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Introduction.

Charles Hopkins (Annals of Math., 1939, pp. 712-730) has shown that a
unital Artinian left R-module over a left Artinian ring R with identity, must be
Noetherian. Moreover, any left Artinian ring with identity must be left Noetherian.
These results are known to be false for rings without identity.

I.S. Cohen (Duke Math. Journal, 1950, pp. 27-42) has shown that a commu-
tative Noetherian ring with identity is Artinian if and only if every proper prime
ideal of the ring is maximal. Again, this is false for rings without identity.

In this paper we will invent generalizations of the definitions ‘“‘Artinian’’ and
‘“‘Noetherian’’ to obtain analogues of Hopkins’ and Cohen’s theorems that do not
require an identity. For rings with identity ‘‘almost left Noetherian (Artinian)”’
will be equivalent to ‘‘left Noetherian (Artinian)”’. We will discover that many
of the well known properties of left Artinian (Noetherian) rings are also properties
of almost left Artinian (Noetherian) rings. In general, every almost left Artinian
ring must be almost left Noetherian. In our analogue of Cohen’s theorem we
will eliminate both the commutativity and the identity. To this end, we invent
“almost prime and almost maximal’’ ideals. Indeed an almost left Noetherian
ring is almost left Artinian if and only if every proper almost prime ideal is an
almost maximal left ideal.

Our work will incidentally prove the following results.

1. In a left Artinian ring R, any expanding sequence of left ideals J,<J,c<
Js< - -- satisfying U J,=R(U J.), must terminate.

2. Any left A;tinian ri,;lg R with nil radical W satisfying W=RW, must be
left Noetherian.

3. A commutative Noetherian ring R is the direct sum of an Artinian ring
with a nilpotent ring if and only if every proper prime ideal of R is a maximal

ideal of R. If R has an identity, then the nilpotent summand vanishes, and this
becomes Cohen’s theorem.
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Essay.

Let /ic/ic/ss---<Jus-+- be an expanding sequence of (left) ideals in a ring
R. We say that the sequence terminates if for some ne Z,, J,=J,+i for all ke Z,.
We say that the sequence almost terminates if for some n, ge Z,, R(U J»)S Jn-
(Equivalently, R’(g Jn)&J, for some pe Z,; just let p be the maximum” of ¢ and
m.) Of course the sequence almost terminates if it terminates.

Now let I,o,2L2---21,2--- be a contracting sequence of (left) ideals of
a ring R. We say that the sequence terminates if for some ne Z,., I,=1,,; for
all ke Z.. We say that the sequence almost terminates if for some m, qe Z,,
R, c Q I.. (Equivalently, R*I,c 0 I, for some pe Z,; just let p be the maximum
of ¢ and m.) Of course the sequence almost terminates if it terminates.

We say that the ring R is left Artinian if every contracting sequence of left
ideals of R terminates. We say that R is almost left Artinian if every contracting
sequence of left ideals almost terminates. We say that R is left Noetherian if
every expanding sequence of left ideals of R terminates. We say that R is almost
left Noetherian if every expanding sequence of left ideals almost terminates.

- Of course in a ring R satisfying € Rr for each re R (this happens, for
example, if R has an identity), ‘left Artinian’’ is equivalent to ‘‘almost left
Artinian’’ and ‘‘left Noetherian’’ is equivalent to ‘‘almost left Noetherian’’. On
the other hand every nilpotent ring is both almost left Artinian and almost left
Noetherian. The reader can easily construct a nilpotent ring that is neither left
Artinian nor left Noetherian. '

We show that these properties are invariant under ring homomorphisms.

Proposition 1. Any homomorphic image of an almost left Artinian (Noetherian)
ring is almost left Artinian (Noetherian).

Proof. Let f be a homomorphism of the almost left Artinian ring R. Let
Ji2Jz2--+2Js2-+- be a contracting sequence of left ideals of the ring fR. Then
Fhaftfe2---2f Ju2--- is a contracting sequence of left ideals of R. By
hypothesis, there is an index ¢ such that R J,< 0 . and

(R=A RS JASAQ S =) ]

Thus fR is also almost left Artinian.

Now suppose R is almost left Noetherian. Let JicJ;c--:cJ.S-++ be any
expanding sequence of left ideals of fR. Then fJicf” l,ceoocft,c-.- isan
expanding sequence of left ideals of R. By hypothesis, there is an index ¢ such
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that RU f'J.)=f '], and
URYTIY Jl=f IR Y T f 1 Tid=Ta -
Thus fR is also almost left Noetherian.

Analogous arguments prove that left Artinian and left Noetherian are also
invariant under homomorphisms. We proceed to the direct sum of two rings.

Proposition 2. Let R be the direct sum of the rings R, and R;; R=R,®R,.
Then R is almost left Artinian (Noetherian) if and only if R, and R; are almost
left Artinian (Noetherian).

Proof. The only if part follows from [Proposition 1. So suppose R, and R,
are almost left Artinian. Let J;2/,2---2J,2--- be a contracting sequence of

left ideals of R. Then R,/,2R,/,2---2R,J,2--- is a contracting sequence of
left ideals of R;,‘and R,/12R;/,=2::-2R,J,2--- is a contracting sequence of left
ideals of R,. Hence there is an index g such that RIR;J,c N R;J.SN Ja (=1, 2);
just let ¢ be the maximum of the indices obtained for R, aﬁd R;. ’I"‘hen

R Jo=RI™ )+ RS Ja -

Now suppose R; and R, are almost left Noetherian. Let J,c ;- J,c--
be an expanding sequence of left ideals in R. As before, there is an index g such
that R?(L”J RiJw<sR:J,c ], (i=1,2), and R‘”-I(L”J fn)SR?(lg Rl]n)‘l"Rg(L“J RsJa) < Jo.

The corresponding argument for left Artinian (Noetherian) is trickier. Let
(Ja) be a contracting sequence of left ideals of R where R; and R, are left
Artinian. Put I,={xeR;: x+y¢€ J. for some yeR,}. Evidently 7, is a left ideal
of Ry, and [, 2L,2---2[,2---. Also (R:NJ,). is a contracting sequence of left
ideals of R,. So there is an index ¢ such that I;=I .. and R;N Jy=R:N J .s for
all ke Z,. Now take any ze J,. Say z=2+y (xe€R,,yeR,). Then zel=I,,
(ke Z,). But for any ke Z,, x+we J 4 for some weR,, x+y € ], y—w=(x+y)—
(x+w) e RsN J;=RsN Jo+r, and z=2+y=(@+w)+y—w) € Jesx. Thus J,=J,.: for
all ke Z,, and R is left Artinian.

