a family of minimal left R-modules of the form $\{I_{\alpha}/J\}_{\alpha}$ where

each $I_{\alpha}\supseteq J$ is a left ideal satisfying $I_{\alpha}^{2}\not\in J$. Theorems A and $B$ are the major

results of the paper.

Lemma 5. For each $a$ and each $x\in I_{a}\backslash J,$ $Rx+J=I_{a}$ .
Proof. Sinoe $I_{\alpha}^{2}\not\in J$, there is a $yeI_{\alpha}$ such that $I_{\alpha}y\not\in J$. Let $K=\{x\in I_{\alpha}: Rx\subseteq J\}$ .

Then $K$ is a left ideal of $R$ and $J\subseteq K\subseteq I_{a}$ . Since $I_{\alpha}/J$ is a minimal $R\cdot module$ ,

either $K=J$ or $K=I_{a}$ . But $yeI_{\alpha}\backslash K$, so $K=J$.
Thus $Rx\not\in J$ for each $x\in I_{\alpha}\backslash J$. Now $Rx+J$ is a left ideal, and for each $xeI_{a}$ ,

we again have that $Rx+J=J$ or $I_{\alpha}$ . But if $x\in I_{a}\backslash J,$ $Rx+J\neq J$ and $Rx+J=I_{\alpha}$ .
Lemma 6. For each me $RM,$ $m\in Rm$ . Thus $K=RK$ for any submodule $K$

of $RM$.
Proof. Any $m\in RM$ can be expressed $m=r_{1}m_{1}+\cdots+r_{n}m_{n}$ for some $r_{i}eR$ ,

$m_{i}\in M$. Moreover each $r:+J$ is a sum of elements of the form $s_{j}+J$ where each
$s_{j}$ lies in one of the $I_{\alpha}$ . Sinoe $Jmi=(0)$ for all $i$ , it follows that each $r_{i}m_{\ell}$ can be

expressed as $rimi=s_{1}m_{\ell}+\cdots+s_{k}m_{\ell}$ where each $s_{j}$ lies in some $I_{\alpha}$ . We can sup-

pose, without loss of generality, that $m=s_{1}m_{1}+\cdots+s_{q}m_{q}$ where each $m$ : lies in
$M$ and each $s_{i}$ lies in some $I_{a\ell}$ .

The $prf$ is by induction on the least number of terms any such representa-

tion of $m$ can have (call this the index of $m$). Suppose the index of $m$ is 1. Say

$m=r_{1}m_{1}$ where $r_{1}\in I_{\alpha_{1}}$ . By Lemma 5, $r_{1}\in Rr_{1}+J$: then $m=r_{1}m_{1}=rr_{1}m_{1}=rm\in Rm$ .
Thus Lemma 6 holds for any element of $RM$ of index 1. Suppose it holds for

any element of index $<N(N>1)$ . Let index $m=N$. Say $m=r_{1}m_{1}+\cdots+r_{N}m_{N}$,
$r_{:}\in I_{a}:$ . Now $r_{1}m_{1}\neq 0,$ $r_{1}\in I_{\alpha_{1}}\backslash J$ and again $r_{1}\in rr_{1}+J$ for some $r\in R$. Then $m_{1}$

does not occur in $(rm-m)$ so either $rm-m=0$ or index $(rm-m)<N$. In the

former case $m=rmeRm$ ; in the latter case (by the induction hypothesis) there

is an $s\in R$ such that $s(rm-m)=rm-m$ and $m=(r+s-sr)m\in Rm$ . This completes

the induction.

Theorem A. The following are equivalent.
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(1) $M$ is almost Artinian.
(2) $RM$ is Artinian.
(3) $RM$ is Noetherian.
(4) $M$ is almost Noetherian.

Proof. (1) $\Rightarrow(2)$ . Sinoe $M$ is almost Artinian, so is the submodule $RM$. But
for any submodule $K$ of $RM,$ $K=RK$ by Lemma 6. Thus $RM$ is Artinian.

