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In this paper we give some results in connection with the mean curvature
vector H of monosystems (i.e. submanifolds of the euclidean space E™ which are
generated by a one-parameter family of linear spaces). Especially, if H=0 then
we find restrictions for the dimension m of the euclidean space. Finally, we con-

struct examples for each kind of minimal monosystem.

1. Introduction.

We shall assume throughout that all manifolds, maps, vector fields, etc.---
are differentiable of class C°. Consider a general submanifold M of the euclidean
space E™. Suppose that D is the standard Riemann connection of E™, while D
is the Riemann connection of M. Then, if X and Y are vector fields of M and
if V is the second fundamental form of M, we have by decomposing DxY in a

tangent and a normal component
(1.1) DyY=DxY+V(X,Y).

Suppose that & is a normal vector field on M. If we decompose the field Dx¢ in
a tangential component and a normal component, then we have the Weingarten
equation

(1.2) Dyi=—(A:X))+ D& .

Ag is at each point p of M a self adjoint linear map M,—M, and D' is a metric
connection in the normal bundle M*. If N is a subbundle of the normal bundle
M* (i.e. N is a normal subbundle of M) and if Exn has no component in the
complementary normal subbundle N + orthogonal to N for each unit normal field
» in N and each vector field X of M, then the subbundle N is said to be paral-
lel ([2])). Suppose that X and Y are M-vector fields, while ¢ is a normal vector
field, then, if the standard metric tensor of E™ is denoted by ¢, >,

(1.3) VX, Y), $H=(A:(X), Y .

If &, -, &n_aimy constitute an orthonormal base field of the normal bundle M +
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then we put
m—dim if

(1.4) VX, Y),ep=VX,Y) or VX VY)= z VX, V)5 .

The mean curvature vector H of M is given by

m—dim M trA i
H= fiog,

i=1  dim M

M is said to be minimal if H=0 at each point.

2. (n+1)-dimensional monosystems in E™.

Assume that the base curve 7(s) of the monosystem M is an orthogonal trajec-
tory of the n-dimensional generating spaces (z>1), which are spanned by the
orthonormal base vectors e(s), ---, e,(s), then M can locally be represented by

7(s)+ i}l Liei(s) LLeR, i=1,---,n.

Suppose that ey, ---,e,, ¢ is an orthonormal base field of M (i.e. ¢ is the unit
tangent vector of the orthogonal trajectories of the generating spaces). Then M
is said to be k-developable if

(2.1) rank|[e, ei, - - -, en, D.ey, - - - , D,e,]=2n—Fk at each point peM.

Remark that if 2>0, then M contains singular points (which we leave out of
consideration); in fact, if holds, then each generating space contains a k-
dimensional subspace S of singular points and the tangent spaces M, and M, at
two non-singular points p and g of the same generating space are parallel in E™
(i.e. M, is the parallel displacement in E™ of M, from p to ¢; in a classical way
we should say that M, coincides with M,) iff the (k+1)-dimensional spaces span-
ned by S and p and by S and g are the same ([5]). If #=—1 then the monosystem
M is called non-developable; if k=n—1, then M is said to be total developable.

Suppose that X= f} a‘e;+ae and Y= i be;+be are two M-vector fields. It is
=1 i=1

clear that, if V is the second fundamental form of M in E™, we have

(22) V(ei,ej)zo B i, ]:1, cee,n .
So we find
2.3) VX, V)= 3 (@b+ba)Vie, e)+abVie, e) .
=1
The normal subbundle of M™* spanned by the normal fields Ve, ¢;), i=1, ---, n is

denoted by F.
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Lemma 1. M is k-developable iff the normal subbundle F is (n—k—1)-
dimensional.

Proof. Suppose that we have [2.I)]. We know that, if D is the Riemann
connection of M, D.e;=D,e;+ Ve, e;), i=1, ---,n. But D,e; is a linear combination
of the fields ey, ---, e,, ¢ and so we may replace the fields D.e; by Vie, ¢;) in [2.1).
Now, the tangent space spanned by e, ey, -+, ¢, is at each point normal to F and
thus we find #+14dim F=2r—Fk or dim F=n—k—1, q.d.e.