Now suppose R, and R, are left Noetherian and (/) is an expanding sequence
of left ideals of R. Define the left ideals I, of R, as before. This time (1,) is
expanding and (R;N J.)» is an expanding sequence of left ideals of R,. Say ge Z,
such that I;=I;.x and R:N Jy=R:N Josr for all ke Z,. Fix ke Z, and take any
2€ Joru. Say z=x+y (weR;,y€R,). Then |we =1, and so there is a we R,
such that z+we J,c J,+x. Whence
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(z+y)—@+w)=y—we RN Jert=R:N ], ,

and so z=x+y=@+w)+@y—w)e J;. Thus J,=], for all ke Z,, and R is left
Noetherian.

Of course can be extended to the direct sum of finitely many
rings. We now come to a result for our ‘“‘almost’ properties that does not carry
over to “‘left Artinian’’ or ‘‘left Noetherian.”

Proposition 3. Let I be a left ideal in an almost left Artinian (Noetherian)
ring R. Then I, as a ring, is almost left Artinian (Noetherian).

Proof. Suppose R is almost left Artinian and (J,) is a contracting sequence
of left ideals of the ring I. Then (IJ,) is a contracting sequence of left ideals
of R. So R'IJ)=N IJ, for some ge Z,. We have

I'*J,cRYIJ) < 0 I, O Tn -

Thus 7 is almost left Artinian. The argument for ‘‘almost left Noetherian’’ is
analogous and is left to the reader.

Consider the ring of 2 by 2 matrices of the form a

b ¢
real numbers and @ is a rational number. Let I be the left ideal composed of

those matrices with a=c=0. The reader can show that R is left Artinian and
left Noetherian, but the ring I is neither.
Now we find alternative ways of defining our properties.

where b and ¢ are

Proposition 4. Let R be a ring. Then R is almost left Artinian (Noetherian)
if and only if for each nonvoid family 7 of left ideals, there is a member I of
& and a g€ Z. such that R°Ic J (R'J<I) for any J in 7 satisfying J<I (I<]).

Proof. The condition implies almost left Artinian (Noetherian); just let *
be the set of left ideals occurring in the sequence. Suppose R is almost left
Artinian, and let . be a nonvoid family of left ideals. Suppose further that the
condition does not hold for .#. Choose any I,€.#. Then there is an ¢ .”
such that 21, but RI,Zk. There is an ;€ .# such that I,=21; but RLEIL---.
There is an I, € £ such that I,_,2I, but R*'I,_,&1,, and so forth. The con-
tracting sequence I,2L,2:--2L,2--- yiolates the hypothesis that R is almost left
Artinian.

Suppose that R is almost left Noetherian and . is a nonvoid family of left
ideals for which the condition does not hold. Pick any ;€ .. Then there is an
Le .7 such that I,c/l, but R*L,¢I,. There is an L;€.# such that L,cI, but
R*I,¢I,---. There is an I,e# such that I,.,<1, but R"I,%1I,-,, and so forth.
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The expanding sequence LclLc---cl,c--- violates the hypothesis the R is
almost left Noetherian.

Likewise R is left Artinian if and only if every nonvoid family of left ideals
has a minimal member, and R is left Noetherian if and only if every nonvoid
family of left ideals has a maximal member.

Next we come to several results on our ‘‘almost’’ properties, culminating in
Theorem 1, that are usually associated with ‘“left Artinian’” and “‘left Noetherian”’.

By the #nil radical W of a ring R, we mean the sum of all the nilpotent
ideals of R. Of course, W is a nil ideal. It is also known that W equals the
sum of the nilpotent left ideals of R, and W equals the sum of the nilpotent
right ideals of R. Consult M. Gray, A radical Approach to Algebra, p. 28.

Lemma 1. Let W be the nil radical of an almost left Noetherian ring R.
Then W is nilpotent.

Proof. Let .~ denote the family of all nilpotent left ideals. For example,
(0) e #, so _~ is nonvoid. By [Proposition 4, there is a nilpotent left ideal I and
a ge Z, such that RYJcI for any nilpotent left ideal J=1. Say [/ *=(0). Then

IR eI'=(0),
and J"*"=(0) for any nilpotent left ideal /21

Now let @, -+, Zngen € W. Since the sum of two nilpotent left ideals is
nilpotent, it follows that z;e J; for some nilpotent left ideals J; (i=1, ---, ng+n).
Put J=Ji+++++Jasatl Then J is nilpotent and J2I. By the preceding para-
graph, J™**=(0) SO @ *** %nern=0. It follows that W"**"=(0).

Lemma 2. (Hopkins) Let I be any nil left ideal of an almost left Artinian
ring R. Then I is nilpotent. In particular, the nil radical of R is nilpotent.

Proof. Assume [ is not nilpotent. We first claim that there is a minimal
nonnilpotent left ideal contained in I. Suppose there is not. Put I;=I. Then
(0)#I*cRI, and RI is not nilpotent since I; is not. So there is a nonnilpotent
left ideal ,&RLcl,. Then (0)+I:<R’I, and R*I, is not nilpotent since /; is not.
...So there is a nonnilpotent left ideal I,&R"'I,_,cI,-,. Then (0)=I3'<R"I, and
R"I, is not nilpotent since I, is not. And so forth. Finally, the contracting
sequence I;2L,2.--21,2--- conflicts with the hypothesis that R is almost left
Artinian. Thus there is such a minimal left ideal; call it K. But K*cK and
K* is not nilpotent since K is not. Then K?’=K by the minimality of K.

Now let & denote the family of all left ideals J< K such that KJ+#(0). For
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example, K€.&. We claim that % has a minimal element. Suppose not. Put
K1=K. Then

. (0)¢KK1=K2K1;K(RK1) y
so RK,e€%. Choose K,e.% such that K, SRK,cK,. Then
0+ KK,=K'K,c K(R*K,) ,
so R°K;e.... Choose K, .5 such that K,SR"* 1S K,_;. Then
0)+KK,=K""K,cK(R"K,),

so R"K,e%”. Choose K,., €5 such that K...R"K,cK,. And so forth. The
contracting sequence of left ideals K,2K,>---2K,2--+ conflicts with the hy-
pothesis that R is almost left Artinian. Thus & has a minimal element; call it J.