(2) $\Rightarrow(1)$ . For any contracting sequenoe of submodules $ K_{1}\supseteq K_{2}\supseteq\cdots\supseteq K_{n}\supseteq\cdots$

of $M,$ $ RK_{1}\supseteq RK_{2}\supseteq\cdots\supseteq RK_{n}\supseteq\cdots$ are submodules of $RM$, and so $ RK_{q}=RK_{q+k}\subseteq$

$K_{q+k}$ for some $q\in Z_{+}$ and all $k\in Z_{+}$ . So $RK_{q}\subseteq\bigcap_{n}K_{n}$ .
(4) $\Rightarrow(3)$ . Sinoe $M$ is almost Noetherian, so is the submodule $RM$. But for

any submodule $K$ of $RM,$ $K=RK$ by Lemma 6. Thus $RM$ is Noetherian.
(3) $\Rightarrow(4)$ . For any expanding sequenoe of submodules $ K_{1}\subseteq K_{2}\subseteq\cdots\subseteq K_{n}\subseteq\cdots$

of $M,$ $ RK_{1}\subseteq RK_{2}\subseteq\cdots\subseteq RK.\subseteq\cdots$ are submodules of $RM$, and so $RK_{q+k}=RK_{q}\subseteq K_{q}$

for some $q\in Z_{+}$ , and all $k\in Z_{+}$ . So $R(\bigcup_{n}K_{n})\subseteq K_{q}$ .
It remains only to prove (2) $\Leftrightarrow(3)$ .
(2) $\Rightarrow(3)$ . Suppose $RM$ is Artinian but not Noetherian. Let $ K_{0}=(0)\subsetneqq K_{1}\subsetneqq$

$K_{2}\subsetneqq\cdots\subsetneqq K,$ $\subsetneqq\cdots$ be an expanding sequenoe of submodules of $RM$, no two equal.
Choose $m,$ $\in K_{*}\backslash K_{n-1}$ for each $n\in Z_{+}$ . By Lemma 6, $m_{n}=r_{n}m_{n}$ for some $r_{n}\in R$.
But $r_{n}=s_{1}+\cdots+s_{k}$ for some $s_{i}\in I_{\alpha_{i}}$ and so there is an $ s_{i}\in$ some $I_{a_{i}}$ such that
$s_{i}m_{n}\in K_{n}\backslash K_{n-1}$ . Thus for each $n\in Z_{+}$ there is an $m_{n}\in M$ and some $t_{n}e$ some $I_{\alpha}$

such that $t_{n}m_{n}\in K_{n}\backslash K_{n-1}$ . For each $n\in Z_{+}$ let $N_{n}$ denote the submodule generated
by $\{t_{n}m_{n}, t_{n+1}m_{n+1}, t_{f*+2}m_{n+2}, \cdots\}$ . Then $ N_{1}\supseteq N_{2}\supseteq\cdots\supseteq N_{n}\supseteq\cdots$ is a contracting
sequence of submodules of $RM$. But $RM$ is Artinian, so $N_{q}=N_{q+1}$ for some
$q\in Z_{+}$ . Say $t_{q}m_{q}=u_{1}t_{q+1}m_{q+1}+u_{2}t_{q+2}m_{q+2}+\cdots+u_{p}t_{q+p}m_{q+p}$ for appropriate $u_{\ell}\in R$

where $u_{p}t_{q+p}m_{q+p}\neq 0$ . Then $u_{p}t_{q+p}\not\in J$. By Lemma 5, $t_{q+p}\in uuJ_{q+p}+J$ for some
$u\in R$. Finally

$t_{q+p}m_{q+p}=uu_{p}t_{q+p}m_{q+p}=ut_{q}m_{q}-uu_{1}t_{q+1}m_{q+1}-\cdots-uu_{p-1}t_{q+p-1}m_{q+p-1}$

and $t_{q+p}m_{q+p}\in K_{q+p-1}$ which is impossible.
(3) $\Rightarrow(2)$ . Suppose $RM$ is Noetherian but not Artinian. Let $ K_{0}\supsetneqq K_{1}\supsetneq K_{2}\supsetneqq\cdots\supsetneq$

