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ABSTRACT. Let o’ (j-:1,2) be actions of a locally compact abelian group G
on von Neumann algebras _.#; satisfying aj(J//j)’ﬂ(}/é’jxajG):‘ls{//.xaja. If
(@'®a?),=al®d?, then I'(a'®a’) is the set of all p € G such that a; . is trivial
on the fixed point algebra of the center of (. #] X ,1G)X (4, X ,2G) with respect
to the action &,=a4.,®d%,. Let 7 (j=1,2) be ergodic actions of G on von
Neumann algebras .#7. If HXG, T)={0} and both 3! and j5* have invariant
faithful normal states, then (.#;&®.4)? is abelian, where 3,=/5/®p%,.

Introduction.

To each countable ergodic non singular transformation group ¢ acting on a
standard measure space ({2, z) there corresponds the associated flow {A(#): t e R}
on the quotient space 2x R/® given by A(t)w, s)=(o, s+t), (mod. ®), where G is
the set of §: (w, s)—(gw, s—log (dug/dp)(w)) for g e ®. The associated flow is con-
jugate to O the dual action of the modular automorphism ¢ restricted to the
center Z .« 4w of the crossed product of -7 by ¢, where .7 is a factor L7(2)<&
constructed from group measure space construction and ¢ is the weight on .7 in-
duced from g. On the other hand, Connes and Takesaki show that the covariant
system {Z .« 4R, R, O} is equivalent (or conjugate) to the smooth flow of weights
on # for all type III factors -#. Therefore, so far as we are concerned with
type III factors, the smooth flow of weights is considered as a generalization of
the associated flow to arbitrary von Neumann algebras.

Given a pair of countable ergodic non singular transformation groups &; on
(2;, #;) for j=1,2, the associated flow of the product group &, <&, on (2, X 2.,
m@ps) is conjugate to the joint flow of the associated flow {A;{#): te R} of &,
that is, the flow {A.(¢)xid: te R} on the quotient space X1><X2/f€, where X;=
2;xR/®; and R is the set of : (L1, L)—(A1()C,, Ax(—1):). The same result is
obtained for a smooth flow of weights as follows: the virtual spectrum S,(-Z&). Z;)
is the closure of the product of S,(-#;) and S,(-+7;). Therefore the joint flow or
the closure of the product of vertual spectrums determines the type of the tensor
product of factors. (See, [3, 4])
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The main purpose of this paper is to show that if we assume the relative
commutant property for a’: «’(-7;) N (-#;% 1iG)C (#; % .iG)’, then the same type
of results as above remains true for a pair of covariant systems {-7}, G, a’} of
von Neumann algebras ./, a locally compact group G and actions of G on A
in place of the covariant systems {.;, R, ¢%}.

In §1 we shall recall the properties of Connes spectrum I'(«) and the set G(«)
of vanishing points in a certain sense, which are known as the S-set and the 7-set
for a modular automorphism.

In §2 the Connes spectrum /'(«'®a’) of a tensor product of actions will be
given as the kernel of the joint action of dual action &' and &* on the center
@ 4By Where A= 75 4G

In §3 we shall give a sufficient condition for a joint action to have pure point
spectrum. The crucial assumption is the existence of an invariant faithful normal
state.

In §4, as an application of the above results, we shall show that every result
obtained in for type III factors constructed from non singular transformation
groups still holds for all type III factors.

The authors thank to Professors T. Hamachi, M. Osikawa and R. Katayama

for their valuable discussion.

§1. Invariants /'(«¢) and G(«).

Throughout this paper G is a locally compact abelian group and p is the
regular representation. If « is an action of G on a von Neumann algebra .,
then the spectrum sp(«) is the intersection of all kernels {p e G: f(p):O} of the

Fourier transform f with a,;=0, fe L'(G), where ay=\ f(t)a,dt. For each projec-
S

tion ¢ in .#7“ we denote the restriction of a to the reduced von Neumann algebra
-7, by «. The Connes spectrum ['(«) of « is defined by

I'(@)=N {sp(a®): ee 7", e+0} .