Now KJ+(0), so choose an element z € J such that Kx+(0). Then Kz is a
left ideal of R, and K(Kw)=K*s=Kx+(0). But Kz<K since z¢ J< K, so Kz .5,
Also Kgc J since ze€ J. But J is minimal in &, so Kz= J. Thus there is an
a€ K such that gr=x. It follows that

n

O#tr=ar=d’s=-+ -=a"g="-.

for all e Z,. Hence a"+0 for all ne Z, and « is not nilpotent. But ae K<,
contrary to the hypothesis that I is nil.

Proposition 5. Let R be an almost left Noetherian ring and let I be a nonzero
nil right ideal of R. Then R has a nonzero nilpotent left ideal.

Proof. For each x ¢ R, let f{z) denote the left ideal {yeR: yx=0}. We may
assume, without loss of generality, that flz)+R if x+0; for otherwise the right
annihlator of R is the desired left ideal. Let & be the family of left ideals { f(x)}
where x runs over the nonzero elements of . By there exists a
nonzero x, €/ and a g€ Z, such that R%(x)<f(%,) for any nonzero z el satisfying
S(@o) < filw).

Suppose now ve R and xw+0. Then zw is a nonzero element of I since
o€l and Iis a right ideal. So ww is nilpotent. Say O0=(wew)*#(ww)* . Of
course k=2 and zew € f{(wo0)* ) =Awo7), SO R < RUf(mo7) Sf(s) since (o) Sf(2o7).
Hence (R%v)xo=Rwovxo=(0).

Even if zw=0, we still have R%,wz,=(0). In other words, Rz,Rx,=(0).
Whence (R%o+Z%,)"*=(0) and Rwo+Zzx, is a nilpotent left ideal containing ,+0. .

Before our next result we make an observation. If I is a nonzero nil left
ideal of R, then R has a nonzero nil right ideal. To see this we can suppose,
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without loss of generality, that IR+ (0); for otherwise I is a right ideal. Choose
some z ¢ I such that xR+(0). For any re€ R, rx is nilpotent, (mr)"=w(ra:)""r, and
clearly zr is also nilpotent. Thus %R is a nonzero nil right ideal. The converse
is proved analogously. If R has a nonzero nil right ideal, R must also contain a
nonzero nil left ideal. We employ this immediately.

Proposition 6. Let the ring R be almost left Artinian or almost left Noetherian.
Then any nil one sided ideal of R is nilpotent.

Proof. The nil radical W of R is nilpotent by Lemmas 1 and 2. Also R/W
is either almost left Artinian or almost left Noetherian. Now suppose [ is a nil
one sided ideal that is not nilpotent. Then J=(I+W)/W is a nil one sided ideal
of R/W that is nonzero. By the remark preceding this proposition, by Proposition
5, and by Lemma 2, R/W has a nonzero nilpotent left ideal. But this is impossible.

Next we generalize a result of Brauer concerning Artinian rings and idempo-
tent elements.

Lemma 3. (Brauer) Let I be a nonnilpotent left ideal in an almost left
Artinian ring R. Then I contains a nonzero idempotent element.

Proof. In view of Lemma 2, I is nonnil. Just as in the proof of Lemma 2,
there is a minimal nonnilpotent left ideal Kc1. For each z¢€ K, let g(x) denote
the left ideal {y € K: yx=0}. Of course K is nonnil by Lemma 2.

Suppose a is any nonnilpotent element of K. Then a* € Ra and 4°, and hence
Ra, is not nilpotent. But RacK, and by minimality, Ra=K. Likewise a’¢
Ra*<K and Ra*=K. There is a be Ra=K such that ba=a. Then b'a=ba=a
so (B*—b)a=0, and b®’—be g(a). Put c=a+b—abe K; note that

ca=(a+b—ab)a=a’+ba—aba=d"+a—ad'=a .

Since ca=a+0, ¢ is not nilpotent. Hence Re=K and g(c) < g(a).

In the last paragraph, we showed that for any nonnilpotent a € K, there exist
b, ce K such that ba=ca=a, c=a+b—ab, b—b* € g(a), and g(c)<=g(a). Of course
¢ is not nilpotent since ca=a+0.

Put a,=a, b,=b, a,=c and proceed by induction to produce sequences (@),
(b.)= K such that each a, is nonnilpotent, 5,8,=@n+1Gr=0axn, Ani1=0n+bp—Gaby,
b.—bi € g(an), 9(@ns1)Sg(a,) for all ne Z,. The contracting sequence of left ideals
g(@)29(a:)2---2g(a,)2 -+ must almost terminate. So there is a ge Z, such
that R9(a))Sg(@er1). Thus R(b,—b}) S R'g(a)Sg(ae) and b —bi™ € g(aen).
But
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O=(bg+1'—b3+2)aq+1=(bg+l—bg+2)(aq+bq“aqbq)
=bg+1aq+bg+2_bg+1aqbq_bg+2aq__bg+3+bg+2aqbq
=aq+bg+2“‘aqbq-aq_bgﬂ'f"aqbq

— het2 q+8
——bq '—"bq .

From b7"*=b{"* obtains (63**)*=b7**. Moreover, b,e K<I, so bi** el Finally,
bia,=a,+0, so bI*? %0,

Lemma 4. Let W be the nil radical of an almost left Artinian ring R. Let
S be a left ideal of RIW. Then _# has an tdempotent generator E such that
E=e+W for some idempotent element ¢ c R. Moreover, if 2 is an ideal of R|W,
E is the identity of the ring _Z.

Proof. Say _#=I/W for an appropriate left ideal 72 W of R. We may
suppose, without loss of generality, that _#+(0); otherwise just let e=0, E=W.
So I is not nilpotent. For each z eI, let Jf(x) denote the left ideal {y €I, yz=0}.
We claim that there exists a nonzero idempotent element e € I such that fle)c W.
Suppose not. By Lemma 3, there is a nonzero idempotent element @el. Then
fla)&W. By [Lemma 3, there is a nonzero idempotent element bef(a). Put
¢=a+b—abel. Then bc=b(a+b—ab)=ba+b*—bab=>b+0, so bef(c). Also

*=(a+b—ab)*=a*+b*+ abab+ab+ba—a*b— aba— bab— ab®
=a+b+ab—ab—ab
=a+b—ab=c

and ¢ is a nonzero idempotent element of . But
ca=(a+b—ab)a=a’+ba—aba=a
so f(¢) S fla).