$ K_{*}\supseteqq\cdots$ be a contracting sequenoe of submodules of $RM$, no two equal. $Chse$
$m.eK_{n}\backslash K_{n+1}$ for each $neZ_{+}$ . By Lemma 6, $m_{n}=r_{n}m_{n}$ for some $r.eR$. But
$r_{n}=s_{1}+\cdots+s_{k}$ for some $s_{i}\in I_{\alpha}$ : and so there is some $s_{i}\in someI_{\alpha_{i}}$ such that
$s_{i}m_{n}\in K_{l}\backslash K_{n+1}$ . Thus for each $n\in Z_{+}$ , there is an $m_{n}eM$ and a $ t_{n}\in$ some $I_{\alpha}$ such
that $t_{*}m_{n}\in K_{n}\backslash K_{n+1}$ . For each $n\in Z_{+}$ , let $N_{n}$ denote the submodule generated by
$\{t_{1}m_{1}, \cdots, t_{n}m_{n}\}$ . Then $ N_{1}\subseteq N_{2}\subseteq\cdots\subseteq N_{n}\subseteq\cdots$ is an expanding sequenoe of sub-
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modules of $RM$. But $RM$ is Noetherian, so $N_{q}=N_{q-1}$ for some $qeZ_{+}$ . So

$t_{q}m_{q}=u_{q-1}t_{q-1}m_{q-1}+u_{q-2}t_{q-2}m_{q-2}+\cdots+u_{q-p}t_{q-p}m_{q-p}$

for appropriate $u_{\ell}\in R$ where $u_{q-p}t_{q-p}m_{q-p}\neq 0$ . Then $u_{q-p}t_{q-p}\not\in J$. By Lemma 5,

there is some $u\in R$ such that $t_{q-p}\in uu_{q-p}t_{q-p}+J$. Hence

$t_{q-p}m_{q-p}=uu_{q-p}t_{q-p}m_{q-p}=ut_{q}m_{q}-uu_{q-1}t_{q-1}m_{q-1}-\cdots-uu_{q-p+1}t_{q-p+1}m_{q-p+1}$

and $\ell_{q-p}m_{q-p}eK_{q-p+1}$ which is impossible.

Theorem B. Let $J_{1},$
$\cdots,$

$J_{n}$ be left ideals of the ring $R$, each satisfying the
hyPothesis for $J$ in Theorem A. Let $N$ be a left R-module satisfying $J_{1}\cdots J_{n}N=(0)$ .
Then $N$ is almost Artinian if and only if $N$ is almost Noetherian.

Proof. If $N$ is either almost Noetherian or almost Artinian, the same is true

of each of the R-modules $J_{2}\cdots J,N/J_{1}\cdots J_{n}N=J_{2}\cdots J_{n}N,$ $J_{3}\cdots J_{n}N/J_{2}\cdots J_{\hslash}N$,
$J_{4}\cdots J,N/J_{3}\cdots J_{n}N,$ $\cdots,$ $N/J_{n}N$, and by Theorem $A$ , all these R-modules are both
almost Artinian and almost Noetherian. By Proposition 7, each of the R-modules
$J_{2}\cdots J_{n}N,$ $J_{S}\cdots J_{*}N,$ $J_{4}\cdots J_{n}N,$ $\cdots,$ $J_{n}N,$ $N$ are both almost Artinian and almost

Noetherian.
$Threms$ A and $B$ have a number of consequenoes. We can completely

characterize almost left Artinian rings in terms of nilpotent ideals and Artinian
modules.

Theorem 5. Let $W$ be the nil radical of the ring R. Then $R$ is almost left
Artinian $tf$ and only $tfW$ is nilpotent and each of the left R-modules $R/W$,
$RW/W,$ $RW^{2}/W^{3},$

$\cdots,$
$RW^{n}/W^{n+1},$ $\cdots$ is Artinian.

