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1. Let {X,, k=1, 2, ---} be a sequence of independent random variables with
EX,=0, EXi=ol<co and with distribution Fy(x). Write Sn:kfg X,, 2=, ot
=1

Fo(x)=P(S,<s.x) and 4,(x)=|F,(x)—®(x)|, where ®(x) is the standard normali_ldis-
tribution. When {X,} is a sequence of independent, identically distributed (i.i.d.)
random variables, we put EXi=1 and write F(x)=F(w).

In this paper, two types of non-uniform convergence of J4,(x) will be con-

sidered; one is

(1.1) sup (14lz)*d.(x)—0 as n—co for some a>0,

and the other is

— 00

Sm (142’4, (x)de—0 as n—co for some 53>0.

In the last section, we shall also consider non-uniform estimates in asymptotic

expansions in the central limit theorem.

2. In this section, we first state some results concerned with the type (1.1).
In what follows, C denotes an absolute positive constant which may differ from
one expression to another.

The following theorem is given by Bikelis [3].

Theorem 1 ([3]). Put

R.(2)= S W’ dF(u)

lul>z
and

Qu(z)= \ S W’ dF,(1t) i )

If
o= sup (Qu(2)+2zR(2))<co,

0<z s, (1+]zD)

then
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dy(z)=-,

C
Sty

From this result, we easily derive an extended Berry-Esseen theorem which
includes itself as a special case.
Let us denote two classes of functions g(z) as follows:

G={g(z)|g(2) is even on the real line with ¢(2)=0, g(z) 1 as 0=z1 c and
z/g(z) is well-defined and non-decreasing on (0, o)},

Goy={g(2)|g(2) € G, and in addition, 2?/g(z) is non-decreasing on (0, co) for some
q with 0<g<1}.

Theorem 2. lLet g(z)eG. If

og)=  sup (g(j)Qk<z>+g<z)Rk(z))<oo,

0<z=s, (1+z])
then

C
i1+ la]) g(s.(1+|al)) ¥=

When g(2)=|z|, is no more than [Theorem 1.
Proof of [Theorem 2. Using that z/¢g(z) is non-decreasing, we have

Z 0i(g) .

d(v)=-

@)= (15[&:]) kZ1 0<z$ssu8+|x (Qu(2) +2Ru(2)
C n
s%(l—i—lxl) 121 0<z§S«:%<1+lxl) g(2)
C n
=,
= 20+ ) g(sad 4 o)) e L

(g( )Qk(z>+g(z>Rk(z))
(g(z>Qk<z>+g<z>Rk<z)) .
p4

Theorem 3. Let g(2)eG,. If

(@)= sup g(2)Ri(2)<co,

0<z <38, (14zD
then

C
hiw)= sa(l+z))’g(s.(1+ lxl)) '”(g)

Proof. We note that Qk(z)gssz(u)du. Since g¢(2) € Gy, 2%/g(z) is non-decreas-
0
ing for some g with 0<g<1, so that we see that, for 0<z=s,(1+4|z]),

9@ 0, (2 <9@ Ssz(u)du
z Z Jo
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=IOy Ratwd
z Jog(u) uf

—S—lk(g)g(z')" L Sz%‘du
z 9(2) Jou

1,
n—(l—Q) '{k(g) .

Therefore, follows from [Theorem 2.
In particular, if we put g(z)=|z/’ (0<d<1), we have a result given by Gafurov [4].
Furthermore, as to the i.i.d. case, we have the following theorem, which is
an extension of results due to Bikelis [2], and also extends partially a result
of Michel ([11], the case 0<c=1 in his theorem).

Theorem 4. Let {X)} be a sequence of i.i.d. random variables. Let g(2)€G.
Then

2.1 sup (1-+ )’ g(v (14 |2])) 4au(2)=0(1)
if and only if

(2.2) g(2)R(z)=0Q) , as z—co
and

g§?>Q<z>:0<1> . as zoo,

where R(z) and Q(z) are defined for F(u) similarly to Ri(z) and Qu(z) for Fi(u).
When g(2) € Go, (2.1) is equivalent to the single condition (2.2).

Proof. Sufficiency part follows from Theorems 2 and 3 as a special case.
Necessity part is shown as a direct consequence of the following theorem given
by Rosovskii [15]: Let {e.} be a sequence of positive numbers such that <, | 0 and
&=t /v 1, where **=min {r; _IZ-STZR(z)dzgi}. Then, sup 4,()=0(c,) if and
only if ¥,=0(s,), where S

U, =R(v )+ /1 Qv )+ 1 S WdFu) .
v n n lul<vn

This completes the proof.
Now, we state here the following result on the different type of convergence
given by Heyde [8].