The Connes spectrum for a modular automorphism is the S-set S(.Z) of . Z, more
precisely, I'(¢®)={log i: 2€ S(.7), 10} for a faithful, semi-finite, normal weight
¢ on .«Z. For each unitary » in .7 we denote Ad,(z)=vav*. Another invariant
G(«) is defined by

Gl)={teG: a;,=Ad,, ve 7"} .

Let a¢ be an isomorphism of L7(G) into L™(G)RL"(G) with (agf)(s, )=f(s+£)
for f€ L”(G). An action @ of G on -7 is then identified with an isomorphism « of
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A into . ZRL(G) with (xR:)oa=(:Rag)ea by (a(@)s)(t)=a,(x)i({) for &e HRLYG).
The crossed product . 7 ,G is defined as the von Neumann algebra generated by
a(2) and CR.(G), where “2(G)=pn(G)". Let U be a unitary in L (G)RL(G)
defined by

(U=t py=<t, pYét, p), teG, peG.

The action & (dual to «) of G on . 7 %G is defined by
&(y)=Adigu(yX1) .
Then the Connes spectrum /'(«) of a coincides with the set Ker at 7’ ,. ¢, i.e.
(peG: ay=r on € ,x )

[3, Theorem 3.3.2], where ©7,- denotes the center of ../. Moreover, G(«) of «

coincides with a subset of the point spectrum of a:
{teG: 3 a unitary € 7, such that &,(u)=<t, ppu for all peé}
Indeed, we have the following proposition.

Proposition 1.1. If « is an action of G on . 7, then the following three con-
ditions arve equivalent:
(1) teGla);
(i) teG@a); and

(i)  a,(w)=<t, pyu for some unitary u in < ,. -
Proof. (i)=(ii): By Takesaki’s duality
(7 2.G) < 4G, &y ={ #& Z(LG)), &},

where &;—a,X4, and Zs(x):p(s)*a;p(s). Suppose that ¢ € G(«). There exists a uni-
tary ve. 7% such that a,=Ad,. Therefore v®p(t)* €. 7R 2 (LYG)), a(vRpt)*)=
vRp(t)* for all s and @& =Ad,. .4+ on . ZXR.7Z(L(G)). Thus teG(@ and hence
t e G(&).

(il)=(i): Suppose that fe G(a). Since then ¢e G(a), there exists a unitary
we (..«?’@Q?(LZ(G)))’; such that a&,=—=Ad,. Then a;X:=Ad 1%, » 1S an inner auto-
morphism of - Z®.7(L*G)) and hence (1®p()we. #& (. Therefore (1&Qo(t)w is
of the form v®1 for some unitary v e .7, and hence w=vRp(t)*. Since & (w)=1w,
it follows that ve 2" and a,=Ad,. Thus teG(x).

(il)=(ii): Suppose that fe G(«). There exists a unitary # € v, such that
G,=Adz ., on (7> .G)> 2G. Since

&, PHIIRIR () =a,(1R1Rp(p) =aw)(1RIG p(p)aw)”
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it follows that
&(&p(u)):Ad@l@p«p)(d(u)): <t, f’>&(u)

and hence that a,(u)=<¢, p)u.
(iii)=(ii): Suppose that &,(#)={¢, pd>u for some unitary u« e @ yxqa- Then
Adigi9p (@) =<¢, pya(u)
and hence that
Adg i (IR1Rp(P) =<2, pr(1R1R p(p)) =a,(1R1Xp(p)) .
Since u € F 6, Adgwy=¢ on &(-Z X .G) and hence a,=Ads, on (-2 X ,G) < el
Since ay(&(u))=a&(u), we have teG(a). q.e.d.

The set G(a) for a modular automorphism is the T-set 7( #) of .Z. 1f. 7 is
a factor and G/F(a) is compact, then G(a)=I"(a)", [2, 5].

Corollary 1.2. If 3 is a dual action of G on -, then the following two con-
ditions are equivalent:

(i) teG@B); and

(i) Bv)=LE, pyv for some unitary v in 7 .

If « is integrable and has the relative commutant property, i.e. a(-Z) N
(- 7 %aG)= 4y, then ( Z%)'N.Z=% ,« by [7] and hence a is center fixing.