Proof. Let $R$ be almost left Artinian. Then $W$ is nilpotent, and $R/W$ is a
left Artinian ring. It follows from the classical Wedderburn structure theorem
that $J=W$ satisfies the hypothesis of Theorem $A;R/W$ is the sum of minimal
submodules $I_{\alpha}/W$ such that $I_{\alpha}^{2}\not\in W$. Indeed we can employ finitely many of those

submodules. Now each of the R-modules $R/W,$ $W/W^{2},$ $W^{2}/W^{3},$ $\cdots$ is almost

Artinian sinoe $R$ is an almost Artinian left R-module. By Theorem $A$ , each of
$RW/W,$ $RW^{2}/W^{3},$ $\cdots$ is Artinian, and $R/W$ is also Artinian because the ring

$R/W$ is left Artinian by Theorem 1.
Now assume the condition holds. Then the ring $R/W$ is left Artinian, and

the left R-modules $RW’/W^{n+1}$ are Artinian. Theorem A again applies (by the

Wedderburn structure theorem) and the left R-modules $W’/W^{+1}$ are almost

Artinian. By Proposition 8, $R$ is almost left Artinian.
Now we find that any almost left Artinian ring must also be almost left
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Noetherian.

Theorem 6. Let $R$ be an almost left Artinian ring. Then any left R-module
$N$ is almost Artinian if and only if $N$ is almost Noetherian. Thus in Particular,
any almost left Artinian ring must also be almost left Noetherian.

Proof. Let $W$ be the nil radical of $R$. Then $W$ is nilpotent and $R/W$ is a
left Artinian ring. By the classical Wedderburn structure theorem, the left ideal
$J=W$ satisfies the hypothesis of Theorem B. Then by Theorem $B,$ $N$ is almost
Artinian if and only if $N$ is almost Noetherian.

Finally, $R$ is an almost Artinian left R-module. By the preceding paragraph,
$R$ must be an almost Noetherian left R-module. Then $R$ is also an almost left
Noetherian ring.

A point worth mentioning is that any expanding sequenoe of left ideals $ J_{1}\subseteq$

$ J_{2}\subseteq\cdots\subseteq J_{n}\subseteq\cdots$ in any (almost) left Artinian ring $R$ satisfying $R(\bigcup_{l}J_{\hslash})=\bigcup_{n}J_{n}$ ,
must terminate.

Hopkins (Annals of Math., 1939, pp. 712-730) proved $Threm6$ for unital
modules and rings with identity. In that case, ”almost Artinian (Noetherian)” is
equivalent to “Artinian (Noetherian)”.

Theorem 7. Let $J_{1},$
$\cdots,$ $J_{n}$ be left ideals of $R$ satisfying the hypothesis of

Theorem B. SuPpose also that $J_{1}\cdots J_{n}R=(0)$ . Then $R$ is almost left Artinian
if and only if $R$ is almost left Noetherian.

Proof. Just let $R$ be the left R-module $N$ in Theorem B. The rest is clear.
Theorem 8. Let $J_{1},$

$\cdots,$
$J_{n}$ and $R$ satisfy the hypothesis of Theorem 7 and

suppose also $R^{2}=R$ and $RJ_{i}=J_{i}(i=1, \cdots, n)$ . Then $R$ is left $A\hslash i\dot{ma}n$ if and
only if $R$ is left Noetherian.

Proof. Let $R$ be left Noetherian. Then the left R-modules $R/J.R$ and
$J_{k-1}\cdots J_{n}R/J_{k}\cdots J_{n}R(k=1, \cdots, n)$ are almost Noetherian. By Theorem $A$ , the
left R-modules $RJ_{k-1}\cdots J_{n}R/J_{k}\cdots J,R$ and $P/J_{n}R$ are Noetherian and Artinian.
But $R^{2}=R$ and $RJ_{k-1}=J_{k-1}$ so the left R-modules $R/J_{n}R,$ $J_{k-1}\cdots J_{n}R/J_{k}\cdots J_{\sim}R$

are Artinian. By Proposition 8, $R$ is an Artinian left R-module, so the ring $R$

is left Artinian. The converse is analogous.

Theorem 9. Let $J_{1},$
$\cdots,$

$J_{n}$ and $R$ satisfy the hyPothesis of Theorem $B$.
Suppose also $J_{1}\cdots J_{\hslash}=(0)$ . Then any left R-module $N$ is almost Artinian if and
only if $N$ is almost Noetherian.

