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\S 0. Introduction.

Rad\’o and Douglas proved the existence of a generalized parametric minimal
surface $S$ with any given closed Jordan curve $l^{1}$ in $R^{3}$ . Rad\’o also proved in [6]

that if $\Gamma$ can be simply projected onto the boundary curve of a convex plane

domain $\Omega$ , then $S$ is expressed by a graph of a function of class $C^{2}$ on.Q. The

starting point of our study is Rad6’s theorem stated above. The purpose of this
paper is to investigate the uniqueness for existence of minimal hypersurfaces with
a given boundary in a Riemannian manifold. Our main tool to the uniqueness

is the minimum principle for solutions of quasilinear elliptic partial differential
equations of second order.

In \S 1 we define the notations which will be used without explanation in the

later sections. For completeness in \S 2 we give without proof the result (Theorem

2.1) connected with the minimum principle for solutions of a quasilinear elliptic

partial differential equation of second order which was proved by the present

author in [5]. In \S \S 3, 4 we give some applications of Theorem 2.1 to geometry.

In \S 5, making use of results in \S \S 3, 4, the uniqueness for existence of minimal

hypersurfaces with a given boundary which is expressed by a graph of a function

will be proved in the case where ambieant spaces are Riemannian product

manifolds. In the last section we give some results related to the existence of

minimal hypersurfaces with a given boundary in a Riemannian manifold.

\S 1. Definitions and Notations.

Throughout this paper we always assume that differentiable manifolds and

apparatus on them are of class $C^{\infty}$ and that manifolds are connected, unless

otherwise stated.
Let $M$ be a differentiable manifold of dimension $\iota\iota(n\geqq 2)$ and $\Omega$ a domain

(that is, a connected open subset) with boundary $\partial\Omega$ in $M$. The domain $\Omega$ is
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said to have smooth boundary $\partial\Omega$ if for each point $m$ of $\partial\Omega$ there exist an open
neighborhood $U$ of $m$ in $M$ and a coordinate system $(x_{1}, \cdots, x_{n})$ on $U$ such that

$U\cap\overline{\Omega}=\{m^{\prime}\in U;x_{n}(m^{\prime})\geqq x_{n}(m)\}$

where $\overline{\Omega}=\Omega\cup\partial\Omega$ . If $\Omega$ is a domain with smooth boundary $\partial\Omega$ in $M$, then $\partial\Omega$ is
an $(n-1)$ -dimensional closed submanifold of class $C^{\infty}$ in $M$.

Let $M$ be an n-dimensional Riemannian manifold. We denote the Riemannian
metric of $M$ by $\langle, \rangle$ and the Riemannian connection of $M$ by $\nabla$. Let $0$ be a
point of $M$ and $T_{m}M$ the tangent vector space of $M$ at $m$ . For each pair $X$ and
$Y$ of $T_{m}M$ we shall define a linear transformation $R(X, Y)$ of $T_{m}M$ into itself as
follows: Let $Z$ be a tangent vector to $M$ at $m$ . Extend $X,$ $Y$ and $Z$ to vector
fields $\tilde{X},\tilde{Y}$ and $\tilde{Z}$ on $M$, respectively. We put

$R(X, Y)Z=(\nabla_{\overline{\lambda}}\nabla_{Y}^{\sim}\tilde{Z}-\nabla_{1^{-}}\nabla_{\tilde{\lambda}}\overline{Z}-\nabla_{[\lambda^{-},\overline{Y}]}\overline{Z})_{m}$

where [X, $\tilde{Y}$] $=\Gamma_{\tilde{X}}\overline{Y}-\Gamma_{Y}^{\sim}\overline{X}$. Then we can easily show that $R(X, Y)Z$ is well-defined.
For each plane $\sigma$ in $T_{m}M$, the sectional curvature $K_{\sigma}$ for $\sigma$ is defined by

$ K_{\sigma}=\langle R(X_{1}, X_{2})X_{2}, X_{1}\rangle$

where $\{X_{1}, X_{2}\}$ is an orthonormal basis for $\sigma$ . $K_{\sigma}$ is independent of the choice of
an orthonormal basis $\{X_{1}, X_{2}\}$ . Let $X$ be a unit tangent vector to $M$ at $m$ and
{X, $e_{1},$ $\cdots,$ $e_{-1}$ } an orthonormal basis in $T_{m}M$. We put

Ric $(X)=\sum_{i}\langle R(e_{i}, X)X, e_{i}\rangle$ .
It is called the Ricci curvature of $X$ at $m$ .

Let $f:M\rightarrow N$ be an immersion of a differentiable manifold $M$ of dimension $n$

into a Riemannian manifold $N$ of dimension $(n+1)$ . We can induce a Riemannian
metric on $M$ so that $f:M\rightarrow N$ is isometric at each point of $M$. We shall denote
the Riemannian metric induced on $M$ by the same symbol $\langle, \rangle$ that is the
Riemannian metric of $N$. Let $m$ be a point of $M$ and let $U$ be an open neigh-
borhood of $m$ in $M$ which is mapped diffeomorphically into $N$ by $f$. We identify
$U$ with $f(U)$ . Then for each point $m^{\prime}$ of $U$ the tangent vector space $T_{m^{\prime}}M$ of
$M$ at $m^{\prime}$ can be regarded as a subspace of $T_{m^{\prime}}N$. The normal space $T_{m^{\prime}}M^{\perp}$ is
the orthogonal complement of $T_{m^{\prime}}M$ in $T_{m^{\prime}}N$. Each vector of $T_{m^{\prime}}M^{\perp}$ is called
a normal vector to $M$ at $m^{\prime}$ . Let $\xi_{m}$ be a unit normal vector to $M$ at $m$ . We
extend it to a vector field $\xi$ on $N$ such that $\xi$ is a vector field of unit normal
vectors to $M$ in an open neighborhood of $m$ in $M$. We put

$ A_{\xi_{m}}(X)=-\nabla_{X}\xi$ , $X\in T_{m}M$ .



ON UNIQUENESS FOR EXISTENCE 171

Then it is easily showed that $A_{\xi_{m}}$ is well-defined and that for all $X\in T_{m}M$

$A_{\xi_{m}}(X)\in T_{m}M$. Let $\{X_{1}, \cdots, X_{n}\}$ be an orthonormal basis in $T_{m}M$. We put

$ H(m)=\frac{1}{n}\sum_{i}\langle A_{\xi_{m}}(X_{i}), X_{i}\rangle$ .

It is called the mean curvature (with respect to $\xi_{m}$) of $M$ for the immersion $f$ at

$m$ . If the mean curvature of $M$ for the immersion $f$ vanishes at each point of

$M$, we say that $f:M\rightarrow N$ is a minimal immersion or $M$ is a minimal hypersurface

in $N$ for the immersion $f$.
Let $M$ be a Riemannian manifold and $\Omega$ a domain with smooth boundary $\partial\Omega$

in $M$. Throughout this paper, by the mean curvature of $\partial\Omega$ we always mean

one of $\partial\Omega$ with respect to the inward unit normal vector to $\partial\Omega$ .
A Riemannian manifold $M$ is said to be homogeneous if the group of isometries

of $M$ is transitive on $M$.
Let $M$ be an n-dimensional differentiable manifold. For an open subset $V$ of

$M$ we denote by $C^{k}(V)$ the set of real-valued functions of class $C^{k}$ on $V$ where

$k$ is a positive integer. Let $m$ be a point of $M$ and $U$ a local coordinate neigh-

borhood* of $m$ . Let $(x_{1}, \cdots, x_{n})$ be a local coordinate system on $U$. For a

$u\in C^{2}(U)$ we use the following convenient notations:

$Du=(u_{1}, \cdots, u_{n})=(\partial x_{1}\partial u$ $\frac{\partial}{\partial x}un-)$ , $u_{ij}=_{\partial x_{j}}^{u}\frac{\partial}{\partial x_{i}}- 2$ $(1\leqq i, j\leqq n)$ .

\S 2. Quasilinear elliptic partial differential equation of second order.

Let $\Omega$ be a domain in the n-dimensional Euclidean space $R^{n}$ . Let us consider

on $\Omega$ a quasilinear elliptic partial differential equation of second order:

(2.1) $\sum_{t.j=1}^{n}A_{ij}(x, u, Du)u_{ij}=B(x, u, Du)$

where $A_{ij}(1\leqq i, j\leqq n)$ and $B$ are real-valued continuous functions on $\Omega\times R\times R^{n}$

and $A_{ij}=A_{ji}(1\leqq i, j\leqq n)$ . We denote by $(x, t, p)$ a point of $\Omega\times R\times R^{n}$ . Ellipticity

of the equation (2.1) requires the following condition:

(2.2) $\sum_{i,j=1}^{n}A_{ij}(x, t, p)X_{i}X_{j}>0$ on $\Omega\times R\times R^{n}$

for arbitrary non-vanishing real vector $X=(X_{1}, \cdots, X_{n})\in R^{n}$ .

