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1. Introduction.

A state of an electrical circuit with $b$ elements is specified by a current vector
$i=(i_{1}, \cdots, i_{b})\in\lfloor_{\nwarrow}^{\urcorner}b$ and a voltage vector $v=(v_{1}, \cdots, v_{b})\in[_{\searrow}^{\eta^{b}}$ . Let $G$ be the oriented
graph of the circuit, and we can regard naturally $v$ and $i$ as a real l-chain and

l-cochain of $G$ , i.e., $i\in C_{1}(G),$ $v\in C^{1}(G)$ . Kirchhoff laws restricts the possible

states to a b-dimensional subspace $K=Ker\partial\rangle_{\backslash }{\rm Im}\partial^{*}\subset C_{1}(G)\times C^{1}(G)$ , where $\partial:C_{1}(G)\rightarrow$

$C_{0}(G)(\partial^{*}: C^{0}(G)\rightarrow C^{1}(G))$ is the boundary (coboundary) operator. The characteristics
of resistors (possibly with couplings) of the circuit give the restraint that $(i_{R}, v_{R})$

to be in an $n_{R}$-dimensional submanifold $\angle 1_{R}\subset C_{1}(G_{R})\times C^{1}(G_{R})$ , where $(i_{R}, v_{R})$ denotes
the currents and voltages of resistive elements, $n_{R}$ the number of resistive elements

in the circuit, $G_{R}$ the subgraph of $G$ consisting of all resistive elements.
Combining Kirchhoff laws and the restraint of the characteristics of resistors,

we have a space $\sim^{7}\backslash =K\cap\Lambda\subset C_{1}(G)\times C^{1}(G)$ , where $-1=\{(i, v)=(i_{t}, v_{R}, i_{L}, v_{L}, i_{C}, v_{C})$ ;

$(i_{R}, v_{R})\in A_{R}\}$ , on which the dynamics of the circuit takes place. Now, we assume
the transversality of $K$ and hence $\Sigma$ is $(b-n_{R})$ -dimensional submanifold of $C_{1}(G)^{\backslash },<$

$C^{1}(G)$ .
The dynamics is described by the following form ([6], [4]). Let

$J=\Sigma C_{mn}(v_{C})dv_{C_{m}}\otimes dv_{C_{n}}-\Sigma L_{mn}(i_{L})di_{L_{m}}\otimes di_{L_{n}}$

be a 2-tensor on $C_{1}(G)\times C^{1}(G)$ , where $C_{mn}(v_{C})(L_{mn}(i_{L}))$ is incremental capacitance

(inductance) matrix and is assumed symmetric and positive definite ([4]).

The vector field $X$ on $\Sigma$ which describes the dynamics satisfies the following:

$(\pi^{*}J)_{(i,v)}(X_{ti,v1}, \xi)=(t^{*}x)_{(i,v)}(\xi)$ , for $\xi\in T_{(i,r)}(-\backslash \urcorner)$ ,

where $\eta$ is a certain l-form and $\overline{\iota}$ is the projection to the components of inductor

currents and capacitor voltages,
$\pi^{\prime}$ : $C_{1}(G)\times C^{1}(G)-\succ C_{1}(G_{L})<C^{1}(G_{C})$ ,

with its domain restricted to $\Sigma$ , and

.’: $-\backslash ^{7}\rightarrow C_{1}(G)^{\backslash \prime}C^{1}(G)$
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is the natural inclusion.
If $\pi:\Sigma\rightarrow C_{1}(G_{L})\times C^{1}(G_{C})$ is regular at $(i, v)$ , i.e., the differential of $\pi$ at $(i, v)$ ,