As a corollary we have that M can only be k-developable if m—n—1=n—k—1
or m>2n—~k.

Lemma 2. Consider the orthonormal base field e, - - -, e, ¢ inn a neighbourhood
of a point p of M. The Riemannian curvature K, in the two-dimensional direction
o of M, spanned by the vectors (e;), and e, is given by

(2.4) K,=—<D.e, Dee>,, i=1, -+, 1.
Proof. Suppose that R is the curvature tensor of M, then
K,={e;, R(e;, e)e)y .
But from the Gauss equation, we see that
le;, R(e;, e)e>,=<Ves, €;), Vie, e)y,—<Viei, €), Viei, €))y
and we know that V(e;, e;)=0, i=1, ---, n. Moreover we have

<D¢ie, e.}'>:—<ey Dei€j>:0 ’ i’ ]—:1) e, R
and
{D.e,e>=-—e, D;yjep=0, i=1,---,m.

This means that D,.e is a normal vector field or
(2.5) D.e=Vie;,e),

and this completes the proof.

Suppose that &, -+ -, &u-n—1 is an orthonormal base field of the normal bundle
M*, then we have the following Weingarten equations

— n . m-—n-—1
D, é;= _Z.l arjei+bije+ Z_]l Cisé,
N . 2 .i m—n-1 .,,- [ — oo —_ _._.1 R
2.6) D, ;= E‘x anjei-+bnje+ El nisr 7= e
— n . m—n—1
D, &= z b5 ei+bj e+ z Cj &,
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Because of and we find
<V(681 ek)r $j>:<A$j(es): €k>:‘—dfj:() y S, kzly e, N and ]:]y "';m_n_"l .

Moreover, the linear maps A: ; are self adjoint and thus b%=b;; i=1, ---, n and
Jj=1, - m—n—1. So the matrix of Ag; has the form

0---0 by
oo by ST
blj"'bnj bj

and this means det Ag;=0 if n>2, from which we have:

Corollary 1. If n>2, then the Lipschitz-Killing curvature of M is zero at

each point in each normal direction.
Using again, we find
<V(€3y e)y E.’i>::<A5j(es)9 €>: _‘bsj y

and if the Riemannian curvature of M in the (variable) two-dimensional direction
spanned by e; and ¢ is denoted by Kle,, ¢), then together with gives

m—n—1
(2.7) Ke,, ==~ % ().
i=
Remark that K(e,, ¢;)=0, s, i=1, ---, 1 for each generating space is totally geodesic

in E™. Because of this, the Ricci curvature of M in the direction of e, is equal
to K(es, ¢) and thus, from we find immediately

Corollary 2. The scalar curvature r of M is given by

7 m—n—1

(2.8) r=-—25% 3 (b;)".
i=1  §=1
Because of we have
Ve, e), §p=CAse), e>=—b;, j=1,--,m—n—1
and from the definition of the mean curvature vector we find at once that

H:f.: V(e’ e) .

2.9
@9 n+1

Corollary 3. The monosystem M is minimal iff each orthogonal trajectory

of the generating spaces is an asymptotic line of M.

Theorem 1. If the (n-1)-dimensional k-developable monosystem M is minimal,

then M is necessarily a submanifold of an E*™ ",
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Proof. From [Lemma 1, we already know that the codimension of M is at
least n—k—1. We have two cases:

a. First, suppose that the normal subbundle F is zero-dimensional, then, be-
cause of [Cemma 1|, k=n—1, i.e. M is total developable. From [2.4) and [2.5) we
see that K(e;, e)=0, i=1, ---, n and this means that the scalar curvature r of M

is identically zero. A result of Takahashi says that in this case the minimal
monosystem must be totally geodesic, i.e. M is a part of a (n-+1)-dimensional
linear space, which was our claim in this case. (This follows also immediately
from [2.3), because now V(e e)=Vl(e,e;)=0,1=1,---,n and thus V(X, Y)=0 for
each two vector fields X and Y of M).