$*\overline{Throughout}$this paper we always assume that $a\overline{local}$coordinate neighborhood is

homeomorphic to an Euclidean open ball.
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We set for a $u\in C^{2}(\Omega)$

$L(u)=\sum_{i,j=1}^{n}A_{ij}(x, u, Du)u_{ij}-B(x, u, Du)$ .

We say that $u\in C^{2}(\Omega)$ is a $supersolution$ of the equation (2.1) if $L(u)\leqq 0$ .
Making use of E. Hopf’s method ([1]) the author proved in [5] the following

theorem.

Theorem 2.1. ([5]) SuPpose that for the equation (2.1) the inhomogeneous term
$B$ is of class $C^{1}$ for the variable $p=(p_{1}, \cdots, p.)$ and that $B(x, t, 0)\leqq 0$ holds on
$\Omega\times R\times\{0\}$ . If $u\in C^{2}(\Omega)$ is a suPersolution of the equation (2.1), then $u$ can not
take its minimum value in $\Omega$ unless $u$ is constant.

Under more general conditions we can prove the assertion of the above
theorem (see \S 2 in [5]).

\S 3. Applications of Theorem 2.1.

Let $N$ be a Riemannian manifold of dimension $n+1(n\geqq 2)$ and let $\Omega$ be a
domain with smooth boundary $\partial\Omega$ in N. We shall denote by $-\ovalbox{\tt\small REJECT}$ the mean curvature
(with respect to the inward unit normal vector) of $\partial\Omega$ . Let $m_{1}$ be a point of $\partial\Omega$ .
There exist an open neighborhood $W$ of $m_{1}$ in $\partial\Omega$ and a positive $\tau$ such that the
map $\Phi:W\times(-\tau, \tau)\rightarrow N$ defined by

(3.1) $\Phi(m, t)=\exp_{m}t\xi_{m}$ , $(m, t)\in W\times(-\tau, \tau)$ ,

is imbedding and $\Phi(W\times(O, \tau))\subset\Omega$ where exp $m:T_{m}N\rightarrow N$ is the exponential map at
$m\in N$ and $\xi_{m}$ is the inward unit normal vector to $\partial\Omega$ at $m$ . We shall denote by
$\langle, \rangle$ the Riemannian metric of $W\times(-\tau, \tau)$ induced from by $\Phi$ . For a fixed
$1\in(-\tau, \tau)$ we put

$W_{t}=\{\Phi(m, t);m\in W\}$ ,

and for a fixed $m\in W$ we put

$c_{m}(t)=\exp_{m}t\xi_{m}$ , $t\in(-\tau, \tau)$ .
Then, by Gauss’s lemma, the unit speed vector $\dot{c}_{m}(t)$ of the geodesic $c_{m}$ is normal
to $W_{t}$ at $\Phi(m, t)$ . For a fixed $t\in(-\tau, \tau)$ we shall denote by $\mathscr{F}(m)$ the mean
curvature (with respect to $\dot{c}_{m}(t)$ ) of $W_{t}$ at $\Phi(m, t),$ $m\in W$. Then it is clear $\ovalbox{\tt\small REJECT}_{0}=\ovalbox{\tt\small REJECT}$.

Under the situations stated above we shall prove the following.

Lemma 3.1. If the Ricci curvature of $N$ is non-negative everywhere, then for
a fixed $t\in(O, \tau)$
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$c\ovalbox{\tt\small REJECT}_{t}(m)\geqq J\nearrow(m)$ for all $m\in W$ .

Proof. Fix a $t\in(O, \tau)$ . Let $m$ be a point of $W$ and $\{e_{1}, \cdots, e_{n}\}$ an orthonormal
basis in $T_{m}W$. For each $i(1\leqq i\leqq n)$ let us extend $e_{i}$ to the parallel vector field
$E_{i}(s),$ $s\in[0, t]$ , along the geodesic $c_{m}$ . Then $\{E_{1}(s), \cdots, E_{n}(s)\}$ is of course an
orthonormal basis in $T_{c_{m}(s)}W_{\theta},$ $s\in[0, t]$ . For each $i(1\leqq i\leqq n)$ we can construct
a variation $F^{(i)}$ : $[0, t]\times(-a, a)\rightarrow N(a>0)$ of the geodesic $c_{m}$ such that

$F^{ti)}((s, 0))=c_{m}(s)$ , $F^{(i)}((0, \epsilon))\in W$ , $F^{(i)}((t, \epsilon))\in W_{t}$

and
$\partial F_{((s,0))=E_{i}(s)}^{ti)}\partial\epsilon$

where $s\in[0,$ $t1,$ $\epsilon\in(-a, a)$ . We put

$L^{(i)}(\epsilon)=\int_{0}^{t}\langle\partial F^{(i)}\partial s$ $\partial F^{ti)}\partial s\rangle^{1/2}ds$ , $1\leqq i\leqq n$ .

Then we have

$d^{2}L^{(i)}$

$d\epsilon^{2}$

(0) $=-\langle\nabla_{E_{i}}\dot{c}_{m}, E_{i}\rangle(c_{m}(t))+\langle\nabla_{E_{t}}\dot{c}_{m}, E_{i}\rangle(m)$

$-\int_{0}^{t}\langle R(E_{i},\dot{c}_{m})\dot{c}_{m}, E_{i}\rangle(c_{m}(s))ds$ , $1\leqq i\leqq n$ .

Since $(d^{2}L^{(i)}/d\epsilon^{2})(0)\geqq 0$ for each $i(1\leqq i\leqq n)$ , we have

$\sum_{z=1}^{\eta}\{-\langle\nabla_{E_{i}}\dot{c}_{m}, E_{i}\rangle(c_{m}(t))+\langle\nabla_{\Gamma_{i}}\dot{c}_{m}, E_{i}\rangle(m)\}\geqq\int_{0}^{t}$ Ric $(\dot{c}_{m}(s))ds$ .

The left-hand side of the above inequality is equal to $n(\ovalbox{\tt\small REJECT}_{t}(m)-\ovalbox{\tt\small REJECT}(m))$ . Since
the Ricci curvature of $N$ is non-negative everywhere, we obtain $\ovalbox{\tt\small REJECT}_{t}(m)\geqq\ovalbox{\tt\small REJECT}\nearrow(m)$ .
Thus we complete the proof.

Under the same situations stated at the beginning of this section, we shall
continue the argument. Let $U$ be a local coordinate neighborhood of $m_{1}$ in $\partial\Omega$

which is contained in $W$ and $(x_{1}, \cdots, x_{n}, t)$ a local coordinate system on $U\times(-\tau, \tau)$ .
We put $ g_{ij}=\langle\partial/\partial x_{i}, \partial/\partial x_{j}\rangle$ , $1\leqq i\leqq n$ . We note $\langle\partial/\partial x_{i}, \partial/\partial t\rangle=0(1\leqq i\leqq n)$ and
$\langle\partial/\partial t, \partial/\partial t\rangle=1$ . We set

$C^{2}(U;-)=\{u\in C^{2}(U);|u|<\leftarrow onU\}$ .
For a $u\in C^{2}(U;\tau)$ let us consider a hypersurface $S(u)$ in $U\times(-\sim, -)$ defined by

$S(u)=\{(m, u(m))\in U\times(-\tau, \tau);m\in U\}$

If $u\equiv t,$ $t\in(-\tau, \tau)$ , we shall set $S(t)=U_{t}$ . Put $X_{i}=\partial/\partial x_{i}+u_{i}(\partial/\partial t),$ $1\leqq i\leqq n$ . Then
$X_{1},$

$\cdots,$
$X_{n}$ are linearly independent tangent vector fields on $S(u)$ . We set
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(3.2) $\overline{g}_{ij}=\langle X_{i}, X_{j}\rangle=g_{ij}+u_{i}u_{j}$ , $1\leqq i,$ $j\leqq n$ .
We can give a unit normal vector field $\eta$ on $S(u)$ as follows: Put $\eta=\Sigma\eta^{\alpha}(\partial/\partial x_{\alpha})^{*}$

where $\partial/\partial x_{n+1}=\partial/\partial t$ . Then $\eta$ is given by

(3.3) $\eta^{i}=-\frac{1}{\sqrt G}\Sigma g^{ij}u_{j}$ $(1\leqq i\leqq n)$ , $\eta^{n+1}=^{1}\sqrt{}^{-}\overline{G}$

where $g^{ij}$ is the $(i, j)$ -component of the inverse matrix of the matrix $(g_{ij})$ and