Proposition 1.3. The following two conditions are equivalent:
(1) 7 is a factor; and

(i) «a is center fixing and & is ergodic on L x olie
Proof. By Takesaki’s duality we have
(7% aG) X 2G=. 2 R.F(LHG)) .

Therefore .7 is a factor if and only if (.2 x.G) < 4G is a factor. Therefore the
condition (i) is equivalent to the fact that /'(&)=G and & is ergodic on Z° X ol
by [3, Theorem 3.3.4]. By [6, Theorem 6.1] I'(@)=G if and only if a is center
fixing on - Z. q.e.d.

§2. Connes spectrum of a tensor product.

Let a be an action of G on -2 and H a closed subgroup of G. We denote
by a” the restriction of « to H and by . # X .H the von Neumann subalgebra
generated by a(-#) and C®p(H)"". Then .7 zH is isomorphic to .7 x H by

the correspondence:
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o ot

1Qp" (n)—1Rp(7) ,
where o” is the regular representation of Hon L*(H), [8, Theorem 4.2]. Moreover,
(2.2) A% H={y € .4 %G ayy)=y for all pe HY},

[9, Theorem 7.1].
Let o' and «® be actions of G on - and .7, respectively. We denote

(a'Ra’),=aiRat and (¥ a®) 1) =alRai .
The former a'®da® is an action of G on —ZX.#; and the latter a'xa® is an action
of GXG on ARy
Lemma 2.1. If 4= 7;*% oG and ay=a,Ra’,, then
(2.3) (AR ) > wizarC, (@R V= (AR, &R .
Proof. Put . Z=.7,& 7 and H={(s, t) € GXG: s=t}. Let V be the isometry

which maps naturally L*($:; G)QL*($.; G) onto L¥(9:®9.; GXG). Then there is
an isomorphism 7 of .7 X aiza2G onto V(2 X aixazH)V ™" such that

N {(Of’®a2)(x1®mz)Ha1(w1)®a2(xz)

. 1/f1®1/2®.0(7’)H1/1®p(7’)®1//2®p(7’)-

Moreover, 7 gives an equivalence of covariant systems:

(2.4) (% q1202G, (@R V= V(A K arxaH)V T, &' R}

Really, it suffices to check this on the generators. Since &l (x))=a’(x) and
a1, Rp(r)=<r, p>1_,;Qp(r), it follows that

ro(a' ®a’), (o Qe @ @ws)) =7 o (' @ Y@, Da2)
:(&L®l)°7’((al®a2)(fc1®mz))
ro(@' ®a’), (1, @1, R p(r)=<7, )L Qp(NRL £, 0()
=(a,R0)or(1,,®1_,,Qp(7)) . q.e.d.
Here we recall recent results due to Paschke. If « is an action of G dual to
some action of G, then a(-72) N(A7 %.G)=a(< ,) is equivalent to (AN N =
¢’ 4a, [7, Theorems 10 and 11].

Lemma 2.2. If o' and o satisfy the relative commutant property: o’(—2;)' N
(A% aiG)=C 4 ;xqic, then

(2.5) f A1 ®sg) a=( 77‘/_1@‘[2)(1 ’

where N j= 77X ;G and &,=&,Qa’,.
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Proof. Put .#"=.47X.+;. Then & is an action of G on 1, Since
H={(t, 1); teG)={(p, —p): pe G}

in GxG, it follows from and that the crossed product . # <3G is iso-
morphic to the fixed point subalgebra

(A7 g1xan (G G TP

and the generators a(y) and 1R p(p) correspond to (&'xa*)(y) and 1R p(p)Rp(—p),
respectively, [9, Theorem 7.1]. Therefore the inclusion relation

(2.6) AN NS BT
is equivalent to the inclusion relation
(2.7) (@ X&) N (A aean (G G R @ < ad)( ) .

On the other hand, as we assume the relative commutant property for a’, we

have
(‘Az}ﬂj)/ n ’“"//:I' - 77 I

Since &’ is a dual action of G on -5, we have
(A N G (A5)
by [5, Theorem 10], and hence
(@' &N A N e (G O C(@ X&) .