b. Next suppose that F # 0 and that &, ---, 51 iS an orthonormal normal
base field of M* such that &, ---, £,_;-1 constitute an orthonormal base field of
F. Consider the equations in this case. Since Ve, ¢), $;>=—0bs;, s=1, -+, n
j=1, .-, m—n—1, we have immediately

ber=0, s=1,---,n and r=n—*Fk, ---,m—n—1.
But H=0 and hence tr A;;=0, j=1,---,m—n—1, and so we get
(2.10) A, = =Ae, ,,=0.
Since V(e ¢)=0, we see, because of [2.3), that V(X, Y)e F for each two vector
fields X and Y of M. But F is spanned by &, ---, &, and thus, if we de-

compose V(X, Y) such as in (1.4), we find
(2.11) ank(X, Y):: . :V1nfn~1(X’ Y):O

for each two vector fields X and Y of M.
If R is the curvature tensor of E™ and if Z is an other vector field of M, then
the Codazzi equation says

m—mn—1

(2.12) (RX, V)2 = % {(DxV)NY, Z)—=(Dy V)X, Z)}%;

=1

m—"n-—

1 . m—n—I1 .
+ "y VY, Z)Dy&s— L VX, Z)Dvé;=0.
7=1 j=1
Suppose that

n—k—1 m—n—1
(2.13) Détfz: ’Z Chi+ 2 1 nE., =1, ---,m, I=1,--- n—k—1.
h=1 r=n—k
From and [2.12] we find
. n—lk—1 n—l~1
(2.14) (Rlei, )™= % 13+ 2 Ve, edDidy

n—k—1 ! L N
— 3 Ve, e)D;&=0, i,s=1,---,n
l=1
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But V{e;, e¢,)=0, i,s=1, ---, n and thus together with (2.13) gives
n—k—1
» ChVie, e)=0, i,s=1,---,n and r=n—~k, - -, m—n—1.
=1
Now, fix in this expression i and 7 and let s be variable, then we find a system
of 7 homogeneous linear equations with 7—#£—1 unknowns Ci (=1, -, n—k—1).
The matrix of this system is

[Vl(e’ es)] ’ l:l’ ---’71-—k—«1; S:l’ RN 7]

b

and its rank is at each point of M equal to #—%—1 becauseM is k-developable.
So, all the unknowns of this system must be zero and we find

(2.15) Ci=0 i=1,---,m; I=1, -+, n—k—1; r=n—Fk, -, m—n—1.

Next we have

n—k—1 n—lk—1

(2.16) (Re,ee) = 5 (- )5+ z Ve, e)Diz,

1=1
n—k—1

- X Vie,e)Dpti=0, i=1, -+, 1.
=1
But V(e, ¢)=0, and if we put

n—lk—1 m—n—1

Di&= % Cléa+ n Cls, =1, n—k-1,
h=1 r=mn—=kLk
we find from [2.16)

n—k—1

S CiVie, e)=0, i=1,---,n; r=n—k, -+, m—n—1.
=1

And here again this means analogously that

(2.17) Ci=0, I=1,---,n—k—1; r=n—k, ---, m—n—1.

Now, together with says that for each unit normal field  in F and
for each vector field X of M, Dy7n has no component in the complementary sub-
bundle F*; i.e. the normal subbundle F is parallel. If we identify all the tangent
spaces of E™ with E™ itself, then, since F is parallel and because of 2.10), we
see that the (2n—k)-dimensional subspaces of E™ spanned at each point of M by
the tangent space and the normal space F, are independent of the choice of the
point p of M. This completes the proof.

Corollary 4. In the euclidean space E™ there are at most (m—1)/2 (resp.
(m—2)/2) different types (i.e. generated by linear spaces of different dimension) of
minimal not-totally geodesic monosystems which do not lie in any E' with l<m if
m is odd (resp. even). Non-developable minimal monosystems of dimension n-+1
can only exist in E™'".
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Proof. If the (12+1)-dimensional minimal monosystem is k-developable, then
says that we must have 2zn—k=m. So the minimal value of k is —1
(resp. 0) if m is odd (resp. even), and thus the minimal value of n is (m—1)/2
(resp. m/2). It is clear that the maximal value of 7 is m—2 (and then k=m—4).
If m is odd (resp. even), we have at most m—2—(m—1)/2+1 (resp. m—2—mf2+1)
possibilities and this completes the proof.