(3.4) $G=1+\Sigma g^{ij}u_{i}u_{j}>0$ .
We shall denote by $\nabla$ the Riemannian connection of $U\times(-\tau, \tau)$ . Let $H$ be the
mean curvature of $S(u)$ with respect to $\eta$ . Then $H$ is given by

$ H=\frac{1}{n}\Sigma\overline{g}^{ij}\langle\nabla_{x_{i}}X_{j}, \eta\rangle$

where $\overline{g}^{ij}$ is the $(i, j)$ -component of the inverse matrix of the matrix $(\overline{g}_{ij})$ . Using
(3.3) we have

(3.5) $nH\sqrt G=\Sigma\overline{g}^{ij}\{u_{i_{J^{-}}}\Sigma(\Gamma_{ij}^{k}+\Gamma_{in+1}^{k}u_{j})u_{k}+\Gamma_{ij}^{n+1}\}$

where $\Gamma_{\alpha\beta}^{\gamma}(1\leqq\alpha, \beta, \gamma\leqq n+1)$ are the Christoffel’s symbols of the Riemannian con-
nection $\nabla$ with respect to the local coordinate system $(x_{1}, \cdots, x_{n}, x_{n+1}),$ $x_{n+1}=t$ .
We note

(3.6) $\overline{g}^{ij}=g^{ij}-u^{i}u^{j}/G$ , $1\leqq i,$ $j\leqq n$ ,

where we put

(3.7) $u^{i}=\Sigma g^{ij}u_{j}$ , $1\leqq i\leqq n$ .
Using (3.6) we can rewrite (3.5) in the form:

(3.8) $\Sigma A_{ij}(m, u, Du)u_{ij}=B(m, u, Du, H)$

where

$A_{ij}=Gg^{ij}-u^{i}u^{j}$ , $1\leqq i,$ $j\leqq n$ ,
(3.9)

$B=nHG^{3/2}+\Sigma(Gg^{ij}-u^{i}u^{j})\{\Sigma(\Gamma_{ij}^{k}+\Gamma_{in\vdash 1}^{k}u_{j})u_{k}-\Gamma_{ij}^{n+1}\}$ .
We note that $A_{ij}(1\leqq i, j\leqq n)$ and $B$ are continuous for the variable $(m, u, Du)$

and $B$ is of class $C^{1}$ for the variable $Du=(u_{1}, \cdots, u_{n})$ . If we regard $H$ as a given
continuous function on $U$ in (3.8), it is a quasilinear partial differential equation
of second order on $U$.

* Throughout this paper we always suppose that Greek indices $\alpha,$ $\beta,$
$\gamma,$ $\cdots$ run over

the range 1, 2, $\cdots,$ $n+1$ and that Latin indices $i,$ $j,$ $k,$ $\cdots$ run over the range 1, 2, $n$ ,
unless otherwise stated, and we take the summation for repeating indices.
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Lemma 3.2. Assume that the Ricci curvature of $N$ is non-negative everywhere

and that $\mathscr{F}$ satisfies the condition

(3.10) $\ovalbox{\tt\small REJECT}\geqq H_{0}$ on $U$

where $H_{0}$ is a non-negative constant. Let $H$ be a real-valued continuous function
on $U$ such that $|H|\leqq H_{0}$ on U. Suppose that $u\in C^{2}(U)$ is a solution of the equation

(3.8) such that $ 0\leqq u<\tau$ on U. Then $u$ can not take its minimum value in $U$

unless $u$ is constant.

Proof. For a given continuous function $H^{\prime}$ on $U$, we set

$L_{H^{\prime}}(v)=\Sigma A_{ij}(m, v, Dv)v_{ij}-B(m, v, Dv, H^{f})$

where $v\in C^{2}(U)$ and $A_{ij}(1\leqq i, j\leqq n)$ and $B$ are given by (3.9). Since $L_{H}(u)=0$

and $|H|\leqq H_{0}$ , we have

$L_{H_{0}}(\iota\iota)=L_{H_{0}}(u)-L_{H}(u)=n(H-H_{0})G^{3/2}\leqq 0$ .
Hence $u$ is a supersolution of the equation $L_{H_{0}}(v)=0$ . Now we put $B_{H_{0}}(m, v, Dv)=$

$B(m, v, Dv, H_{0})$ where $v\in C^{2}(U)$ . Then for a fixed $ t\in[0, \tau$), from (3.4), (3.9) we
have

$B_{H_{0}}(m, t, 0)=nH_{0}-\Sigma g^{ij}((m, t))\Gamma_{rj}^{n+1}((m, t))$

$=n(H_{0}--\ovalbox{\tt\small REJECT}_{t}(m))$ .

Since by Lemma 3.1 and (3.10) the inequality

$J\nearrow_{t}(m)\geqq\ovalbox{\tt\small REJECT} Y(m)\geqq H_{0}$

holds for all $m\in U,$ $B_{H_{0}}(m, t, 0)\leqq 0$ holds for all $(m, t, O)\in U\times[0, \tau)\times\{0\}$ . Since
$ 0\leqq u<\tau$ on $U$, we can now apply Theorem 2.1 to the equation $L_{H_{0}}(v)=0$ . Therefore

the present lemma follows from Theorem 2.1.
We shall prove the following.

Theorem 3.1. Let $N$ be an $(n+1)$-dimensional Riemannian manifold with non-

negative Ricci curvature and $\Omega$ a domain with smooth boundary $\partial\Omega$ in N. Let
$\ovalbox{\tt\small REJECT}$ be the mean curvature of $\partial\Omega$ . Assume that $\ovalbox{\tt\small REJECT}\nearrow satisfies$ the condition

(3.11) $\angle X^{c}\geqq H_{0}$ on $\partial\Omega$

where $H_{0}$ is a non-negative constant. Let $f:M\rightarrow N$ be an immersion of an n-

dimensional differentiable manifold $M$ into $N$ szcch that

(3.12) $f(M)\subset\overline{\Omega}$ and $ f(M)\cap\partial\Omega\neq\emptyset$ .

Suppose that the mean curvature $H_{M}$ (defined up to a sign) ofMfor the immersion
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$f$ satisfies the condition

(3.13) $|H_{M}(m)|\leqq H_{0}$ for all $m\in M$ .
Then $f(M)$ is contained in $\partial\Omega$ .

Proof. We put $M^{\prime}=\{m\in M;f(m)\in\partial\Omega\}$ . By (3.12) $M^{\prime}$ is non-empty. Let $m_{0}$

be a point of $M^{\prime}$ . We put $f(m_{0})=m_{1}$ . Then there exist an open neighborhood
$W$ of $m_{1}$ in $\partial\Omega$ and a positive $\tau$ such that the map $\Phi:W\times(-\tau, \tau)\rightarrow N$ defined by
(3.1) is imbedding and $\Phi(W\times(O, \tau))\subset\Omega$ . Since by (3.12) $f(M)$ is tangent to $\partial\Omega$ at
$m_{1}$ , by the implicit function theorem, there exist a local coordinate neighborhood
$U(U\subset W)$ of $m_{1}$ in $\partial\Omega$ and a $u\in C^{2}(U, \tau)$ such that $f(M)$ is locally expressed by
a hypersurface $S(u)=\{(m, u(m))\in U,\backslash (-\llcorner--);m\in U\}$ in $W\times(-\tau, \tau)$ . By (3.12) $u$

satisfies the following condition

(3.14) $ 0\leqq u<\tau$ on $U$ and $u(m_{1})=0$ .
We shall denote by $H$ the mean curvature of $S(u)$ with respect to $\eta$ which is
dePned by (3.3). By (3.13) $H$ satisfies the following:

(3.15) $|H(m)|\leqq H_{0}$ for all $m\in U$ .
We note that $u$ is a solution of the equation (3.8) satisfying (3.14). Then from
(3.11), (3.15) and Lemma 3.2 we see that $u\equiv 0$ on $U$. Thus, $S(u)=U\times\{0\}$ . Hence
there exists an open neighborhood $V$ of $m_{0}$ in $M$ such that $ f(V)\subset\partial\Omega$ . Therefore
we have proved that $M^{\prime}$ is open in $M$. Since $M^{\prime}$ is closed in $M$, by the con-
nectedness of $M,$ $ f(M)\subset\partial\Omega$ . Thus we complete the proof.