This implies and hence [2.6).
Finally we shall show [2.5). Since & is dual, the inclusion implies that

(2.8) (S A=

by [5, Theorem 11]. Therefore, ¢’ ,4c 77, and hence “”,4c(+,)*. The con-

verse inclusion is clear. q.e.d.

Combining the above two lemmas, we can prove our main theorem.

Theorem 2.3. If & (j=1,2) is an action of G on . 7; and have the relative

commutant property, then
I'(@'Ra®)y={p e G: abRe is trivial on (v ,,-1';,‘,»2):’} ,
where .V ;=7 X iG and a,=a,Ra’,.
Proof. By virtue of [3, Theorem 3.3.2] we have

A ~
I'ad'@a’)y=(peG: (@'®a’)y=t on @ 4y s 0z6)
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where A =_#,& _#, By Lemma 2.1, (¢'®a’),;=¢ on the center of A XagaeG
if and only if 4;®: is trivial on the center of (4:®-43)¢. Since a* and a® have
the relative commutant property, %, ,,5.,,¢=(%.+& ,,,2)5‘ by Thus
our theorem is proved. q.e.d.

Corollary 2.4. If o' and o have the relative commutant property, then I'(a')+
r@cr(@®a®.

§ 3. Joint action with pure point spectrum.

In this section we assume that von Neumann algebras are o-finite. To begin
with we shall discuss the pure point spectrum of an action.

For each action a of G on a von Neumann algebra .#~ we denote the set of
all eigenvalues of @ by 3(a) and the eigenspace corresponding to p € 3(a) by S74P).

Definition 3.1. An action a of G on # is said to have pure point spectrum
for a faithful normal state ¢ on " (resp. to have pure point spectrum) if the
linear span of #"%(p), p € () is dense in L7, ¢) (resp. o-strongly dense in .¥7).

12 is weaker

The topology on #  induced from L*-norm defined by [ x|ls=g¢(z*x)
than the o-strong topology on .#. Therefore, if a has pure point spectrum, then
« has pure point spectrum for all faithful normal states on .#°. The converse

holds as the following:

Proposition 3.2. If either

(G) a has pure point spectrum for all faithful normal states on 47; or

(i) a« has pure point spectrum for some a-invariant faithful normal state on
A" and X(a) is closed,
then a has pure point spectrum.

Proof. Let .#, be the linear span of -#*(p), p e 2(a).

(i) Suppose that .75 is dense in L}(¢, ¢) for all faithful normal states ¢ on
#. If ¢ is a normal positive linear form on #; then LA ¢+¢)=L*(A, ¢+
&I (¢+¢)) and hence #; is dense in LA, ¢+¢). Since 4~ cL¥A, ¢+9¢), if
% €., then for any ¢>0 and for any normal positive linear form ¢ on .4~ there
exists an element y € .4, such that [ly—zx|s+s<e. Since [zlls<zllg+g, ~#o is o-
strongly dense in .4

(ii) If ¢ is an a-invariant faithful normal state on .#7, then there exists a
unitary representation U of G on L*.#] ¢) such that

(Utxly)yi:(at(x)ly)sﬁ y , y € '/f/"
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Then Z(U)=2(a), where X(U) denotes the set of all eigenvalues of U whose
eigenvectors belong to .#. The spectrum sp(U) is defined as the intersection of

all kernels of 7 with U;=0, f € LYG), where U,«=S fOU.dt. Since a;=0 is equiva-
lent to U;=0, sp(a)=sp(U). If a has pure point spectrum for é, then Z(T)=sp(U).
Since (a)=2(a) by assumption, we have Z(a)=sp(x). Thus ¥, is o-strongly
dense in .7, q.e.d.

Now we shall go into the main part of this section. We begin with the
definition of a joint action, [4].

Definition 3.3. Let 8' and §* be actions of G on von Neumann algebras .#; and
7, respectively, and B,=B:®p%: on A#:®-4;. Since BiR:=:RF: on (H®A%),
the action B'®: of G on (#:®-45) is called the joint action of f* and 8.