Proof. $Threm$ B.
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Another point worth mentioning is that if $W$ is the nil radical of a left
Artinian ring $R$ satisfying $W=RW$, then $R$ must also be left Noetherian. This
follows from Proposition 8, Theorem A and the Wedderburn structure theorem.

We will apply Theorems A and $B$ again later. Even though every almost
left Artinian ring is almost left Noetherian, the converse statement is false. For
example, $Z$ is Noetherian but not almost Artinian. However, we will prove a
partial converse. For this purpose, we need some definitions.

We say that an ideal $I$ of a ring $R$ is almost prime if for any ideals $A,$ $B$

of $R,$ $AB\subseteq I$ implies $A\subseteq I$ or $B\subseteq I$. Clearly any prime ideal must be almost
prime. The reader can easily verify that if $R$ is commutative, $I$ is prime if and
only if $I$ is almost prime. However, in the ring of all $n$ by $n$ matrices over a
field $F(n>1),$ (0) is almost prime but not prime.

Let $f$ be a homomorphism of the ring $R$ onto the ring $S$. The reader can
easily verify that an ideal $J$ of $S$ is almost prime in $S$ if and only if $f^{-1}S$ is
almost prime in $R$. Likewise, any ideal $I$ of $R$ containing the kernel of $f$ is
almost prime in $R$ if and only if $fI$ is almost prime in $S$.

If $I$ is an almost prime ideal of $R$ and if $A$ and $B$ are left ideals of $R$ such
that $AB\subseteq I$, then $A\subseteq I$ or $B\subseteq I$. To see this, note that $A+AR$ and $B+BR$ are
ideals of $R$ and $(A+AR)(B+BR)\subseteq I$.

We say that a proper left ideal $J$ of a ring $R$ is almost maximal in $R$ if the
left R-module $R/J$ is the sum of a family of minimal submodules of the form
$I_{\alpha}/J$ where $I_{\alpha}\supseteq J$ is a left ideal of $R$. We say that $J$ is finitely almost maximal
if $R/J$ is the sum of finitely many minimal submodules. If $R/J$ is the sum of
just one minimal submodule, then of course $J$ is just a maximal left ideal of $R$.

We note that if $J$ is an almost prime ideal that is also an almost maximal
left ideal, then $I_{\alpha}^{2}\not\in J$ for each $\alpha$ , so $J$ satisfies the hypothesis of Theorem A. We
will make use of this fact later.

Let $f$ be a homomorphism of the ring $R$ onto the ring $S$. The reader can
easily verify that a left ideal $J$ of $S$ is almost maximal in $S$ if and only if $f^{-1}S$

is almost maximal in $R$. Likewise, a left ideal $I$ of $R$ containing the kernel of
$f$ is almost maximal in $R$ if and only if $fI$ is almost maximal in $S$.

It is worth mentioning that if $R$ has an identity $e$, any almost maximal left
ideal $J$ is finitely almost maximal. To see this, let $e+J=(x_{1}+J)+\cdots+(x_{\hslash}+J)$

where $X:\in I_{\alpha_{i}}$ . Then for any $r\in R$,

$r+J=(r+J)(e+J)=(rx_{1}+J)+\cdots+(rx_{n}+J)$ ,

so $R/J=I_{\alpha_{1}}/J+\cdots+I_{\alpha}\sqrt J$.
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Our next order of business is to prove that in any nonnilpotent almost left
Noetherian ring, there is a proper almost prime ideal.

Lemma 7. Let $R$ be an almost left Noetherian ring with nil radical (0).

Then there exists a Proper almost Prime ideal that is also the left annihilator of
some nonzero ideal of $R$.