Now, in the equation (3.8) let us consider the case $H=0$ , that is, the following
equation:

(3.16) $\Sigma A_{ij}(m, u, Du)u_{ij}=B_{0}(m, u, Du)$

where we put

(3.17) $B_{0}(m, u, Du)=B(m, u, Du, 0)$ .
Lemma 3.3. In Lemma 3.2, excluding the assumption for the Ricci curvature

of $N$, suppose that

(3.18) $\ovalbox{\tt\small REJECT}>0$ on $\overline{U}$ .
Theiz

(1) There exists a positjve $\tau_{1}$ such that $\tau_{1}<\tau$ and

(3.19) $B_{0}(m, t, 0)<0$ for all $(m, t)\in U\times(-\tau_{1}, \tau_{1})$ .
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(2) If $u\in C^{2}(U)$ is a solution of the equation (3.16) satisfying the condition:
$|u|<_{\vee 1}^{-}$ on $U$, then $u$ is not constant and $u$ can not take its minimum value

in $U$.
Proof. For a fixed $t\in(-\tau, \tau)$ we put $S(t)=\{(m, t)\in U\times(-\tau, \tau);m\in U\}$ and

denote by $H_{t}$ the mean curvature of $S(t)$ with respect to the unit normal vector
$\partial/\partial t$ . Then, from (3.4), (3.8) and (3.9), we have

$B_{0}(m, t, 0)=-\Sigma g^{ij}((m, t))\Gamma_{ij}^{n+1}((m, t))=-nH_{t}(m)$ , $(m, t)\in U\times(-\tau, \tau)$ .

Since by (3.18) $H_{0}=0\ovalbox{\tt\small REJECT}$ is positive on $\overline{U}$, there exists a positive $\tau_{1}(-1<\tau)$ such that

for each $t\in(-\tau_{1}, \tau_{1})H_{t}>0$ holds on $U$. Thus (1) is showed. The latter follows

from (3.19) and Theorem 2.1.

Theorem 3.2. Let $N$ be an $(n+1)$-dimensional Riemannian manifold and $\Omega a$

domain with smooth boundary $\partial\Omega$ in N. Assume that the mean curvature $JY$ of
$\partial\Omega$ satisfies the condition:

(3.20) $c7\swarrow>0$ on $\partial\Omega$ .

Let $f:M\rightarrow N$ be an immersion of an n-dimensional differentiable manifold $M$ into

$N$ such that

(3.21) $f(M)\subset\overline{\Omega}$ .

Suppose that $M$ is a minimal hypersurface in $N$ for the immersion $f$. Then $J\langle M$ )

can not contact to $\partial\Omega$ .

Proof. Suppose for contradiction that there exists a point $m_{0}$ of $M$ such

that $ f(m_{0})\in\partial\Omega$ . We put $f(m_{0})=m_{1}$ . We can take an open neighborhood $W$ of

$m_{1}$ in $\partial\Omega$ and a positive $\tau$ such that the map $\Phi:W\times(-\tau, \tau)\rightarrow N$ defined by (3.1)

is imbedding and $\Phi(W\times(O, \tau))\subset\Omega$ . Since $f(M)$ is tangent to $\partial\Omega$ at $m_{1}$ , by implicit

function theorem, there exist a local coordinate neighborhood $U(U\subset W)$ of $m_{1}$

in $\partial\Omega$ and a $u\in C^{2}(U, \tau)$ such that $f(M)$ is locally expressed by a hypersurface
$S(u)=\{(m, u(m))\in U\times(-\tau, \tau);m\in U\}$ in $W\times(-\tau, \tau)$ . We note that by (3.21) $u$

satisfies the condition:

(3.22) $0\leqq u<-$ on $U$ and $u(m_{1})=0$ .

Since $S(u)$ is minimal in $W\times(-\tau, \tau),$ $u$ is a solution of the equation (3.16) on $U$

which takes its minimum value at $m_{1}\in U$. Then, by (3.20), (3.22) and Lemma 3.3,

we have a contradiction.
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\S 4. Hypersurfaces in a Riemannian manifold admitting a Killing vector
field.

A vector field $X$ on a Riemannian manifold $N$ is called a Killing vector field
if the local l-parameter group of local transformations generated by $X$ in an open
neighborhood of each point of $N$ consists of local isometries.

Theorem 4.1. Let $N$ be an $(n+1)$-dimensional Riemannian manifold and $\Omega a$

domain with smooth boundary $\partial\Omega$ in N. Suppose that the mean curvature $\ovalbox{\tt\small REJECT}^{f}$ of
$\partial\Omega$ satisfies the condition:

(4.1) $7\swarrow^{7}\geqq H_{0}$ on $\partial\Omega$

where $H_{0}$ is a non-negative constant. Let $f:M\rightarrow N$ be an immersion of an n-
dimensional differentiable manifold $M$ into $N$ such that

(4.2) $f(M)\subset\overline{\Omega}$ and $ f(M)\cap\partial\Omega\neq\emptyset$ .
SuPpose that the mean curvature $H_{M}$ (defined up to a sign) of $M$for the immersion
$f$ satisfies
(4.3) $|H_{M}(m)|\leqq H_{0}$ for all $m\in M$ .

Moreover assume that for a point $m_{0}$ of $M$ such that $ f(m_{0})\in\partial\Omega$ there exists a
Killing vector field $X$ in an open neighborhood of $f(m_{0})$ in $N$ which is transversal
to $\partial\Omega$ on an open subset in $\partial\Omega$ containing $f(m_{0})$ . Then there exists an oPen neigh-
borhood $V$ of $m_{0}$ in $M$ such that $ f(V)\subset\partial\Omega$ .

Proof. Put $f(m_{0})=m_{1}$ . Let $\{\phi_{t}\},$ $|t|<\tau^{\prime}$ , be the local l-parameter group of
local transformations generated by $X$ in an open neighborhood of $m_{1}$ in $N$. Since
$X$ is transversal to $\partial\Omega$ about $m_{1}$ , we can take an open neighborhood $W$ of $m_{1}$ in
$\partial\Omega$ and a positive $\tau$ such that the map $\Phi:W\times(-\tau, \tau)\rightarrow N$ defined by

$\Phi(m, t)=\phi_{t}(m)$ , $(m, t)\in\tilde{W}:=W\times(-\tau, \tau)$ ,

is imbedding. Then we can assume, taking $\tau$ sufficiently small if necessary,

(4.4) $\Phi(W\times(0, \tau))\subset\Omega$ .
We denote by $\langle, \rangle$ the Riemannian metric of $\overline{W}$ induced from $N$ by $\Phi$ and denote
by $\ulcorner$ the Riemannian connection of $\tilde{W}$. Since by (4.2) $f(M)$ is tangent to $\partial\Omega$ at
$m_{1}$ , by the implicit function theorem, there exist a local coordinate neighborhood
$U(U\subset W)$ of $m_{1}$ in $\partial\Omega$ and a $u\in C^{2}(U, \tau)=\{v\in C^{2}(U);|v|<\tau\}$ such that $f(M)$ is
locally expressed by a hypersurface $S(u)=\{(m, u(m))\in\tilde{W};m\in U\}$ in $\tilde{W}$. From
(4.2) and (4.4) we see that $u$ satisfies the following:
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(4.5) $ 0\leqq u<\tau$ and $u(m_{1})=0$ .
Let $(x_{1}, \cdots, x_{n}, t)$ be a local coordinate system on $U\times(-\tau, \tau)$ . We put

$g_{\alpha\beta}=\langle\partial x_{\alpha}\partial_{-}$ $\partial x_{\beta}\partial\rangle$
$1\leqq\alpha,$ $\beta\leqq n+1$ ,

where $\partial/\partial x_{n+1}=\partial/\partial t$ . Since for each $t(|t|<\tau)\phi_{t}$ is isometric, $g_{\alpha\beta}(1\leqq\alpha, \beta\leqq n+1)$

are independent of $t,$ $|t|<\tau$ . For simplicity, in what follows, we shall use the

following convenient notations:

(4.6) $g_{i}=g_{in}1$ $(1\leqq i\leqq n)$ and $g=g_{n\vdash 1n\vdash 1}$ .