Theorem 3.4. Let p (j=1,2) be an ergodic action of G on A and ¢; a
Saithful normal state on ;. If either

@) ¢é; is f-invariant for j=1,2; or

(b) ¢: is B'-invariant and B* has pure boint spectrum for ¢,
then

(i) the joint action v of B and B° is ergodic:

(ii) the restriction of $:Q¢: to (N 1R A% is r-invariant;

(iii) 7 has pure point spectrum for the restriction of $,R¢. to (A 1Q43);

(iv) sp(n=Z(B"YNZ(B*); and

(v) if HG, T)={0}, then (A4 QA3) is abelian.

Proof. First we notice that each eigen space of an ergodic action is the set
of all scalar multiples of some unitary.
(i) If (@) @)=2 for xe(AQA5), then (BL.QF)(w)=x for all ¢ seGC.
Since #' and B* are ergodic, x is a scalar multiple of the identity.
(ii) Since BiRe=:®B; on (AH:RA%), it is clear.
(iii) and (iv) By Lemmas [3.5 and 3.6 below.
(v) By (i) and (iii). q.ed.

Lemma 3.5. Let 8° and ¢; be as in Theorem 3.4. If ¢; is B-invariant for
J=L1,2, then the joint action y has pure point spectrum Jor 6.R¢; and sp(y)=
2(8HN 2.

Proof. Since ¢; is f-invariant, we may assume that .#; acts canonically
on L*475,¢;) and B’ agrees on .#; with a unitary representation U’ of G on
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LA, ) -

U 'aly)g;=Bi@)y)g;, @, Y€A5.

Let {E'”(p): p e G} be the spectral resolution of U'"’. Let E be the projection of
LA Q4%, $:Q¢s) onto the closure of (#1Q-4%) in LA(AQA%, $:Q¢.), and P
the projection onto the closed linear span of {#’®u: p e 3(8*)N 3(8)}, where u}’’
are the normalized eigenvectors of 8/ belonging to p € 3(8°). Then P<E.

We want to show that E(1—P)=0. First we notice that each pair of E, P,
U'®1 and 1QU{" mutually commutes. We put F=E(1—P). Since (U{’'®1)E=
(UL.QU™M)E, we have

S (s, DYE™ dp)R1)F= SS (s, D)<t, a— DY E(dp)QE dg)F .
If /,9€ LYG) and §(e)=1, then Fubini theorem implies
3.1) Sf(p)(E‘1’<dp>®1)F= “ AD)ia—p EV@HRE dg)F .

We may assume that # and § have compact carriers and 0<f<1, 0<§<1. The
spectral measure E''(dp) or E'®'(dg) is continuous at every point peG over
FLXA® 4%, $:Q¢2). Therefore, if the carrier of § converges to the unit of G,
then the right hand side of converges to 0. Because, the right hand side of
is the integration by a product measure. Hence the left hand side of
vanishes for any f with 0<f<1. If /11, then F=0. gq.e.d.

The proof of the following lemma is essentially a copy of [4, Lemma 1.(1)].

Lemma 3.6. Let §° and ¢; be as in Theorem 3.4. If ¢, is B'-invariant and
B has pure point spectrum for @1, then the joint action y has pure point spectrum

Jor $:Q¢s and sp(r)=Z2(8")N Z(F°).

Proof. Since §’ is ergodic, we can choose a unitary #.”’ € .#; with gi(x\")=
< poul for peI(BY). Since BuPRuP)=uP®ul, it suffices to show that the
set of all u;’®uj’ with pe Z(8')N2(F%) is dense in L(A:Q4%), $:Rs).

For this we suppose that z € (#7:®-43)" and

3.2) {uy’@uy) x, $:Q¢y=0,  peI(BHNZ(F) .
Let R and L be the right and the left slice mappings on A ®4%:
(Ry(x), ¢ =<K=, pQP>={Ly(x), >, PE€A1,x, P€S2x.