In the preceding paragraph we have shown that for any nonzero idempotent
element ael, there exist nonzero idempotent elements b, ce I such that be fla),
be f(c), flc)sfa).

Let a, be any nonzero idempotent element of I and by induction define
sequences (@,), (b.)<I of idempotent elements such that b, € fla,), b, ¢ Sfansr),
Sf@n+1)Sf(a@s). Then the contracting sequence fla;)2f(ay)2 -2 flag)2--- of left
ideals must almost terminate. Say ge Z. such that R'f(a,)Sfla,,;). Whence b=
bi-b, € R°fla,) = flaqg+1), which is impossible. Thus there is a nonzero idempotent
element e e I such that fle)c W. :

For any z € I, ze—x € fle) evidently, so xe—xz e W. Thus (xz+ W)e+ W)=z+W
for all xel. Put E=e+ W in I/W. Then XE=X for any Xe_#. Thus E is
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an idempotent generator of the left ideal _# of R/W.

Finally, let _# be an ideal of R/W. Let # denote the right ideal of R/W
composed of all elements of the form EY—Y for some Ye _#. For any Xe _#
and any EY—-Y e #, we have

X(EY-Y)=XE(EY-Y)=X(EY—EY)=0

in R/W. But fc_#, so £’=(0). Since R/W has no nonzero nilpotent right
ideal, #=(0). Thus EY=Y=YE for each Ye _Z#. This completes the proof.
We remark that if W is any nil ideal of R and if D is any idempotent element
of R/W, then there is an idempotent element d of R such that d+ W=D. Consult
N. Jacobson, The Structure of Rings, pp. 53-4.
We reach our first major conclusion about almost left Artinian rings.

Theorem 1. Let W be the nil radical of an almost left Artinian ring R that is
not nilpotent. Then W is nilpotent and R|W is a left Artinian ring with identity.

Proof. By W is nilpotent. Let _#=R/W in [Lemma 4. Then
R/W has an identity. But R/W is almost left Artinian by [Proposition 1}, so R/W
must also be left Artinian.

Let W be the nil radical of a ring R which has some nonzero idempotent
elements. We say that the idempotent element x is greater than the idempotent
element y if zy—y e W and yx—y e W. The reader can easily verify that this is
a reflexive transitive ordering of the idempotent elements of R. The least idem-
potent element is 0. assures us that if R is almost left Artinian, the
set of idempotent elements has at least one upper bound, namely an idempotent
element e for which e+ W is the identity of R/W.

The direct sum of any left Artinian ring with any nilpotent ring is necessarily
almost left Artinian. This follows from We have a partial converse.

Theorem 2. Let R be an almost left Artinian ring. Then R is the direct
sum of a left Artinian ring with identity and a nilpotent ring if and only if the
center of R contains an upper bound for the set of idempotent elements of R.

Proof. Suppose R is such a direct sum. Then every idempotent element
lies in the left Artinian summand. The identity of the left Artinian summand is
an upper bound of the set of idempotent elements, and it lies in the center of R.

Now suppose ¢ is an upper bound of the set of idempotent elements and e

lies in the center of R. Thus ue—u=eu—uc W for any idempotent element u of
R.
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Take any xe€ R. By [Lemma 4, there is an idempotent element #€ R such
that »+W is the identity of the ring R/W. Thus (z+ W)+ W)=2+W and
su—xeW. So

xe—r=(xe—xwue)+ (vue—ru)+ (xu—x)
=(x—2zu)e+x(ue—u)+(xu—x)e W.

Let R,=Re and R,={we—x: x € R}. Since ¢ is in the center of R, both R,
and R, are ideals of R. Indeed if y € R,NR,, then y=x¢—x for some % e R and
y=ye=xe—xe=0. Thus R;NR,;=(0). For any reR, r=(r—re)+reeR,+R,.
Finally R=R,@R;. By the preceding paragraph, R,c W, so R, is nilpotent.
Moreover, e is evidently the identity of the ring R,. By [Proposition 1, R, is
almost left Artinian, but R, has an identity. So R, is left Artinian.

Next we characterize commutative almost Artinian rings.

Theorem 3. A commutative ring R is almost Artinian if and only if R is
the direct sum of an Artinian ring with identity and a nilpotent ring.

The proof follows from [Proposition 2| and [Theorem 2. We leave the details
to the reader.

Unfortunately the analogue of for Noetherian rings is false. Let
F be the real field. Then xF[x] is almost Noetherian with (0) nil radical (note
that xF[«x] is an ideal of F[x] and F[z] is Noetherian), but #F[x] is not Noetherian
or the direct sum of two nonzero rings. And «zF[z] is also an example of an
ideal of a Noetherian ring that is not the direct sum of a Noetherian ring with
a nilpotent ring. '

Now let R be the ring of all 2 by 2 matrices over F whose second column
entries are 0. Then R is almost left Artinian (R is a left ideal of a left Artinian
ring) but R is not the direct sum of a left Artinian ring with a nilpotent ring.
Thus commutativity is essential in [Theorem 3.

These two examples were supplied by Prof. Lawrence Levy of the Uni-

versity of Wisconsin.

Corollary 1. Let I be a left ideal of an almost left Artinian ring R such that
the ring I is commutative. Then I is the direct sum of an Artinian ring with a

nilpotent ring.
The proof is left to the reader.

Corollary 2. Let I be a left ideal of an almost left Artinian ring R such that
the ring I has an identity. Then I is a left Artinian ring.
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The proof is left to the reader.

Before we obtain the major results of this paper, we must discuss left R-
modules.

Let M be a left R-module of the ring R. We make several definitions for
submodules of M analogous to our definitions for left ideals of the ring R. We
say that a contracting or expanding sequence of submodules (V,), of M terminates
if Ny=N,.; for some ge Z, and all ke Z,. We say that an expanding sequence
of submodules (V,), almost terminates if RY(U N,)< N, for some m, q € Z; (equiv-
alently, R*(U N,)< N, for some ge Z,). We ”say that a contracting sequence of
submodules “(N,.),. almost terminates if R'N,=[) N, for some g, me Z, (equiv-
alently, R°N,= N N, for some g€ Z,). We say tha’:c M is Artinian (almost Artinian)
if every contrac"ting sequence of submodules of M terminates (almost terminates).
And we say that M is Noetherian (almost Noetherian) if every expanding sequence
of submodules of M terminates (almost terminates).