Since by (4.5) $Du(m_{1})=0$ , by taking $U$ sufficiently small if necessary, we may
suppose from the beginning that the inequality

(4.7) $1+\Sigma g_{i}u^{i}>0$

holds on $U$ where we put

(4.8) $u^{i}=\Sigma g^{ij}u_{j}$ , $1\leqq i\leqq n$ ,

where $g^{ij}$ is the $(i, j)$-component of the inverse matrix $(g_{ij}),$ $1\leqq i,$ $j\leqq n$ . We put
$X_{i}=\partial/\partial x_{i}+u_{i}(\partial/\partial x_{n+1})(1\leqq i\leqq n)$ . Then $X_{1},$

$\cdots,$
$X_{n}$ are linearly independent tangent

vector fields on $S(u)$ . We set

(4.9) $\overline{g}_{ij}=\langle X_{i}, X_{j}\rangle=g_{ij}+g_{i}u_{j}+g_{j}u_{i}+gu_{i}u_{j}$ , $1\leqq i,$ $j\leqq n$ .
We can now give a unit normal vector field $\eta=\Sigma\eta^{a}\partial/\partial x_{\alpha}$ on $S(u)$ in the form:

(4.10) $\eta^{i}=-\frac{1}{\sqrt{G}}\Sigma a^{ij}a_{j}$ $(1\leqq i\leqq n)$ , $\eta^{n}1=\sqrt G1$

where

$a^{ij}=g^{ij}-u^{i}g^{j}(1+\Sigma g_{k}u^{k})^{-1}$ , $a_{j}=g_{j}+gu_{j}$ ,
(4.11) $g^{j}=\Sigma g^{jk}g_{k}$ , $1\leqq i,$ $j\leqq n$ ,

$G=\Sigma g_{ij}a^{ik}a^{j\ell}a_{k}a_{l}-2\Sigma g_{i}a^{ik}a_{k}+g>0$ .
Let $H$ be the mean curvature of $S(u)$ with respect to $\eta$ . It is given by

$ H=\frac{1}{n}\Sigma\overline{g}^{ij}\langle\nabla_{x_{i}}X_{j}, \eta\rangle$

where $\overline{g}^{ij}$ is the $(i, j)$-component of the inverse matrix of the matrix $(\overline{g}_{ij})$ . By
(4.3) $H$ satisfies the inequality

(4.12) $|H\leqq H_{0}$ on $U$ .
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Using (4.10) we have

(4.13) $nH\sqrt{G}=\Sigma\overline{g}^{ij}\{(g-\Sigma a^{kt}a_{t}g_{k})u_{ij}+\Sigma(g_{\alpha n+1}-\Sigma a^{kt}a_{l}g_{\alpha k})(\Gamma_{ij}^{\alpha}+\Gamma_{in\vdash 1}^{\alpha}u_{j})\}$

where $\Gamma_{\beta\gamma}^{\alpha}(1\leqq\alpha, \beta, \gamma\leqq n+1)$ are the Christoffel’s symbols of the Riemannian con-
nection $\nabla$ with respect to the local coordinate system $(x_{1}, \cdots, x_{n+1}),$ $x_{n+1}=t$ . We
put

(4.14) $\overline{G}^{ij}=\overline{g}^{ij}$ det $(\overline{g}_{ij})$ , $1\leqq i,$ $j\leqq n$ .
Then (4.13) can be rewritten in the form:

(4.15) $\Sigma A_{ij}(m, Du)u_{ij}=B(m, Du, H)$

where

$A_{ij}=(g-\Sigma a^{kl}a_{l}g_{k})\overline{G}^{ij}$ , $1\leqq i,$ $j\leqq n$ ,(4.16)
$B=nH\sqrt G$ det $(\overline{g}_{ij})-\Sigma\overline{G}^{ij}(\Gamma_{\iota j}^{\alpha}+\Gamma_{ln\vdash 1}^{\alpha}u_{j})(g_{\alpha n}1^{-\Sigma g_{\alpha k}a^{kl}a_{l})}$ .

It is evident that $A_{ij}(1\leqq i, j\leqq n)$ and $B$ are continuous for the variable $(m, Du)$

and that $B$ is of class $C^{1}$ for the variable $Du=(u_{1}, \cdots, u_{n})$ . We note $\langle\eta, \partial/\partial t\rangle=$

$(g-\sum a^{kl}a_{l}g_{k})/\sqrt{G}$ which never vanish on $S(u)$ . Since $\langle\eta(m_{1}), \partial/\partial t(m_{1})\rangle>0$ and $S(u)$

is connected, $g-\Sigma a^{kl}a_{l}g_{k}>0$ on $S(u)$ . Therefore if in (4.15) we regard $H$ as a
given continuous function on $U,$ $(4.15)$ is a quasilinear elliptic partial differential
equation of second order on $U$.

Now, since $g_{ij}(1\leqq i, j\leqq n)$ are independent of $t\in(-\tau, \tau)$ , it follows from (4.9)
that for each fixed $t\in(-\tau, \tau)$ the mean curvature $H_{t}$ of $S(t)=\{(m, t)\in U\times(-\tau, \tau)$ ;
$m\in U\}$ is equal to $c^{o}\ovalbox{\tt\small REJECT}$. Hence from (4.11), (4.14) and (4.15) we obtain for a fixed
$t\in(-\tau, \tau)$

(4.17) $\swarrow o_{\ovalbox{\tt\small REJECT}=H_{t}=}n1(g-\Sigma g^{kl}g_{k}g_{l})^{-1/2}\Sigma g^{ij}l_{ij}^{\tau\alpha}(g_{\alpha n11}-g_{\alpha k}g^{kl}g_{l})$ .

We put $B_{H_{0}}(m, Du)=B(m, Du, H_{0})$ . From (4.11), (4.14) and (4.16) we have

$B_{H_{0}}(m, 0)=nH_{0}(g-\Sigma g^{kl}g_{k}g_{l})^{1/2}$ det $(g_{ij})-\Sigma g^{ij}\Gamma_{ij}^{\alpha}(g_{\alpha n}1^{-\Sigma g_{\alpha k}g^{kl}g_{l})}$ det $(g_{ij})$ .
Then, by (4.1) and (4.17)

(4.18) $B_{H_{0}}(m, 0)=n(H-\ovalbox{\tt\small REJECT})(g-\Sigma g^{ij}g_{i}g_{j})^{1/2}$ det $(g_{ij})\leqq 0$ .
Now for a given continuous function $H^{f}$ on $U$ we set

$L_{H^{\prime}}(v)=\Sigma A_{ij}(m, Dv)v_{ij}-B(m, Dv, H^{f})$

where $v\in C^{2}(U)$ and $A_{ij}(1\leqq i, j\leqq n)$ and $B$ are given by (4.16). Since $L_{H}(u)=0$ ,
we have
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$L_{H_{0}}(u)=L_{H_{0}}(u)-L_{H}(u)=n(H-H_{0})\sqrt{G}$

Then, by (4.12), $u$ is a supersolution of the equation $L_{H_{0}}(v)=0$ . By (4.18) we can

now apply Theorem 2.1 to the equation $L_{H_{0}}(v)=0$ . Then from (4.5) we have $u\equiv 0$

on $U$. Thus $S(u)=U\times\{0\}$ . Hence there exists an open neighborhood $V$ of $m_{0}$ in
$M$ such that $ f(V)\subset\partial\Omega$ . We complete the proof.

In Theorem 4.1, if $N$ is a homogeneous Riemannian manifold, for each point

$m$ of $\partial\Omega$ there exists a Killing vector field on $M$ which is transversal to $\partial\Omega$ on

an open neighborhood of $m$ in $\partial\Omega$ . Making use of Theorem 4.1 and a similar

method as in the proof of Theorem 3.1, we have the following.

Theorem 4.2. Let $N$ be an $(n+1)$ -dimensional homogeneous Riemannian mani-

fold and $\Omega$ a domain with smooth boundary $\partial\Omega$ in N. Suppose that the mean
curvature $t\ovalbox{\tt\small REJECT}^{\prime}$ of $\partial\Omega$ satisfies the condition: $\ovalbox{\tt\small REJECT}\geqq H_{0}$ on $\partial\Omega$ where $H_{0}$ is a non-
negative constant. Let $f:M\rightarrow N$ be an immersion of an n-dimensional differentiable
manifold $M$ into $N$ such that $XM$ ) $\subset\Omega$ and $\Lambda M$ ) $\cap\partial\Omega\neq\emptyset$ . Suppose that the mean
curvature $H_{M}$ (defined up to a sign) of $M$ for the immersion $f$ satisfies the condi-

tion: $|H_{M}(m)|\leqq H_{0}$ for all $m\in M$. Then $f\langle M$ ) is contained in $\partial\Omega$ .

In what follows, for a Riemannian manifold $M$ we shall denote by $\tilde{M}$ the

Riemannian product manifold of $M$ and the real line $R$ .
Let $M$ be an n-dimensional Riemannian manifold and $\Omega$ a domain in $M$. For

a $u\in C^{2}(\Omega)$ let us consider a hypersurface $S(u)$ in $\tilde{M}$ defined by

(4.19) $S(u)=\{(m, u(m))\in\overline{M}, m\in\Omega\}$ .