We put x,=R¢1..;1>*(a:) for pe 2(8"). Then z,€-4;. Since B.(x)=2 and ¢, is B'-
invariant, it follows that
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{BH®p), P>=L (15’ R1)*Bu(x), ($: ) f_s)
=L DY, 4,  PEAS k.
Therefore x,=2uy’ for some 1€ C. If pe Z(8), then %,=0. If pe (YN,
then implies that
A=Ly, Gatty Y=L, 1y’ R pauy’ *»>=0 .
Consequently, x,=0 for all p e X(8"). Therefore
Ly @up™, gry=Lap, =0, peI(F".

Since 8' has pure point spectrum for ¢, by assumption, Ly(x)=0 for all ¢ € 47 &
and hence x=0. gq.e.d.

We shall apply Theorem 3.4 to the results obtained in the previous section.

Corollary 3.7. Let a’ be an action of G on a factor #; having the relative
commutant property. If either

(@) & has an invariant faithful normal state on the center of N j= ;X 4iG
Jor j=1,2: or

(b) &' or & has pure point spectrum for some invariant faithful normal state
on the center,
then the joint action of &'\%.,, and &'1'¥ ., has pure point spectrum for some
invariant faithful normal state.

Finally we shall give some examples.

Example 1. Let -# be a factor and {-#, G, a} a covariant system. If I’(a)=é,
then . #X,G is a factor, [3, Corollary 3.3.4]. Therefore, {# X .G, é, &} is a co-
variant system with X(&[ % ,x,¢)={0}.

Example 2. Let 4 be a subgroup of G endowed with a discrete topology and
A its dual group. Let © be an action of G on L~(A) defined by

@, @)=Fw+p), wed, peé,
where G is embedded in A by the canonical homomorphism. Let r be the faithful
normal state on L”(4) induced from the normalized Haar measure. Then r is
6-invariant. Here, we set f(w)=(t, ») for te 4. Then f;,e L™(A), 6,(f)=<¢, pDfe
and {fi: te 4} spans L”(A). Therefore O has an invariant faithful normal state and
pure point spectrum. For instance, if G=R, 4=Z and A=T, then 6 is ergodic.
Moreover, {L=(4), é, O} is a covariant system with 3(0)=4 and Ker 6=4".

Example 3. We combine the above two examples. Let A4 =(A#2 X .G)RQL"(A)
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and =a&®6. Then {7 G, B} is a covariant system and B is dual to some action,
[6] Therefore {#"x;G,G, B} is also a covariant system with I'(§)=Ker 81&, =
Ker =4", (By [3]) and 3(8}Z,)=3(&|F ex,0)+2(O)=4. If 6 is ergodic, then
G@)=4 by

In particular, if 6 is ergodic, then 8 is ergodic on ¢ ,. If I'(B)=G in ad-
dition, then #"X pé is a factor.

§4. Applications to type III factors.

In this section, we define a new type for o-finite von Neumann algebras and
apply the results in the previous sections to the type classification of tensor
products of factors.

Now, we define a new type of factors of type III by the following.

Definition 4.1. Let a be an action of G on a o-finite factor .#. For a sub-
group 4 of é, {A, a} is of type 4, if &]ZF ¢x,c admits an invariant faithful normal
state ¢ and has pure point spectrum 4 for ¢. In particular, if « is a modular
automorphism and {-#; a} is of type 4, we say that . # is of type III4

We note that III"**/'¢YZ=]II, 0<i<1, and III''=III,. Then we obtain the
following:

Theorem 4.2. (1) Let #, be a o-finite factor of type 111! and A, be any o-
finite factor. Then ARQA, is of type 1117772,

(2) Let #; (j=1,2) be a o-finite factor with a modular automorphism group
& If {FejxoiR '} (7=1,2) admits an invariant faithful normal state, then
AR A, is of type IIITHVNT A

The proof is evident from [Corollary 3.7, since ¢’ (j=1,2) has the relative
commutant property [3, Theorem 2.5.1].

Corollary 4.3. [4] Let - be a o-finite factor and T(A#) be the T-set of .

(1) If the tensor product of A and a o-finite factor of type IlI,, 0<i<1, is
isomorphic to A, A is of type Ul for some integer k, or of type IlI;.

(2) The tensor product of # and a o-finite factor of type IlI;, 0<i<1, is
also of type 111, if and only if 2x/log 2 € T(A#).
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