Just as in Propositions 1, 2, 3 we can prove that any (module) homomorphic
image of a left R-module with one of these 4 properties has the same property,
and the direct sum of 2 R-modules with one of these 4 properties has the same
property. Also a submodule of a module with one of these 4 properties has the
same property. Proofs are quite analogous to those of Propositions 1, 2, 3, so
the arguments are left to the reader. Note that if K is a submodule of N and
N is a submodule of M, then K is a submodule of M. It is not in general true
that if N is a left ideal of a ring M and if K is a left ideal of the ring N, that
K is a left ideal of M.

Note also that R is a left R-module in a natural way, and the ring R has
any one of these 4 properties if and only if the R-module R has the same
property. If R‘M=(0) for some g€ Z., then the R-module M is almost Artinian
and almost Noetherian. If R has identity e and if M is a unital R-module (this
means em=m for all me M), then ‘‘almost Artinian (Noetherian)”’ is equivalent
to ““Artinian (Noetherian)’’.

We begin with

Proposition 7. Let N be a submodule of a left R-module M and suppose the
R-modules N and M|N are both almost Artinian (Noetherian). Then M is almost
Artinian (Noetherian).

Proof. Let N and M/N be almost Artinian and let K;2K,2---2K,2--- bea
contracting sequence of submodules of M. Then KN N2K;NN2---2K,NN2---
is a contracting sequence of submodules of N, and (K,+N)/N2(K;+N)/[N=2-..-2
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(Ku+N)/N22-.- is a contracting sequence of submodules of M/N. So there is an
index g€ Z. such that R[(K, +N)/N]Cﬂ [(K,+N)/N] and R"(K,,nN)Cn (K.NN).
Take any je€ Z, and any 7;, -+, #,€R and any meK,. Then », -- r.,(m+N)C
RY(K,+N)c=Ky;+N. Say ke K,.;, se N, such that 7, --- 7m=k+s. But se K,
and so se K,NN. Thus R'scRYK,NN)S K. ;N N. Finally.

R7 -+ romSRE+Rsc Ky, j .

So R*mc K,,;. And R¥K,cK,,;. Since je Z, was arbltrary, R¥K Cn K,.

Let N and M/N be left Noetherian and let K,cK,=---cK,=--- be an ex-
panding sequence of submodules of M. Then KlnNngnNg-- -cK.,NNc-...
is an expanding sequence of submodules of N, etc. There is a ge Z, such that
R"(UK NN)cK,NN and R"(U [(Ks+N)/N])S(K,+N)/N. Take any je Z, and
any 71, *++,7,€ R and any meK,,+, Then 7, .-« r{m+N)SR (K, ;+N)SK,+N.
Say ke K,, seN, such that r;--- r,m=k+s. But se K, ; and so se K,.;NN.
Thus R'sCRY K, ;NN)SK,NN. Finally,

Rqu b rqm_(;qu+Rqu_:Kq ’
so R*mcK,. And R*K,.;©K, But jeZ, was arbitrary, so R*(U K,)CK,.

The analogous results for ‘‘Artinian’’ and ‘‘Noetherian’’ left R-modules are
proved in the same way, so we leave these arguments to the reader.

Theorem 4. Let | be a left ideal of the ring R. If the left R-modules ] and
R|] are almost Artinian (Noetherian), then the ring R is almost left Artinian
(Noetherian).

Proof.
Again the corresponding statements for ‘“Artinian’’ and ‘“Noetherian’’ can be

proved.
We apply immediately.

Proposition 8. Let R be a ring with nil radical W. Then R is almost left
Artinian (Noetherian) if and only if W is nilpotent and each of the R-modules
RIW, WIW?, W W?®, WW*, ... is almost Artinian (Noetherian).

Proof. Suppose R is almost left Artinian. Then the left R-modules R, W,
W?, W*, ... are almost Artinian. The quotient R-modules R/W, W/W*, W/ W?, ...
are likewise almost Artinian. Of course, W is nilpotent by

Now suppose each of R/W, W/W?, W?* W?, ... is almost Artinian and W is
nilpotent. Say W*'#(0)=W*. Then W*'=W*'/W* is almost Artinian. So
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are W% W** and W*?2, W**)W"** and W*™®, ..., R/W and W, and finally R,
by [Proposition 7. So R is an almost Artinian R-module. R is an almost left
Artinian ring.

The proof for ‘“‘almost Noetherian’’ is quite analogous. We leave the details
to the reader.

In Lemmas 5 and 6 and in Theorem A we will suppose that J is a proper
left ideal of R, M is a left R-module such that JM=(0), and we will assume that
R/J is the sum of a family of minimal left R-modules of the form {l./J}. where
each I,2] is a left ideal satisfying Iz#/J. Theorems A and B are the major
results of the paper.

Lemma 5. For each a and each z€ I.\]J, Rx+ J=I..

Proof. Since I'¢ ], there is a y € I, such that Ly%J. Let K={ze€ L: Rzc J}.
Then K is a left ideal of R and JcKcI,. Since /] is a minimal R-module,
either K=J or K=1,. But ye \K, so K=].

Thus Rz J for each zeL\J. Now Rx+] is a left ideal, and for each z € L,
we again have that Rz+J=J or I,. But if xe€ L\J, Rz+J+J and Ra+J=L.

Lemma 6. For each me RM, me Rm. Thus K=RK for any submodule K
of RM.

Proof. Any me RM can be expressed m=r,m;+ -+ +7,m, for some 7;€R,
m;€ M. Moreover each 7;+J is a sum of elements of the form s;+J where each
s; lies in one of the I,. Since Jm;=(0) for all i, it follows that each »m. can be
expressed as rimi=s;m;+ -« +Sm; where each s; lies in some I,. We can sup-
pose, without loss of generality, that m=s,m,+ - --+s,m, where each m; lies in
M and each s; lies in some I,,.

The proof is by induction on the least number of terms any such representa-
tion of m can have (call this the index of m). Suppose the index of m is 1. Say
m=rm, where r,€l,. By Lemma}, r,€ Rr,+J: then m=rym,=rrym,=rm € Rm.
Thus Lemma 6 holds for any element of RM of index 1. Suppose it holds for
any element of index <N (N>1). Let index m=N. Say m=rim;+:-:+7nmy,
riel,, Now rm,#0, r,el,\J and again rierr,+J for some re R. Then m,
does not occur in (rm—m) so either rm—m=0 or index (rm—m)<N. In the
former case m=rme Rm; in the latter case (by the induction hypothesis) there
is an s € R such that s(gm—m)=rm—m and m=(r+s—sr)ym e Rm. This completes
the induction.