$D\pi(i, v)$ has full rank $(b-n_{lt})$ , then $X_{(i,v)}$ is uniquely determined by the above
equation, for $J$ is non-degenerate bi-linear from at every point. A point $(i, v)\in\Sigma$

is called singular point iff $\llcorner\leftrightarrow$ is not regular at $(i, v)\in\Sigma$ . Since $\pi^{*}J$ is degenerate
at the singular point $(i, v)\in\underline{\backslash },$ $X$ is not determined at $(i, v)$ . In fact, there is a
case in which we cannot define $X_{(i,v)}$ at some singular points consistently with
other regular points governed by the above equation. In most cases, however,
we can remove singular points by adding arbitrarily small capacitors and inductors
appropriately to the original circuits. This procedure is called “regularization”
and justified by the fact that it corresponds ‘ ‘ to take account ofparasitive elements”
in circuit theory ([6], [1]). But at least theoretically there is a circuit which is
not regularizable, and even in regularizable cases the regularized circuit have more
reactive elements than the original one ([3]). The purpose of this paper is to
point out that singular points are derived from conflictions of Kirchhoff laws
and the restraints of resistive characteristics, therefore in general at singular
points the solution jumps to another branch of the characteristic submanifold.
This process is just a kind of “catastrophe”. Of course, this phenomenon is
already known by circuit theorists, for example, as “relaxed oscillation” or ‘ dis-
continuous oscillation” ([1]).

2. Statement of results.

A tree $T$ is called Proper iff $T$ contains all the capacitance branches and
contains no inductance branch. The complements of $T$ in $G$ is called the link of
$T$ and is denoted by $L$ . If the graph of the circuit has no proper tree, the map
$\pi:\Sigma\rightarrow C_{1}(G_{L})\times C^{1}(G_{C})$ is singular at any point $(i, v)\in\Sigma$ , for the projection $\pi^{\prime}|K:K\rightarrow$

$C_{1}(G_{L})\times C^{1}(G_{C})$ is already singular. This situation is called “forced degeneracy”
([6], [4]). Excluding the forced degeneracy, we assume the existence of proper tree.

Let $B$ and $Q$ are the fundamental loop matrix and the fundamental cutset
matrix with respect to a proper tree. (For definition of $B$ and $Q$ , see [5], [2].)

And Kirchhoff space $K$ is the image of the following into-isomorphism:

$\left\{\begin{array}{ll}B^{t}, & 0\\0, & Q^{t}\end{array}\right\}:C_{1}(L)\times C^{1}(T)\rightarrow C_{1}(G)\times C^{1}(G)$ ,

where $L$ is the link of $T$ in $G$ . Let $K(i_{L}, v_{C})$ be the affine subspace of $K$ deter-
mined by fixing the currents of inductors and the voltages of capacitors, this is
possible because vector $(i_{L}, v_{C})$ is subvector of $(i_{L}, v_{T})\in C_{1}(L)\times C^{1}(T)$ . Clearly the
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space $K(i_{L}, v_{C})$ is the parallel translation in $K$ of $K(O, 0)$ to the point

$b(i_{L}, v_{C})=(i, v)=\left\{\begin{array}{ll}B^{t}, & 0\\0, & Q^{t}\end{array}\right\}$

’

here we assume the numbering of the elements is appropriately arranged.

Let
$\pi_{R}^{\prime}$ : $C_{1}(G)_{/}^{\backslash \prime}C^{1}(G)\rightarrow C_{1}(G_{R})\chi C^{1}(G_{R})$

be the natural projection to the currents and voltages of resistors, and $\pi_{R}^{\prime}(K(i_{L}, v_{C}))=$

$K_{0}+(i_{R}, v_{R})$ where $K_{0}=K(0,0)\subset C_{1}(G_{R})\times C^{1}(G_{R})$ and $(i_{R}, v_{It})^{\prime}=1-\vee J8(b(i_{L}, v_{C}))$ .
Now we can state our result.

Theorem. Let $C$ be a circuit whose graph has a ProPer tree. Suppose $\Lambda$ and
$\Sigma$ are transversal. Then, a point $(i, v)=(i_{L}, i_{C}, i_{R}, v_{L}, v_{C}, v_{R})$ is singular Point if
and only if the characteristic submaizifold $\Lambda_{R}$ and the affine subspace $K_{0}(i_{R}, v_{R})$ are
not transverse at $(i_{R}, v_{R})$ in $C_{1}(G_{R})\times C^{1}(G_{R})$ .