Theorem 2. If the mean curvature vector H+0 of the (n-+1)-dimensional k-
developable monosystem M is at each point of M a vector of the normal subbundle

2n—1lk

F, then M is necessarily a submanifold of an E

Proof. If McE™, we know that since M is k-developable, m>2n—k. More-

over, if we choose the orthonormal field &, ---, $n-n-1 Such as in the proof of
Theorem 1, then, because (n+1)H="V(e,¢) € F, we find again

VX, Y )= =V, Y)=0,

for each two vector fields X and Y of M.

Next, if we have the expression (2.13), then we find in the same way
as before.

Since the vector fields De',LLEl, i=1,.--,m; I=1, ---, n—k—1 have no component
in the complementary subbundle F*, we find, because of [2.16), again and
this completes the proof.

Remarks 1. If the normal subbundle F+4-H spanned by F' and H of the (-
1)-dimensional k-developable monosystem M is parallel in the normal bundle, then
M is contained in an euclidean space of dimension 2n—k+1. This is a corollary
of the facts that F-+H is at most (z—#k)-dimensional and that F-+H is also the
subbundle spanned by V(X, Y) for each two vector fields X and Y of M.

2. In the following theorem is proved: let M be an (n+1)-dimensional
submanifold of E™ and N be an (m—n—2)-dimensional normal subbundle of M .
If N is non-parallel and if M is umbilical with respect to NN, then M is a locus
of m-spheres, where an n-sphere means a hypersphere or a hyperplane of an
euclidean (n-1)-space.

If M is in such case a locus of hyperplanes, then there are restrictions:
suppose that &, -+, &1 is an orthonormal base field of M* such that N is
spanned by &, :-+,&n_n-s. If M is umbilical with respect to N (i.e. A, is pro-
portional to the unity transformation for each vector field 5 in N), then we get at
once (see the form of the matrix of A¢; in the equation A =---=A; =0

m-n—2"



164 C. THAS

and so H//N*. Consider the normal subbundle F. For each vector field & in F,
we have A:#0 and because of this, it is necessary that F| N or F=N"*. But if
F+0, we now find He F and the Theorems 1 and 2 say that M is a hypersurface
in some E""* which means that N* (and thus V) is parallel. So the only possi-
bilities are: M is totally geodesic (H=F=0) or M is totally developable (F=0)
and H+#0 in E™ with m>n-+2.

3. Construction of minimal monosystems.

Suppose that z, ---, 2™ is the standard coordinate system of the euclidean
space E™. Consider the euclidean space E? as the subspace of E™ determined by
a?'=...=g™=0. Assume that M is an r-dimensional submanifold of E”?, which

is locally given by the parametric representation
=1y, - Su), 1=1,---.p.
Construct the following (#— p-+#)-dimensional submanifold M’ of E™
g, ), Q=1 @il j=pal, e m LeR .
Lemma 3. If M is minimal in E®, then M’ is minimal in E™.

Proof. Suppose that e, ---, ¢, is an orthonormal base field of M and that V
is the second fundamental tensor of M’ in E™. The normal vector field

HOM; MY, E™)= " £ Vies, e
=1
is called the relative mean curvature vector of M with respect to M and E™([1]).
If H (resp. H) is the mean curvature vector of M in E” (resp. in M’'), then we
have

H=H+HM:M' E™) .

If M is minimal in E” (and thus in E™), then H=0 and so H=0 and HWM; M,
E™)=0 at each point of M. Complete the orthonormal base field e, ---, ¢, of M
to an orthonormal base field ¢, ---, ¢,, ¢, ., - - -, em—pir of M’ (at the points of M),
The mean curvature vector H' of M’ in E™ is given by (at the points of M)
’ 1 r m—p+r __
H = (X Vies, e)+ 3 Ve, ey) .
m—p-+ri=1 J=r+1
Suppose that 3/0x", - - -, 3/dz™ is the standard coordinate base field of E™. Because
of the construction of M’, it is clear that we may put (at the points of M) ¢;=
0/0x" ", J=r+1, -+, m—p+r and it is trivial that each of these fields determine
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at each point of M an asymptotic direction of M’. So if M is minimal in E?,
then we have H'=0 at each point of M.