Theorem A. The following are equivalent.
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(1) M is almost Artinian.
(2) RM is Artinian.

(3) RM is Noetherian.

(4) M is almost Noetherian.

Proof. (1)=(2). Since M is almost Artinian, so is the submodule RM. But
for any submodule K of RM, K=RK by Lemma 6. Thus RM is Artinian.

(2)=(1). For any contracting sequence of submodules K,2K,2--- 2K,2--.
of M, RK\2RK;2---2RK,2--- are submodules of RM, and so RK,=RK,., <
K. for some ge Z, and all ke Z,. So RK,cN K,.

(4)=(3). Since M is almost Noethérian, o) ”is the submodule RM. But for
any submodule K of RM, K=RK by Lemma 6. Thus RM is Noetherian.

(3)=(4). For any expanding sequence of submodules K cK,c...cK,c--.
of M, RK,CRK,—---CRK,Z--- are submodules of RM, and so RK,..=RK,C K,
for some ge Z,, and all ke Z,. So R(U K,)=K,.

It remains only to prove (2)=(3). "

(2)=(3). Suppose RM is Artinian but not Noetherian. Let Ky=(0&K,&
K;,&:---&K,<--+ be an expanding sequence of submodules of RM, no two equal.
Choose m, € K,\K,_, for each ne Z,. By Lemma 6, my=7r,m, for some 7,€ R.
But 7u=s,+:--4s, for some s;el; and so there is an s;esome I,; such that
simy € K,\K,_;. Thus for each ne Z, there is an m, e M and some tn€some I,
such that ¢{,m, € K,\K,-;. For each ne Z, let N, denote the submodule generated
by {tan, tnr1Mas1, tnsaMuia, --+}. Then N2N,2.-.-2N,2--- is a contracting
sequence of submodules of RM. But RM is Artinian, so N,=N,,, for some
q€Zi. Say tme=thtes1Mer1+usteraMasat -+ + gty M, for appropriate u;e R
where u,tgi,mqip#0. Then wuyite,, ¢ J. By boip € Uthplerp+J for some
u€ R. Finally

tq+pmq+p=uuptq+pmq+p=utqmq_uultq+1mq+1— L] -—uu,,_ltq+,,_lmq+p_1

and £g+pMq+p € K¢ip—; which is impossible,

| (3)=(2). Suppose RM is Noetherian but not Artinian. Let K,2K, 2K,2..--2
K,.;- -+ be a contracting sequence of submodules of RM, no two equal. Choose
ms € K;\K,., for each neZ,. By Lemma 6, m,=r,m, for some 7,e R. But
rn=$1+:+-+s, for some s;el,; and so there is some s;esome I,, such that
$imn € K\K4+1. Thus for each ne Z,, there is an m, e M and a £, € some I, such
that ¢,m, € K,\K,+;. For each ne Z,, let N, denote the submodule generated by
{tymy, - -+, tam,}. Then Ny,CN,c-...-cN,C--. is an expanding sequence of sub-




MODIFIED CHAIN CONDITIONS FOR RINGS 15

modules of RM. But RM is Noetherian, so N,=N,_, for some ge Z.. So
tamg=tqrbq1Mq1+Ug_olq oMq_s+ -+ Ug_plq—pMq—p

for appropriate u;€ R where u,_t;_,mq»#0. Then wu,_nt,—,¢J. By
there is some % € R such that #,_, € uu,,t—,+J. Hence

tqpMq-p=Ulq—ptq—pMq-p=UlqMq— Uthq_1lq-1Mq—1—* * * —Uhg—prilg-pr1Mg-p+1
and #,-,m,-,€ K, ,+, which is impossible.

Theorem B. Let [y, -+, ]n be left ideals of the ring R, each satisfying the
hypothesis for J in Theorem A. Let N be a left R-module satisfying ]y - -+ JaN=(0).
Then N is almost Artinian if and only if N is almost Noetherian.

Proof. If N is either almost Noetherian or almost Artinian, the same is true
of each of the R-modules J,+++ JuN/Ji -+ JaN=Js =+« JuN, Js+++ JalN/]Jz -+ JuN,
Jo-+« JaN/Js -+« JuN, -+, N/J.N, and by Theorem A, all these R-modules are both
almost Artinian and almost Noetherian. By each of the R-modules
JevoooJuN, Js -+« JuN, Jo+++ JuN, - -+, JuN, N are both almost Artinian and almost
Noetherian.

Theorems A and B have a number of consequences. We can completely
characterize almost left Artinian rings in terms of nilpotent ideals and Artinian
modules.

Theorem 5. Let W be the nil radical of the ring R. Then R is almost left
Artinian if and only if W is nilpotent and each of the left R-modules R/W,
RW/W?, RW*/W?, ..., RWYW"", ... is Artinian.

Proof. Let R be almost left Artinian. Then W is nilpotent, and R/W is a
left Artinian ring. It follows from the classical Wedderburn structure theorem
that J=W satisfies the hypothesis of Theorem A; R/W is the sum of minimal
submodules I,/ W such that I;&W. Indeed we can employ finitely many of those
submodules. Now each of the R-modules R/W, W/W?, W?/W?, ... is almost
Artinian since R is an almost Artinian left R-module. By Theorem A, each of
RW/W?*, RW?*/W?, ... is Artinian, and R/W is also Artinian because the ring
R/W is left Artinian by [Theorem 1.

Now assume the condition holds. Then the ring R/W is left Artinian, and
the left R-modules RW"/W™"™ are Artinian. Theorem A again applies (by the
Wedderburn structure theorem) and the left R-modules W*/W™' are almost

Artinian. By R is almost left Artinian.

Now we find that any almost left Artinian ring must also be almost left
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Noetherian.

Theorem 6. Let R be an almost left Artinian ring. Then any left R-module
N is almost Artinian if and only if N is almost Noetherian. Thus in particular,
any almost left Artinian ring must also be almost left Noetherian.

Proof. Let W be the nil radical of R. Then W is nilpotent and R/W is a
left Artinian ring. By the classical Wedderburn structure theorem, the left ideal
J=W satisfies the hypothesis of Then by Theorem B, N is almost
Artinian if and only if N is almost Noetherian.