Proof. We may assume, without loss of generality, that there exist nonzero
ideals $A$ and $B$ such that $AB=(O)$ ; for otherwise (0) is the left annihilator of $R$

and (0) is almost prime. So there exist $I\neq(O),$ $J\neq(O)$ such that $IJ=(O)$ and a
$q\in Z_{+}$ such that $R^{q}A\subseteq t$ for any nonzero ideals $A,$ $B$ such that $A\supseteq I$ and $AB=(O)$ .
We may assume, without loss of generality, that $I$ is the left annihilator of $J$ by
extending $I$ if necessary. It remains only to prove that $I$ is almost prime and
$I\neq R$.

Suppose $C,$ $D$ are ideals such that $CD\subseteq I$ and $D\not\in I$. Then $DJ$ is an ideal
and $CDJ\subseteq IJ=(O)$ and $DJ\neq(O)$ . So $(C+I)D\subseteq I$ and $(C+I)DJ=(0)$ . Sinoe $I\subseteq C+I$

it follows that $R^{q}(C+I)\subseteq I$ and $R^{q}C\subseteq I$. So $R^{q}CJ=(0)$ . Now

$(CJ)^{q+1}\subseteq R^{q}CJ=(0)$

and sinoe $R$ has no nonzero nilpotent ideals, $CJ=(O)$ . But $I$ is the left annihilator
of $J$, so $C\subseteq I$. This proves that $I$ is almost prime. Of course $I\neq R$ ; for otherwise
$J^{2}\subseteq RJ=(0)$ and $J=(O)$ , contrary to the choioe of $J$.

The only almost prime ideal in a nilpotent ring $R$ is of course $R$ . But for
nonnilpotent rings we have the following.

Lemma 8. Let $R$ be a nonnilpotent almost left Noetherian ring. Then there
is a proper almost prime ideal I in $R$ such that for some $ non\dot{m}lpo\ell en\ell$ ideal $J$ of
$R,$ $IJ$ is $ nilpoten\ell$ .

Proof. Let $W$ be the nil radical of $R$. Then $R/W$ is an almost left Noetherian
ring with nil radical (0), and by Lemma 7, there is a proper ideal $I\supseteq W$ such
that $I/W$ is a proper almost prime ideal of $R/W$, and also an ideal $J2W$ such
that $(I/W)(J/W)=(O)$ in $R/W$. It follows that $I$ is a proper almost prime ideal of
$R,$ $J$ is not nilpotent in $R$, but $IJ\subseteq W$ is nilpotent sinoe $W$ is.

Now we will prove that (0) is the product of finitely many such ideals in an
almost left Noetherian ring.

Lemma 9. Let $R$ be a nonnilpotent almost left Noetherian ring. Then there
enst finitely many proper almost prime ideals $J_{1},$

$\cdots,$
$J_{n}$ such that $J_{1}\cdots J_{*}=(O)$ .



MODIFIED CHAIN CONDITIONS FOR RINGS 19

Proof. Suppose (0) is not such a product. Let $\mathcal{J}$ be the family of all ideals
of $R$ that do not contain the product of finitely many proper almost prime ideals.
Then (0) $\in \mathcal{J}$ so $\mathcal{J}$ is nonvoid.

Let $\{I_{\alpha}\}$ be a family of ideals in $\mathcal{J}$ that is totally ordered by inclusion. Then
there is a $q\in Z_{+}$ and an $I_{\alpha_{0}}$ in $\{I_{\alpha}\}$ such that for any $I_{\alpha}\supseteq I_{a_{0}},$ $R^{q}I_{\alpha}\subseteq I_{\alpha_{0}}$ . But for
each $\alpha,$ $I_{\alpha}\subseteq I_{\alpha_{0}}$ or $I_{\alpha_{0}}\subseteq I_{\alpha}$ . Henoe $R^{q}I_{\alpha}\subseteq I_{\alpha_{0}}$ for all $\alpha$ , and $R^{q}(\bigcup_{\alpha}I_{\alpha})\subseteq I_{\alpha_{0}}$ .