We set

$S_{+}(u)=\{(m, t)\in\Omega\times R;m\in\Omega, t\geqq u(m)\}$ ,
(4.20)

$S_{-}(u)=\{(m, t)\in\Omega\times R;m\in\Omega, t\leqq u(m)\}$ .

We can give a unit normal vector field $\eta$ on $S(u)$ as follows: Let $m$ be a point

of $\Omega$ and $U$ a local coordinate neighborhood of $m$ in $M$ which is contained in $\Omega$ .
Let $(x_{1}, \cdots, x_{n}, t)$ be a local coordinate system on $U\times R$ . We put $ g_{ij}=\langle\partial/\partial x_{i}, \partial/\partial x_{j}\rangle$

$(1\leqq i, j\leqq n)$ where $\langle, \rangle$ denotes the Riemannian metric of $\overline{M}$. We denote by $g^{ij}$

the $(i, j)$ -component of the inverse marix of marix $(g_{ij}),$ $1\leqq i,$ $j\leqq n$ . Now we put
$\eta=\Sigma\eta^{i}(\partial/\partial x_{i})+\eta^{n+1}(\partial/\partial t)$ . Then $\eta$ is given by

(4.21) $\eta^{i}=-(\Sigma g^{ij}u_{j})/\sqrt{G}(1\leqq i\leqq n)$ , $\eta^{n^{L}1}=1/\sqrt{G}$

where

(4.22) $G=1+\Sigma g^{ij}u_{i}u_{j}$ .
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It is easy to see that $\eta$ is globally defined on $S(u)$ .
Under the above notations we shall prove the following.

Proposition 4.1. Let $M$ be an n-dimensional Riemannian manzfold and $\Omega a$

domain in M. For a $u\in C^{2}(\Omega)$ let $S(u)$ be a hypersurface in $\tilde{M}$ defined by (4.19)

and $c\ovalbox{\tt\small REJECT}$ the mean curvature of $S(u)$ with respect to $\eta$ which is defined by (4.21).

Suppose that $\ovalbox{\tt\small REJECT}\geqq 0$ holds everywhere. Then $u$ can not take its maximum value
in $\Omega$ unless $u$ is constant.

Proof. Suppose that $u$ takes its maximum value at a point $m_{0}$ in $\Omega$ . Put
$c=u(m_{0})$ and $m_{1}=(m_{0}, c)\in S(u)$ . We now consider a hypersurface $S(c)$ in $\overline{M}$. Then
$S(c)\subset S_{\vdash}(u)$ and $S(c)$ is tangent to $S(u)$ at $m_{1}$ . For the domain $ S_{+}(u)\eta$ is the inward
unit normal vector field on the boundary hypersurface $S(u)$ . We note that $\partial/\partial t$

is a Killing vector field on $\tilde{M}$ which is transversal to $S(u)$ at each point of $S(u)$ .
Therefore we can now apply Theorem 4.1 to the present case. Then it is easy
to see $u\equiv c$ on $\Omega$ . The proof is complete.

As a corollary of Proposition 4.1 we have

Corollary 4.1. Let $M$ be an n-dimensional compact Riemannian manifold.
Fora $u\in C^{2}(M)$ let $S(u)$ be a hypersurface in $\overline{M}$ defined by (4.19) and $c\ovalbox{\tt\small REJECT}$ the mean
curvature of $S(u)$ with resPect to $\eta$ which is defined by (4.21). SuPpose that $\mathcal{E}\ovalbox{\tt\small REJECT}\geqq 0$

holds everywhere. Then $u$ is constant.

Let $M$ be an n-dimensional Riemannian manifold and $\Omega$ a domain in $M$. We
shall denote by $C^{0}(\overline{\Omega})$ the set of real-valued continuous functions on 9 where $\overline{\Omega}$

stands for the closure of.$Q$ .

Proposition 4.2. Let $M$ be an n-dimensional Riemannian manifold and $\Omega a$

$comPact$ domain with boundary $\partial\Omega$ in M. For $u,$
$v\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ let $S(u)$ and

$S(v)$ be $hyPersurfaces$ in $\tilde{M}$ defined by (4.19) respectjvely. Suppose that $S(u)$ and
$S(v)$ are minimal hypersurfaces in M. If $u=v$ on $\partial\Omega$ , then $u=v$ in $\Omega$ .

Proof. Suppose for contradiction that $u$ and $v$ are distinct. Put $h(m):=$

$|u(m)-v(m)|,$ $ m\in\Omega$ . Since $h=0$ on $\partial\Omega,$ $h$ must take its maximum value in $\Omega$ .
Let $m_{0}$ be a point of $\Omega$ where $h$ takes its maximum value. Put $c=h(m_{0})(>0)$

Without loss of generality we may assume that $v(m_{0})=u(m_{0})+c$ . Then $S(v)$ is
contained in $S_{-}(u+c)$ and $S(v)$ is tangent to $S(u+c)$ at $m_{1}=(m_{0}, u(m_{0})+c)$ . We
note that $\partial/\partial t$ is a Killing vector field on $\tilde{M}$ which is transversal to $S(u+c)$ at
each point of $S(u+c)$ and that $S(u+c)$ is a minimal hypersurface in $\tilde{M}$ (because

$S(u)$ is minimal in $\tilde{M}$ ). Therefore we can now apply Theorem 4.1 to the present
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case. Then we see $v=u+c$ on $\Omega$ . Since $u,$ $v$ are continuous on $\overline{\Omega}$ , we obtain
$v=u+c$ on $\overline{\Omega}$ which is a contradiction.

\S 5. Uniqueness for minimal hypersurfaces with a given boundary.

Throughout this section, for a Riemannian manifold $M$ we shall denote by
$\tilde{M}$ the Riemannian product manifold of $M$ and the real line $R$ and denote by $\pi_{M}$

(resp. $\pi_{R}$ ) the natural projection of $\tilde{M}$ onto $M$ (resp. $R$ ). Let $M$ be an n-dimensional
Riemannian manifold. We consider a compact domain $\Omega$ with smooth boundary
$\partial\Omega$ in $M$ having the following properties:

(1) $\Omega$ is homeomorphic to the unit open ball $D=\{x\in R^{n};\Vert x\Vert<1\}$ in $R^{n}$

where $\Vert$ $\Vert$ denotes the standard Euclidean norm of $R^{n}$ .
(5.1) (2) $\partial\Omega$ is homeomorphic to the $(n-1)$ -dimensional unit sphere $\partial D=$

$\{x\in R^{n};\Vert x\Vert=1\}$ in $R^{n}$ .
(3) The mean curvature $\ovalbox{\tt\small REJECT}$ of $\partial\Omega$ is non-negative everywhere.

For a $u\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ we set

$S(u)=\{(m, u(m))\in\overline{M}, m\in\Omega\}$ ,
(5.2)

$\partial S(u)=\{(m, u(m))\in\overline{M};m\in\partial\Omega\}$ .

Moreover, for a $u\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ let us consider a continuous map $\Phi:\overline{D}\rightarrow\tilde{M}$

satisfying the following conditions:

(1) $\Phi_{1D}:D\rightarrow\overline{M}$ is a minimal immersion of class $C^{2}$ .
(5.3)

(2) $\Phi_{1\partial D}$ : $\partial D\rightarrow\partial S(u)$ is a homeomorphism.

In what follows we shall use the notations described above without mention.
By virtue of the degree theory of continuous maps we can easily show the

following.

Lemma 5.1. Let $M$ be an n-dimensional Riemannian manifold and (2 a compact

domain with smooth boundary $\partial\Omega$ in $M$ having the properties (1) and (2) in (5.1).

For a $u\in C^{2}(\Omega)\cap C^{0}(\overline{()})$ let $S(u)$ be a hypersurface in $\overline{M}$ defined by (5.2) and let
$\Phi:\overline{D}\rightarrow\tilde{M}$ be a continuous map such that $\Phi_{1\partial J)}:\partial D\rightarrow\partial S(u)$ is a homeomorphism. Then
there exists a point $x$ of $D$ such that $\Phi(x)\not\in\partial\Omega\times R$ .

Theorem 5.1. Let $M$ be an n-dimensional Riemmannian manifold whose Ricci
curvature is non-negative everywhere. Let $0$ be a compact domain zuith smooth
boundary $\partial\Omega$ in Mhaving the properties (1), (2) and (3) in (5.1). For a $\iota\ell\in C^{2}(\Omega)\cap$

$C^{0}(\overline{Q})$ let $S(u)$ be a hypersurface in $\overline{M}$ defined by (5.2) and let $\Phi:\overline{D}\rightarrow\tilde{M}$ be a con-
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tinuous map satisfying the conditions (1) and (2) in (5.3). Suppose that $S(u)$ is a
minimal hypersurface in $\tilde{M}$ and that $\Phi(\overline{D})\subset\Omega\times R$ . Then $\Phi_{1D}:D\rightarrow\tilde{M}$ is imbedding

of class $C^{2}$ and $\Phi(D)=S(u)$ .