Finally, R is an almost Artinian left R-module. By the preceding paragraph,
R must be an almost Noetherian left R-module. Then R is also an almost left
Noetherian ring.

A point worth mentioning is that any expanding sequence of left ideals A=
J:&:--SJuS--- in any (almost) left Artinian ring R satisfying R(U J.)=U Ja,
must terminate. i "

Hopkins (Annals of Math., 1939, pp. 712-730) proved Theorem 6 for unital
modules and rings with identity. In that case, ‘‘almost Artinian (Noetherian)” is
equivalent to ‘“Artinian (Noetherian)”’.

Theorem 7. Let [y, ---, Ju be left ideals of R satisfying the hypothesis of
Theorem B. Suppose also that ], --- J,R=(0). Then R is almost left Artinian
if and only if R is almost left Noetherian.

Proof. Just let R be the left R-module N in The rest is clear.

Theorem 8. Let i, -+, J. and R satisfy the hypothesis of Theorem 7 and
suppose also R*=R and RJi=]; (i=1,---,n). Then R is left Artinian if and
only if R is left Noetherian.

Proof. Let R be left Noetherian. Then the left R-modules R/J,R and
Jir oo JuR[Ji -+« JuR (k=1, - --, n) are almost Noetherian. By Theorem A, the
left R-modules RJ;—; -+ JuR/Ji -+ JoR and R®/J,R are Noetherian and Artinian.
But R*=R and RJi.1=J,-1 so the left R-modules R/J.R, Ji-1--+ JuR/Ji +++ JuR
are Artinian. By R is an Artinian left R-module, so the ring R
is left Artinian. The converse is analogous.

Theorem 9. Let ], .-+, J» and R satisfy the hypothesis of Theorem B.
Suppose also J, -+ Jo=(0). Then any left R-module N is almost Artinian if and
only if N is almost Noetherian.

Proof. Theorem B.
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Another point worth mentioning is that if W is the nil radical of a left
Artinian ring R satisfying W=RW, then R must also be left Noetherian. This
follows from Theorem A and the Wedderburn structure theorem.

We will apply Theorems A and B again later. Even though every almost
left Artinian ring is almost left Noetherian, the converse statement is false. For
example, Z is Noetherian but not almost Artinian. However, we will prove a
partial converse. For this purpose, we need some definitions.

We say that an ideal I of a ring R is almost prime if for any ideals A, B
of R, ABcCI implies A<l or B<I. Clearly any prime ideal must be almost
prime. The reader can easily verify that if R is commutative, I is prime if and
only if I is almost prime. However, in the ring of all » by » matrices over a
field F (»>1), (0) is almost prime but not prime.

Let f be a homomorphism of the ring R onto the ring S. The reader can
easily verify that an ideal J of S is almost prime in S if and only if f'S is
almost prime in R. Likewise, any ideal I of R containing the kernel of f is
‘almost prime in R if and only if f7 is almost prime in S.

If Iis an almost prime ideal of R and if A and B are left ideals of R such
that ABCI, then Acl or B&I. To see this, note that A+ AR and B+ BR are
ideals of R and (A+AR)B+BR)<I.

We say that a proper left ideal J of a ring R is almost maximal in R if the
left R-module R/J is the sum of a family of minimal submodules of the form
I./] where I.2] is a left ideal of R. We say that J is finitely almost maximal
if R/J is the sum of finitely many minimal submodules. If R/J is the sum of
just ome minimal submodule, then of course J is just a maximal left ideal of R.

We note that if J is an almost prime ideal that is also an almost maximal
left ideal, then I;£J for each «, so J satisfies the hypothesis of Theorem A. We
will make use of this fact later. '

Let f be a homomorphism of the ring R onto the ring S. The reader can
easily verify that a left ideal J of S is almost maximal in S if and only if 'S
is almost maximal in R. Likewise, a left ideal I of R containing the kernel of
f is almost maximal in R if and only if f7 is almost maximal in S.

It is worth mentioning that if R has an identity ¢, any almost maximal left
ideal J is finitely almost maximal. To see this, let e+ J=(2+/J)+ -+ +(xu+ D
where «;€ I,;,, Then for any re R,

r+J=(r+])e+=(rei+ )+ +(ras+J),
SO R/]=I¢1/]+ oo +Ia,,/]-
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Our next order of business is to prove that in any nonnilpotent almost left
Noetherian ring, there is a proper almost prime ideal.

Lemma 7. Let R be an almost left Noetherian ring with nil radical (0).
Then there exists a proper almost prime ideal that is also the left annihilator of
some nonzero ideal of R.

Proof. We may assume, without loss of generality, that there exist nonzero
ideals A and B such that AB=(0); for otherwise (0) is the left annihilator of R
and (0) is almost prime. So there exist I#(0), J+(0) such that I/=(0) and a
g€ Z, such that R°Ac I for any nonzero ideals A, B such that A>7 and AB—-#(O).
We may assume, without loss of generality, that I is the left annihilator of J by
extending I if necessary. It remains only to prove that I is almost prime and
I+R.

Suppose C, D are ideals such that CD<I and D&I. Then DJ is an ideal
and CDJcIJ=(0) and DJ+(0). So (C+I)D<I and (C+I)DJ=(0). Since IcC+1
it follows that R(C+I)cI and R'CcI. So R°CJ=(0). Now

(CT S R'CJ=(0)

and since R has no nonzero nilpotent ideals, CJ/=(0). But I is the left annihilator
of /, so C<l. This proves that I is almost prime. Of course I+ R; for otherwise
J*cRJ=(0) and J=(0), contrary to the choice of J.

The only almost prime ideal in a nilpotent ring R is of course R. But for
nonnilpotent rings we have the following.

Lemma 8. Let R be a nonnilpotent almost left Noetherian ring. Then there
is a proper almost prime ideal I in R such that for some nonnilpotent ideal ]| of
R, I is nilpotent.

Proof. Let W be the nil radical of R. Then R/W is an almost left Noetherian
ring with nil radical (0), and by there is a proper ideal T2 W such
that I/W is a proper almost prime ideal of R/W, and also an ideal /22 W such
that (Z/W)(J/W)=() in R/W. It follows that I is a proper almost prime ideal of
R, J is not nilpotent in R, but IJS W is nilpotent since W is.