Now $\bigcup_{a}I_{a}\in\cup 7$

. for otherwise there exist proper almost prime ideals $J_{1},$
$\cdots,$

$J_{\sim}$

such that $J_{1}\cdots J,\subseteq\bigcup_{\alpha}I_{\alpha}$ and

$(J_{1}\cdots J_{n})^{q+1}\subseteq R^{q}(\bigcup_{a}I_{\alpha})\subseteq I_{a_{0}}$ ,

contrary to $I_{a_{0}}\in \mathcal{J}$. So any chain of ideals in $\mathcal{J}$ has an upper bound in $\mathcal{J}$. By
Zorn’s axiom, $\mathcal{J}$ contains a maximal ideal; call it $K$.

But $K\neq R$ sinoe $R$ contains a proper almost prime ideal. (This is the only
place in the argument we use Lemma 8, but it is crucial.) So $K$ is proper and
$K$ cannot be almost prime. Thus there exist ideals $K_{1},$ $K_{2}$ such that $K_{1}K_{2}\subseteq K$

but $K_{1}\not\in K,$ $K_{2}\not\in K$. Then $(K_{1}+K)(K_{2}+K)\subseteq K$ and $K\subseteq K_{1}+K,$ $K\subseteq K_{2}+K$. Since
$K$ is maximal in $FK_{1}\not\in \mathcal{J}$ and $K_{2}\not\in X$. Say $J_{1},$

$\cdots,$ $J_{n},$ $L_{1},$
$\cdots,$ $L_{n}$ are proper

almost prime ideals such that

$J_{1}\cdots J_{n}\subseteq K_{1}$ , $L_{1}\cdots L_{n\prime}\subseteq K_{g}$ .
Finally, $ J_{1}\cdots J,L_{1}\cdots$ $L.\subseteq K_{1}K_{2}\subseteq K$ and this is contrary to $ K\in$ Jl

Theorem 10. Let $R$ be a ring and suPpose $J_{1},$
$\cdots,$ $J,$. are proper almost prime

ideals that are also almost maximal left ideals such that $J_{1}\cdots J,=(O)$ . Then any
left R-module $N$ is almost Artinian if and only if $N$ is almost Noetherian.

Proof. Any proper almost prime ideal that is also an almost maximal left
ideal satisfies the hypothesis of Theorem A. The rest follows from $Threm$ B.

Theorem 11. Let $R$ be an almost left Noetherian ring. Then $R$ is almost left
Artinian if and only if every proper almost prime ideal is an almost maximal left
ideal of $R$.

Proof. We can suppose, without loss of generality, that $R$ is not nilpotent.
For if it were, $R$ would be almost left Artinian and no proper almost prime ideal
would exit in $R$.

Now suppose every proper almost prime ideal is a maximal left ideal. By
Lemma 9, there exist such ideals $J_{1}\cdots,$ $J$, satisfying $J_{1}\cdots J,=(0)$ . By Theorem
10, $R$ is an almost Artinian left R-module, and so $R$ is an almost’left Artinian ring.
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Suppoae $R$ is almost left Artinian. Let $I$ be a proper almost prime ideal.
It follows that the ring $R/I$ has (0) nil radical. By Theorem 1, $R/I$ is left Artinian,
has an identity, and by the classical Wedderbum structure theorem, (0) is a
finitely almost maximal left ideal of $R/I$. It follows that $I$ is a finitely almost
maximal left ideal of $R$.

Corollary 3. Let $R$ be a left Noetherian ring such that for every $r\in R,$ $r\in Rr$.
Then $R$ is left Artinian if and only if every Proper almost prime ideal of $R$ is
an almost maximal left ideal of $R$.

Proof. Sinoe $r\in Rr$ for each $r\in R$, we have that $RJ=J$ for each left ideal $J$

of $R$. The rest reduces to Theorem 11.
Before we produoe special cases for commutative rings, we need another

lemma.

Lemma 10. Let $R$ be a commutative almost Artinian ring. Then any proper
prime ideal I of $R$ is maximal.

Proof. The ring $R/I$ is without zero divisors, but $R/I$ is almost Artinian.
By $Th\infty rem1,$ $R/I$ is Artinian and has an identity $e$ . Take any nonzero $x\in R/I$.
The descending chain of ideals

$(x)\supseteq(x)\supseteq(x^{3})\supseteq\cdots\supseteq(x’)\supseteq\cdots$

must terminate. Say $(x^{n})=(x^{n+1})$ . So $rx’=x^{\hslash}+1$ for some $r\in R/I$. Sinoe $R/I$ has
no zero divisors, it follows that $(rx-e)x’=0$ and $rx=e$ . Thus every nonzero
element of $R/I$ is invertible and $R/I$ is a field. Henoe $I$ is a maximal ideal of $R$.