3. Proof of Theorem.

Let $i(L),$ $v(T),$ $i(R(L)),$ $v(R(T))$ denote the currents of link branches, voltages

of tree branches, currents of link resistors, and voltages of tree resistors, respec-

tively. For $(i_{L},v_{C})\in C_{1}(G_{L})\times C^{1}(G_{C}),$ $wedefinethemapk_{(i_{L},v_{C})}$ : $ C_{1}(G_{R(LI})\times C^{1}(G_{R(T)})\rightarrow$

$K(i_{L}, v_{C})$ by the following:

$k_{1i_{L}.r_{C)}}(i_{R(L)}, v_{R(T)})=\left\{\begin{array}{ll}B^{t}, & 0\\0, & Q^{t}\end{array}\right\}$

.

Then $k_{|i_{L\cdot C)}}$, is an isomorphism with its inverse:

$\pi_{JitL),R(T)}^{\prime}\circ(\pi_{/}^{\prime}, |K(i_{L}, v_{C})):K(i_{L}, v_{C})\rightarrow C_{1}(G_{R(L)})\times C^{1}(G_{RtTI})$ ,

for $\vee HtL$ ), $RtT$ )$\sim’\circ k_{t}L^{\gamma}C$ ) $=id_{C_{1}(G_{R(L)})\times C^{1}(G_{R(T)})}$ and dim $ K(i_{L}, v_{C})=n_{R}=\dim C_{1}(G_{I_{\iota}^{J}tLI})\times$

$C^{1}(G_{RtT1})$ .
And hence, the projection $\pi_{t}^{\prime}$ with its domain and range restricted as follows:

$\pi_{t}^{\prime}|K(i_{L}, v_{C}):K(i_{L}, v_{C})\rightarrow\pi_{t}^{\prime}(K(i_{L}, v_{c}\cdot))=K_{0}+(i_{R}, v_{R})$

is also an isomorphism with inverse:

$k_{tt_{L^{\gamma}C)^{O_{d}}}},\tau_{R(L),RtT)}^{\prime}$ : $K_{0}+(i_{R}, v_{R})\rightarrow K(i_{L}, v_{C})$ .
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Now, we prove the theorem. Suppose $ p=(i, v)\in\Sigma$ is a singular point, i.e.,
$D\pi(p):T_{p}(\Sigma)\rightarrow T_{\pi tp\}}(C_{1}(G_{L})\times C^{1}(G_{C}))$ is singular. Then Ker $(D\pi^{f}(p)\cap T_{p}(\Sigma))\neq\{0\}$ ,
by projecting this to the space $C_{1}(G_{R})\times C^{1}(G_{R})$ , we obtain:

$\pi_{R}^{f}(KerD\pi^{f}(p)\cap T_{p}(\Sigma))\neq 0$ .
Since

$T_{p}(\Sigma)=T_{p}(\Lambda)\cap K=(\pi_{J_{1}}^{\prime}\cdot)^{-1}(T_{R1p)}\overline{4\cdot}(\Lambda_{It}))\cap K$,

the above equation implies:

$\pi_{1t}^{\prime}(K\cap KerD\pi^{f}(p))\cap T\pi_{R(p)}(\Lambda_{R})\neq 0$ .
But,

$\pi_{R}^{\prime}$ ( $ K\cap$ Ker $D\tau_{\vee}^{\prime}(p)$ ) $=\pi_{R}^{\prime}(K\cap\pi^{\gamma-1}(i_{L}, v_{C}))=\pi_{1t}^{\prime}(K(i_{L}, v_{C}))=K_{0}+(i_{R}, v_{R})$ ,

this shows that $K_{0}+(i_{R}, v_{C})$ and $\Lambda_{R}$ are not transverse at $(i_{R}, v_{R})$ . This proves the
sufficiency of the theorem.