Proof. By the condition (3) in (5.1) we see that the mean curvature (with

respect to the inward unit normal vector) of the boundary $\partial\Omega\times R$ of $\Omega\times R$ is non-
negative everywhere. Suppose that there exists a point $x$ of $D$ such that $\Phi(x)\in$

$\partial\Omega\times R$ . Since $\Phi(D)$ is a minimal hypersurface in $\tilde{M}$ such that $\Phi(D)\subset\overline{\Omega}\times R$ , by
virtue of Theorem 3.1 we see that $\Phi(D)$ must be contained in $\partial\Omega\times R$ . This con-
tradicts Lemma 5.1. Thus we have proved $\Phi(D)\subset\Omega\times R$ . Next we shall prove
$\Phi(D)=S(u)$ . Suppose for contradiction that $\Phi(D)$ is not contained in $S(u)$ . We
consider a continuous function $h$ on $\overline{D}$ defined by $h(x)=|\pi_{R}(\Phi(x))-u(\pi_{M}(\Phi(x)))|$ ,
$x\in\overline{D}$ . By the condition (2) in (5.3) $h=0$ on $\partial D$ . Therefore $h$ must take its
maximum value in $D$ . Let $x^{f}$ be a point of $D$ where $h$ takes its maximum value.
Put $c=h(x^{\prime})(c>0)$ and $m^{f}=\pi_{M}(\Phi(x^{f}))$ . We now assume $\pi_{R}(\Phi(x^{f}))=u(m^{f})+c$ . We
set $D^{f}=\{x\in D;\Phi(x)\in S(u+c)\}$ . Then $D^{\prime}$ is clearly closed in $D$ . Let $x_{0}$ be a point
of $D^{\prime}$ . We put $m_{0}=\pi_{M}(\Phi(x_{0}))$ and $m_{1}=(m_{0}, u(m_{0})+c)$ . Then $\Phi(D)$ is contained in
$S_{-}(u+c)$ which is defined by (4.20) and $\Phi(D)$ is tangent to $S(u+c)$ at $m_{1}$ . Since
$S(u+c)$ is minimal in $M$ and $\partial/\partial t$ (the natural vector field on $R$ ) is a Killing vector
field on $\tilde{M}$ which is transversal to $S(u+c)$ at each point of $S(u+c)$ , we can now
apply Theorem 4.1 to the present case. By virtue of Theorem 4.1 there exists
an open neighborhood $V$ of $x_{0}$ in $D$ such that $\Phi(V)\subset S(u+c)$ . Thus we have
proved that $D^{f}$ is open in $D$ . By the connectedness of $D$ we obtain $\Phi(D)\subset S(u+c)$ .
Since $\Phi$ is continuous, $\Phi(\partial D)\subset\overline{S(u+c)}$ . This contradicts $\Phi(\partial D)=\partial S(u)$ because
$ S\overline{(u}+c)\cap\partial S(u)=\emptyset$ . In the case of $\pi_{R}(\Phi(x^{\prime}))=u(m^{f})-c$ we can deduce a contradic-
tion by a similar argument as above. Hence $\Phi(D)=S(u)$ . Since by the condition
(1) in (5.3) $\Phi$ is locally homeomorphic, we see that $\Phi$ is 1: 1. Thus we complete
the proof.

Using Theorems 4.1, 4.2 and a similiar method as in the proof of Theorem
5.1 we have the following.

Theorem 5.2. Let $M$ be an n-dimensional homogeneous Riemannian manifold.
Let $\Omega$ be a compact domain with smooth boundary $\partial\Omega$ in $M$ having the properties
(1), (2) and (3) in (5.1). For a $u\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ let $S(u)$ be a hypersurface in $\tilde{M}$

defined by (5.2) and let $\Phi:\overline{D}\rightarrow\tilde{M}$ be a continuous map satisfying the conditions
(1) and (2) in (5.3). Suppose that $S(u)$ is a minimal hypersurface in $\tilde{M}$ and that
$\Phi(\overline{D})\subset\overline{\Omega}\times R$ . Then $\Phi_{1D}:D\rightarrow\tilde{M}$ is imbedding of class $C^{2}$ and $\Phi(D)=S(u)$ .
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Let $M$ be an n-dimensional simply connected, complete Riemannian manifold

whose sectional curvature is non-positive everywhere. We shall denote by $\rho$ the

distance function of $M$. We set

$B_{r}(m)=\{m^{\prime}\in M;\rho(m, m^{f})\leqq r\}$ , $\partial B_{r}(m)=\{m^{\prime}\in M;\rho(m, m^{\prime})=r\}$

where $r$ is positive. We now consider a compact domain $\Omega$ with smooth boundary

$\partial\Omega$ in $M$ having the following properties:

(1) $\Omega$ has the properties (1), (2) in (5.1).
(54)

(2) For each point $m$ of $\partial\Omega$ there exists a closed metric ball $B_{r}(m^{\prime})$ such

that $-(\overline{2}\subset B_{r}(m^{\prime})$ and $m\in\partial B_{r}(m^{f})$ .

We note that by the condition (2) in (5.4) the mean curvature ?’ of $\partial\Omega$ is positive

everywhere.

Theorem 5.3. Let $M$ be an n-dimensional simply connected, complete Rieman-

nian manifold whose sectional curvature is non-positive everywhere. Let $\Omega$ be a

compact domain with smooth boundary $\partial\Omega$ in $M$ having the properties (1) and (2)

in (5.4). For a $u\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ let $S(u)$ be a hypersurface in $\tilde{M}$ defined by (5.2)

and let $\Phi:\overline{D}\rightarrow\tilde{M}$ be a continuous map satisfying the conditions (1), (2) in (5.3).

Suppose that $S(u)$ is a minimal hypersurface in M. Then $\Phi_{1I)}:D\rightarrow\tilde{M}$ is imbedding

of class $C^{2}$ and $\Phi(D)=S(u)$ .

Proof. Suppose that there is a point $x$ of $D$ such that $\Phi(x)\in\overline{M}-\overline{\Omega}\times R$ . Then

there exists a point $x_{0}\in D$ such that $\rho_{0}:=\rho(\pi_{M}(\Phi(x_{0})),\overline{\Omega})\geqq\rho(\pi_{M}(\Phi(x)),\overline{\Omega}),$
$x\in\overline{D}$ . Of

course $\rho_{0}>0$ . Let $m_{1}$ be a point of $\partial\Omega$ such that $\rho_{0}=(\pi_{M}(\Phi(x_{0})), m_{1})$ . By the

assumption we can take a closed metric ball $B_{r}(m^{\prime})$ which has the properties:
$\overline{\Omega}\subset B_{r}(m^{\prime})$ and $m_{1}\in\partial B_{r}(m^{f})$ . It is easy to see that $\Phi(D)\subset B_{r_{1}}(m^{\prime})\times R$ and $\Phi(x_{0})\in$

$\partial B_{r_{1}}(m^{\prime})\times R$ where $r_{1}=\rho(m^{\prime}, \pi_{M}(\Phi(x_{0})))=r+\rho_{0}$ . But this contradicts Theorem 3.2

because the mean curvature (with respect to the inward unit normal vector) of
$\partial B_{r_{1}}(m^{\prime})\times R$ is positive everywhere. Thus we have proved $\Phi(\overline{D})\subset\Omega\times R$ . Since

by the condition (2) in (5.4) the mean curvature of $\partial\Omega\times R$ is positive everywhere,

from Theorem 3.2 we see $\Phi(D)\subset\Omega\times R$ . Then, using the same argument as in

the proof of Theorem 5.1, we can complete the proof.

\S 6. Remarks on the existence of minimal hypersurfaces with a given

boundary.