Theorem 12. Let $R$ be a commutative almost Noetherian ring. Then the
following are equivalent.

(1) Every Proper prime ideal is a maximal ideal.
(2) Every proper prime ideal is an almost maximal ideal.
(3) $R$ is almost Artinian.

Proof. (1) $\Rightarrow(2)$ . Clear.
(2) $\Rightarrow(3)$ . Theorem 11.
$\langle 3$) $\Rightarrow(1)$ . Suppose $R$ is almost Artinian and $I$ is a proper prime ideal. Then

$I$ is maximal by Lemma 10.
By $Threm3$ , a commutative ring is almost Artinian if and only if it is

the direct sum of an Artinian ring with identity and a nilpotent ring. Henoe

Corollary 4. Let $R$ be a commutative (almost) Noetherian ring. Then the
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following are equivalent.
(1) Every proper prime ideal is a maximal ideal.
(2) Every Proper Prime ideal is an almost maximal ideal.
(3) $R$ is a direct sum of an Artinian ring with identity and a nitpotent ring.

Thus in particular, when $R$ does not have a nilpotent direct summand $\neq(0),$ $R$

is Artinian if and only if every proper prime ideal of $R$ is maximal in $R$.
Proof. Theorem 12.
Cohen (Duke Math. Journal, 1950, pp. 27-42) proved the equivalence of (1)

and (3) for rings with identity. In this case, the nilpotent summand vanishes.

Theorem 5 provided an alternative definition of “almost left Artinian“ ring.

We conclude with yet another.

Proposition 9. Let $R$ be a ring. Then $R$ is almost left Artinian if and only

if there is an integer $q\in Z_{+}$ such that for any contracting sequence of left ideals
$ J_{1}\supseteq J_{2}\supseteq\cdots\supseteq J_{n}\supseteq\cdots$ , the contracting sequence of left ideals $ R^{q}J_{1}\supseteq R^{q}J_{2}\supseteq\cdots\supseteq$

$ R^{q}J_{n}\supseteq\cdots$ terminates.

Proof. First assume the condition holds. Then for any contracting sequence

of left ideals $ J_{1}\supseteq J_{2}\supseteq\cdots\supseteq J_{n}\supseteq\cdots$ there is an $m\in Z_{+}$ such that $R^{q}J_{n}=R^{q}J_{n+k}\subseteq J_{n+k}$

for all $k\in Z_{+}$ . Thus $R$ is almost left Artinian.
Now assume $R$ is almost left Artinian. Let $ J_{1}\supseteq J_{2}\supseteq\cdots\supseteq J_{n}\supseteq\cdots$ be a contract-

ing sequenoe of left ideals. Also $ R\supseteq R^{2}\supseteq\cdots\supseteq R^{n}\supseteq\cdots$ is a contracting sequence

of left ideals that must almost terminate. Say $R^{q}\cdot R^{q}\subseteq R^{q+k}$ for all $k\in Z_{+}$ . Then
$R^{2q}\subseteq R^{fq+1}$ and it follows that $R^{2q}=\cap R^{n}$ . But the sequenoe $(J_{n})$ also almost

terminates, and it follows that there $n_{is}$ a $peZ_{+}$ such that $R^{2q}J_{p}\subseteq J_{p+k}$ for all

$keZ_{+}$ .
In other words, for all $k\in Z_{+}$ ,

$R^{2q}J_{p}=R^{2q}\cdot ff^{q}J_{p}\subseteq R^{2q}J_{p+k}\subseteq R^{2q}J_{p}$

and
$R^{8q}J_{p}=R^{8q}J_{p+k}$ .

Sinoe the choice of $q$ is independent of the sequenoe $(J_{\hslash})$ , the condition follows.
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