Conversely, if $K_{0}+(i_{R}, v_{R})$ and $\Lambda_{R}$ are not transverse at $(i_{R}, v_{R})$ with $p=$

$(i_{R}, i_{L}, i_{C}, v_{R}, v_{L}, v_{C})\in\Sigma$ , then

$\pi_{R}^{\prime}(K\cap KerD\pi^{f}(p))\cap T\pi_{lt(pI}(\Lambda_{R})\neq 0$ .
Since $\pi_{R}^{f}|K(i_{L}, v_{C})$ is isomorphism,

( $ K\cap$ Ker $D\pi^{f}(p)$ ) $\cap(\pi_{lt}^{\prime}|K(i_{L}, v_{C}))^{-1}(T\pi_{R(p)}(\Lambda_{R}))\neq 0$ ,

this means:
Ker $D\pi^{f}(p)\cap T_{p}(\Sigma)\neq\{0\}$ .

This proves the necessity of the theorem.

Remark. In terms of $B$ and $Q$ , the space $K_{0}\subset C_{1}(G_{R})\times C^{1}(G_{R})$ is given as
follows. Let us decompose the matrices $B$ and $Q$ into the following forms:

$R(L)$ $L$ $R(T)$ $C$

$B=\left\{\begin{array}{llll}1 & 0 & A_{RT} & A_{RC}\\0 & l & A_{LT} & A_{LC}\end{array}\right\}$

Then, it is easily seen that

$K_{0}=\pi_{R}^{\prime}(K(0,0))$

$R(L)$ $L$ $R(T)$ $C$

$Q=\left\{\begin{array}{llll}-A_{RT}^{t} & -A_{LT}^{t} & 1 & 0\\-A_{RC}^{t} & -A_{I.C}^{t} & 0 & 1\end{array}\right\}$

$=\{(i_{R}, v_{R})=(i_{R(LI}, i_{R(T)}, v_{R(L)}, v_{R(T1})|i_{R(TI}=A_{RT}^{t}i_{RtL)},$ $v_{R(L)}=-A_{RI’}v_{R(T)}$ ,
$(i_{RtT)}, v_{R(T\}})\in C_{1}(G_{R(L)})\times C^{1}(G_{R(T)})\}$ .

This means that the space $K_{0}$ is just Kirchhoff space of the resistive circuit
obtained from the given one by open-circuitting all inductance branches and short-
circuitting all capacitance branches.
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Examples 1. (Example 5 in [6].) Consider a circuit of Fig. 1 consisting of

one non-linear resistor with characteristic of Fig. 2, one capacitor and one inductor.

By Remark, $K_{0}$ is Kirchhoff space of Fig. 3, i.e., $K_{0}$ is just v-axis in Fig. 2.

Therefore at $p_{i}$ the solution must jump into $p_{i}^{f}$ .

2. (Example 6 in [6], A regularization of the above example.) To regularize

the above example, we add a parasitic element $C^{f}$ in parallel to $L$ as in Fig. 4.

$\ovalbox{\tt\small REJECT}$

Fig. 1. Fig. 2. Fig. 3.

$R$

Fig. 4. Fig. 5.

Fig. 6.



156 SHIGEO ICHIRAKU

Then, $K_{0}$ is Kirchhoff space of Fig. 5, i.e., $K_{0}$ is just i-axis. Therefore $K_{0}+(v_{R}, i_{R})$

is always transverse to $\Lambda_{R}$ , and hence the circuit of Fig. 4 has no singular point
at all.

Finally, we propose an engineering problem concerning the catastrophy theory.

Problem. Is it possible to make a device (coupled resistors) with its charac-
teristic “cusp type singularity”, as is shown in Fig. 6?

Certainly, Esaki diode has a characteristic of “fold type singularity“. The
‘

$cusP$ tyPe singularity” is the simplest singularity next to the ‘ fold type singula-
rity”. The cusp type device may be very usefull as was the case in Esaki diodes.

Addendum. Professor H. Kawakami informed the author that the coupled
resistors with “cusp tyPe’ characteristics $(y=-3bx+x^{3})$ could be constructed from

\langle )$perational$ ampliPers and nonlinear analog elements [7].
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