Now we will prove that (0) is the product of finitely many such ideals in an
almost left Noetherian ring. ' '

Lemma 9. Let R be a nonnilpotent almost left Noetherian ring. Then there
exist finitely many proper almost prime ideals ], -+, Jn such that J, --- J,=(0).
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Proof. Suppose (0) is not such a product. Let . be the family of all ideals
of R that do not contain the product of finitely many proper almost prime ideals.
Then (0) e -# so -“ is nonvoid.

Let {I.} be a family of ideals in .# that is totally ordered by inclusion. Then
there is a ge Z, and an I, in {L} such that for any L.2I, RI.cl,. But for
each a, I.c1,, or I.,=1.. Hence R'I,c1,, for all @, and R"(IZJ IL)c L.,

Now U I, € .#; for otherwise there exist proper almost prime ideals J;, -« -, J.
such that J; - - J»SY L and

Ui e RWU L)L, ,

contrary to I, € .*. So any chain of ideals in .# has an upper bound in _%. By
Zorn’s axiom, - contains a maximal ideal; call it K.

But K+#R since R contains a proper almost prime ideal. (This is the only
place in the argument we use Lemma 8, but it is crucial.) So K is proper and
K cannot be almost prime. Thus there exist ideals K, K, such that K. K.cK
but K,ZK, K,£K. Then (K,+K)K;+K)<K and KcK,+K, KcK,+K. Since
K is maximal in #, K, ¢ .# and K,¢.#. Say Ji, -+, Ja, L, -+, L are proper.
almost prime ideals such that

]1"']ngK1’ Ll"'ngKzo
Finally, J,--- JuL,-+- L.SK,K,CK and this is contrary to Ke. 7.

Theorem 10. Let R be a ring and suppose Jy, -- -, J» are proper almost prime
ideals that are also almost maximal left ideals such that J,--- J.=(0). Then any
left R-module N is almost Artinian if and only if N is almost Noetherian.

Proof. Any proper almost prime ideal that is also an almost maximal left
ideal satisfies the hypothesis of Theorem A. The rest follows from Theorem B.

Theorem 11. Let R be an almost left Noetherian ring. Then R is almost left

Artinian if and only if every proper almost prime ideal is an almost maximal left
ideal of R.

Proof. We can suppose, without loss of generality, that R is not nilpotent.
For if it were, R would be almost left Artinian and no proper almost prime ideal
would exit in R.

Now suppose every proper almost prime ideal is a maximal left ideal. By
there exist such ideals J, - - -, J, satisfying J, --- J,=(0). By
10, R is an almost Artinian left R-module, and so R is an almost 'left Artinian ring.
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Suppose R is almost left Artinian. Let I be a proper almost prime ideal.
It follows that the ring R/I has (0) nil radical. By [Theorem 1, R/ is left Artinian,
has an identity, and by the classical Wedderburn structure theorem, (0) is a
finitely almost maximal left ideal of R/I. It follows that I is a finitely almost
maximal left ideal of R.

Corollary 3. Let R be a left Noetherian ring such that for every re R, r € Ry.
Then R is left Artinian if and only if every proper almost prime ideal of R is
an almost maximal left ideal of R.

Proof. Since r € Rr for each re R, we have that RJ=] for each left ideal J
of R. The rest reduces to [Theorem 11

Before we produce special cases for commutative rings, we need another
lemma.

Lemma 10. Let R be a commutative almost Artinian ring. Then any proper
prime ideal I of R is maximal.

Proof. The ring R/I is without zero divisors, but R/I is almost Artinian.
By Theorem 1, R/I is Artinian and has an identity e. Take any nonzero « € R/I.
The descending chain of ideals

“ (w)z(w’)é(m3)2~-Q:_a(m“);...

must terminate. Say (z™)=(z""'). So r#"*'=g" for some re R/I. Since R/I has
no zero divisors, it follows that (rz—e)2"=0 and rx=e. Thus every nonzero
element of R/I is invertible and R/ is a field. Hence I is a maximal ideal of R.

Theorem 12. Let R be a commutative almost Noetherian ring. Then the
Sfollowing are equivalent.

(1) Every proper prime ideal is a maximal ideal.

(2) Every proper prime ideal is an almost maximal ideal.

(3) R is almost Artinian.

Proof. (1)=(2). Clear.

(2)=(3). [Theorem 11l

(3)=(1). Suppose R is almost Artinian and I is a proper prime ideal. Then
I is maximal by

By Theorem 3, a commutative ring is almost Artinian if and only if it is
the direct sum of an Artinian ring with identity and a nilpotent ring. Hence

Corollary 4. Let R be a commutative (almost) Noetherian ring. Then the
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following are equivalent.

(1) Every proper prime ideal is a maximal ideal.

(2) Every proper prime ideal is an almost maximal ideal.

(3) R is a direct sum of an Artinian ring with identity and a nilpotent ring.
Thus in particular, when R does not have a nilpotent direct summand +0), R
is Artinian if and only if every proper prime ideal of R is maximal in R.

Proof.

Cohen (Duke Math. Journal, 1950, pp. 27-42) proved the equivalence of (1)
and (3) for rings with identity. In this case, the nilpotent summand vanishes.

provided an alternative definition of ‘‘almost left Artinian” ring.
We conclude with yet another.

Proposition 9. Let R be a ring. Then R is almost left Artinian if and only
if there is an integer q€ Z. such that for any contracting sequence of left ideals
Ji2fi2- -2 J.2---, the contracting sequence of left ideals R, 2R [;2---2
R'J,2.-- terminates.

Proof. First assume the condition holds. Then for any contracting sequence
of left ideals J,2J,2+++-2J,2-- - there is an m € Z, such that R Ja=R'Jm+xS Jm+x
for all ke Z,. Thus R is almost left Artinian. '

Now assume R is almost left Artinian. Let /;2/,2---2/,2--- be a contract-
ing sequence of left ideals. Also RoR*2..--2R">--- is a contracting sequence
of left ideals that must almost terminate. Say R R‘'CR*** for all ke Z,. Then
RYcC R**! and it follows that R**=() R". But the sequence (/.) also almost
terminates, and it follows that there "is a peZ, such that RY],C Jp: for all
ke Z,.

In other words, for all ke Z,, -

qu]p=R2q'R3q]pngq]p+kgR2q]p
and

qujp=Raq]r+k .

Since the choice of ¢ is independent of the sequence (/,), the condition follows.
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