Next, consider any point q(u3, - -, 4y, I%1, - -+, Iwm) of M'. The submanifold
M of the euclidean space #’=13, j=p-+1, ---, m, represented by

xi:fi(ul ""!MT) ’ l:-l, "'yp; xj: g’ ]:p+1) TR/

is minimal, since M is minimal. But at the point g, the vectors (3/dx” "), j=
r+1, .-, m—p-+r are again an orthonormal base field of the normal space M}
in M, and they determine asymptotic directions of M’ at q. From all this, we
see that H,=0 at each point ¢ of M’ and this completes the proof.

We now construct minimal monosystems. If the (z-+1)-dimensional minimal

2n--k 2n—k

monosystem M is k-developable, then we know that MCE So, consider E

with its standard coordinate system z', ---, " ".

a. 2n—k=3. Then n=1 and k=—1, i.e. M is non-developable and in this
case we know that the helicoid is the only minimal non-developable ruled surface
in E°.

b. 2n—k=4. Then says that we have only one (non-trivial) pos-
sibility: @ minimal monosystem generated by planes. Because of Lemma 3, we
have the following example (using the helicoid as minimal submanifold of E?):

w'=lLcoss, «'=Lsins, z'=as, ‘=L, a=constant+0, L,,eR.

This manifold is C” and 0-developable (the only (common) singular point in each
generating plane is infinite). Moreover each orthogonal trajectory of the generating
planes is a circular helix (in some E®) or a straight line.

c. 2n—k=>5. Then there are two possibilities: minimal monosystems gener-
ated by planes (#=2,k=-—1) or by three-dimensional spaces (=3, k=1). The
first are non-developable (see later). Using [Lemma 3, we find the following example
for the second kind:

1 2 . 3 4 5
x'=1Il coss, x =Isins, z*=as, x'=1, =l, L, 0L, LeR.

This manifold is C™ and 1-developable (the common line of singular points in each
three-dimensional generating space is infinite). Here again (such as in all the
following examples) the orthogonal trajectories are circular helices or straight lines.
Next, consider the general case of non-developable minimal monosystems in E**™.
Put

' '=l;5cos s, x'=Il;sins, " l=qgs, lijeR, 1=2,4,6,---,2n.

It is at once clear that this is a C” monosystem M which is non-developable:
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call it a generalized helicoid. Put /;=---=/,=0, then we find the straight line
#°=0, j=1, ---,2n, ™" =as and this line is clearly an orthogonal trajectory of the
generating spaces and a geodesic line of M, so it is also the line of striction of
M ([B). The orthogonal trajectory through the point p(f}, -- -, I3, s,) is given by

i—1 0 3 0 . . .
o' '=0coss, x'=lpsins, o"''=as, i=2,4,---,2n.

It is not difficult to see that this curve is a circular helix in some E® and this
fact gives immediately that all the orthogonal trajectories are asymptotic curves
of M, which means that M is minimal.

d. 2n—k=6. There are two possibilities: #2=4 and 2=2 or #=3 and k£=0.
For the first kind, we use a helicoid in E®:

1 2 .
x'=1,coss, x’=I[lsins, z'=as, =1,
x5:l3 B x6:l4 y liER B Z':l, "',4-.

For the second type, we take a generalized helicoid in E° and use again Lemma 3:

w'=lcoss, a'=lLsins, x’=lLcoss, a'=lsins,
*=as, =L, LeR, i=123.

e. We are now able to give a general example, valid for all kinds of minimal
monosystems in E* "
wi_l:‘ /2 COS S , wi:li/ZSins ’ Z:2! 47 6) "',Z(ﬂ"‘k—l)
a’" ¥ '=ags, a=constant#0, se R
xz(n—-k) H‘:ln—k&‘j , ]:0, 1, cecy, k, lr GR, 7’:1, R/

We find here all the possible cases: e.g. suppose that 2r—%k=23, then we have
only to put the following values in the general example: (=11, k=—1), (#=12;
k=1), m=13; k=3), (n=14; k=5), n=15; k=7), n=16; k=9), n=17; k=11), (n=
18; k=13), n=19; k=15), (#=20; k=17), (n=21; k=19) (remark that even the case
(n=22; k=21) is contained in this general example: we obtain a totally geodesic
manifold).
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