In this section we shall use the notations in \S 5. Let $\Omega$ be a domain with

boundary $\partial\Omega$ of class $C^{2}$ in the n-dimensional Euclidean unit sphere $S^{n}$ having the
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following properties:

(1) $\Omega$ has the properties (1) and (2) in (5.1) and $\overline{\Omega}\subset S_{+}^{n}:$ $=\{x\in S^{n};x_{n+1}\geqq 0\}$ .(6.1)
(2) For each point $m$ of $\partial\Omega$ there exists a closed metric ball $B_{\pi/2}(m^{f})$ of

radius $\sim/2$ centred at $m^{\prime}\in S^{n}$ such that $\overline{\Omega}\subset B_{\tau/2}(m^{\prime})$ and $m\in\partial B_{\pi/2}(m^{\prime})$ .
Now we consider the stereographic projection $\Psi:S^{n}-\{m_{0}\}\rightarrow T_{m_{1}}S^{n}$ from the south
pole $m_{0}$ onto the tangent space of $S^{n}$ at the north pole $m_{1}$ . We identify $T_{m_{1}}S^{n}$

with $R^{n}$ and we put $\Psi(-(-))=\tilde{Q}$ . Then the line element of $S^{r\iota}-\{m_{0}\}$ is given by

(6.2) $ds^{2}=a^{2}dx^{2}$ , $a=4/(4\dashv-\Vert x\Vert^{2})$ $(x\in R^{n})$ .
Let $\xi$ (resp. $\tilde{\xi}$ ) be the inward unit normal vector field of $\partial\Omega$ in $S^{n}$ (resp. $\partial\tilde{\Omega}$ in $R^{n}$)
and let $\swarrow^{\cap}f$ (resp. $c\swarrow$ )

$\sim$

be the mean curvature of $\partial\Omega$ in $S^{n}$ (resp. $\partial\tilde{\Omega}$ in $R^{n}$) with
respect to $\xi$ (resp. $\sigma’$ )

$\sim$

. Since $\xi=a\tilde{\xi}$ , we have

(6.3) ’/’ $(\Psi^{-1}(y))=\tilde{\ovalbox{\tt\small REJECT}}(y)/a+21(_{\sigma}^{\prime}y)\sim\cdot$ , $ y\in\partial^{()}\sim$

where the dot denotes the inner product in $R^{n}$ . We note that by the condition
(2) in (6.1) $\swarrow^{o}\nearrow\geqq 0$ on $\partial^{()}-$ . Therefore we have

(6.4) $\nearrow\swarrow(y)\geqq-\sim 2a\sim(_{\sigma}^{P}\cdot y)$ , $ y\in\partial\Omega$ .

For a $u\in C^{2}(\Omega)$ let us consider a hypersurface $S(u)$ in $S^{n}\times R$ defined by (5.2).
We suppose that $S(u)$ is minimal in $S^{n}/R$ . Then we see that $v=\iota\iota\circ\Psi^{-1}$ is a
solution of the following equation on $()$

\sim

(6.5) $\Sigma\{(a^{2}+\Vert Dv\Vert^{2})\delta_{ij}-v_{i}v_{j}\}v_{ij}$

$=-a2\Sigma\{(a^{2}+\Vert Dv\Vert^{2})\delta_{ij}-v_{i}v_{j}\}(x_{i}v_{j}+x_{j}v_{i}-\delta_{ij}Dv\cdot x)$ .

We can easily check the solvability conditions in Theorem 14.3 of J. Serrin’s
paper [8]. Therefore, by J. Serrin’s theorem (Theorem 14.3 in [8]), for a given

$f\in C^{2}(\partial\tilde{\Omega})$ there exists exactly one $v\in C^{2}(\overline{\tilde{\Omega}})$ such that $v$ is a solution of (6.5) in $\tilde{\Omega}$

and $v=f$ on $\partial\tilde{\Omega}$ (We note that in the case where quasilinear partial differential
equations of second order whose coefficients are independent of unknown function
the uniqueness of solution with same boundary value is well-known). Then we
have the following.

Theorem 6.1. Let.$Q$ be a domain with boundary $\partial\Omega$ of class $C^{2}$ in the n-
dimensional Euclidean unit sphere $S^{n}$ having the properties (1) and (2) in (6.1).
For a given $h\in C^{2}(\partial\Omega)$ the following hold:
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(a) There exists exactly one $u\in C^{2}(\overline{\Omega})$ such that the hypersurface $S(u)$ in $S^{n}\times R$

defined by (5.2) is minimal and $\partial S(u)=\{(m, h(m))\in S^{n}\times R;m\in\partial\Omega\}$ .
(b) For this $u$ let $\Phi:\overline{D}\rightarrow S^{n}\times R$ is a continuous map satisfying the conditions

(1) and (2) in (5.3). If $\Phi(\overline{D})\subset S_{+}^{n}\times R$ , then $\Phi_{1D}:D\rightarrow S^{n}\times R$ is imbedding of class
$C^{2}$ and $\Phi(D)=S(u)$ .

Proof. (a) follows from J. Serrin’s theorem stated above. We shall give a

proof of (b). It is sufficient to show $\Phi(\overline{D})\subset\overline{\Omega}\times R$ (see Theorem 5.2). Suppose

for contradiction that for some point $x^{f}$ of $D\Phi(x^{\prime})\in S_{+}^{n}\times R-\overline{\Omega}\times R$ . Let $m$ be a

point of $\partial\Omega$ such that $\rho(\pi_{S^{n}}(\Phi(x^{\prime})), m)=\rho(\pi_{S^{n}}(\Phi(x^{f})),\overline{\Omega})$ . Then by the condition

(2) in (6.1) we can take a closed metric ball $B_{\pi/2}(m^{\prime})$ satisfying the condition:
($\overline{)}B_{\overline{/}2}(m^{\prime})$ and $m\in\partial B_{\pi/2}(m^{\prime})$ . Since $\pi_{S^{n}}(\Phi(\overline{D}))\subset S_{+}^{n}$ and $\overline{\Omega}\subset S_{+}^{n}\cap B_{\pi/2}(m^{\prime})$ , we see

that there exists a motion $\varphi$ in $S^{n}$ such that $\pi_{S^{n}}(\Phi(\overline{D}))\subset\varphi(S_{+}^{n})$ and for some $ x\in$

$D_{\llcorner},\sim_{S^{\tau\iota}}(\Phi(x))\in\varphi(\partial S_{+}^{n})$ where $\partial S_{+}^{n}=\{x\in S^{n};x_{n\vdash 1}=0\}$ . Hence $\Phi(\overline{D})\subset\varphi(S_{+}^{n})\times R$ and $\Phi(D)$

is tangent to the boundary $\varphi(\partial S_{+}^{n})\times R$ of $\varphi(S_{+}^{n})\times R$ . Then by Theorem 4.2 and

the continuity of $\Phi,$ $\Phi(\overline{D})\subset\varphi(\partial S_{+}^{n})\times R$ . Since by the hypothesis $\Phi(\partial D)=\partial S(u)\subset$

$\partial\Omega\times R$ , we see $\partial\Omega=\partial S_{+}^{n}=\varphi(\partial S_{+}^{m})$ . Thus we have $\Omega=S_{+}^{n}$ , so $\Phi(x^{f})\subset\overline{\Omega}\times R$ . This

is a contradiction.
By a similar argument as above, we can prove the following.

Theorem 6.2. Let $M$ be an n-dimensional simply connected, complete Rieman-

nian manifold with constant curvature $K$ where $K=0$ or $K<0$ . Let $\Omega$ be a com-
pact domain with boundary $\partial O$ of class $C^{2}$ in $M$ having the following properties:

(1) $\Omega$ has the properties (1) and (2) in (5.1).

(2) For each point $m$ of $\partial\Omega$ there exists a supporting hyperplane of $\partial\Omega$ in
$M$ passjng through $m$ . Then for a given $h\in C^{2}(\partial\Omega)$ the following hold:

(a) There exists exactly one $u\in C^{2}(\overline{\Omega})$ such that the hypersurface $S(u)$ in $M\times R$

defined by (5.2) is minimal and $\partial S(u)=\{(m, h(m))\in M\times R;m\in\partial\Omega\}$ .
(b) For this $u$ let $\Phi:\overline{D}\rightarrow M\times R$ is a continuous map satisfying the conditions

(1) a $7\iota d(2)$ in (5.3). Then $\Phi_{1’)}:D\rightarrow M\times R$ is imbedding of class $C^{2}$ and $\Phi(D)=S(u)$ .

Remark 1. In Theorem 6.2, in the case of $M=R^{n}$ the existence of non-
parametric minimal hypersurfaces with a given boundary was proved by H. Jenkins
and J. Serrin (see [8]) and in the case where $M$ is the hyperbolic space the

existence follows from J. Serrin’s theorem (see Theorem 14.3 in [8]) using a

similar argument as in the case of $M=S^{n}$ .

Remark 2. J. Serrin, R. Gulliver and J. Spruck extended Rad\’o’s theorem

stated in the introduction to surfaces of constant mean curvature in $R^{3}$ ([7], [3]).
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Our results obtained in \S 5 can be extended to hypersurfaces of constant mean
curvature under some conditions.

Lastly the author would like to express his thanks to Professor T. Otsuki
who gave him valuable suggestions for this paper.
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