Theorem 5 ([8]). Let (X} be a sequence of i.i.d. random variables, and let
0=0<1. In order that
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oo

7t sup (14 |2))* du(x) < oo,

n=1
it is necessary and sufficient that

EX| <o, if 0<é<1,
EXilog(1+|Xi)<eo, if 6=0.

At the end of this section, we mention that the possible value of the power
of (1+]z|) in is restricted by the moment condition or the condition on the tail
of the distribution. For simplicity, we consider the case of i.i.d. random variables.

Theorem 6. Under the condition that E|X,|"'"<co or S WdFu)=0(z"7) for

lul>z
some >0, a in (1.1) must be less than or equal to 7.

Proof. If the distribution F(x) satisfies that 1— F(x)+ F(—x)=0(z?), then
E|X,|*<co for any g<p. Suppose that E|X;["<co but E|X;|"=oco for all r>y. If
holds for some >y, then 1—F,(x)+F.(—z)=0(x"%) for m=n, n+1. There-
fore E|S,|'“"'"* <co for m=n, n+1, so that E|X,|'"“7""*<co, which is a contradic-
tion. This theorem is thus shown. Michel has also pointed out this fact.

We conclude from that we connot improve the non-uniformity of
sup (1+4|z])" 4.(x)—0 under E|X,|'<co, in the sense that the power of (1+|x|) can-
ngt be replaced by a higher one.

In the next section, however, we shall consider the possibility of the validity

of S(l—{—lxi)’“ldn(x)dx—»O, which is an improvement of the non-uniformity of

sup (1+|x])"4,.(x)—0 in some sense.

3. Bikelis [2] showed that, in i.i.d. case, if

3.1) S WHdFu) =07, 0<i<l,
lul>z

then

(3.2) sup (1+z))* °4,(2)=0@ ") .

In connection with this matter, the following result will be shown.

Theorem 7. Let (X} be a sequence of i.i.d. random variables, and let 0<d<1.
Under the condition (3.1),

(3.3) r A+1z) P A @) dr =0 """

Jor any ¢>0. But, in (3.3), we cannot put ¢=0.
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The first part of the theorem is trivially shown by [3.2). The latter half is
derived from the following theorem.

Theorem 8. If

(3.4) r A+lg)dp@)dz<co  for m=n, nt1,

then E\X, P <co.
Proof. From [3.4), we have

SO (14 )? F(@)dz < oo and r(u—lx\)ﬁ(l-ﬁm(x))dmoo,
— 00 0

from which E|S,.|? ' <o for m=n, n+1. Thus we conclude E|X;|?"! < co.
However, if we replace the condition in by E|X,*"°<co, then
(3.3) also holds for ¢=0. In fact, the author has proved the following.

Theorem 9 ([10]). Let {X,} be a sequence of independent random variables,
and let 0<d<1. If EIXuf"°<co, then

Soo (1+|xl)l *'5An(x)dx§§'zc.r’5 kill E}Xklz o

—oo n

Combining Theorems 8 and 9, we have the following result for the case of
i.i.d. random variables.

Theorem 10. Let (X))} be a sequence of i.i.d. random variables, and let 0<
0<1. Then

EIXIIZ'Pa < co

is equivalent to the validity of

Sw A+ . (z)da=00"") .

When 60, the non-uniformity of Theorem 5 has been improved as follows.

Theorem 11 ([10]). Let {X}} be a sequence of i.i.d. random variables, and let
0<dé<l. If EIX,[""°<co, then

oo

n"“'ms (L+ &) o (x)da < oo .

Y
2
n=1 —o0

For the case 6=0, we are going to prove the following.

Theorem 12. Let {X,} be a sequence of i.i.d. random variables. If
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(3.5) EXilog 1+|[Xi])< oo,
then

(3.6) r (1+ o)) du(@)dw=o(1) ,
and if )

(3.7) EXilog" (1+]Xy])<co ,
then

3.8) z i Sl(u o) du(a)da < oo .

To prove this theorem, we first state two lemmas, which will be also used
in the next section.

Lemma 1. Let (X} be a sequence of independent random variables. We have

(i) sup (L+|1)* () = SC” s:”Ln(z’MZ
and
(i) S"; (1-+ ) o (w)da = SC S:"Ln(z)dz+c r 1@,
where "
1

Liz)=1L S WdF 1) .
lul>z

2
Sn k=1

Proof of the lemma. Bikelis [I] showed that

(3.9) ()=

s (1+]e
C S (1+ I)Ln(z)dz.

sa(l+l2])?

0

Noting that L,(z) is monotone decreasing as z increases, we have

C 8y (L4]a]) C Sy
L (2)dz=< ~-\ "L,(2)dz ,
S,L(1+[9§!)So (2)dz Sn Su (2)az

from which (i) is given. On the other hand, we have, from

4

S“’ (1+le)dn(x)dx§~scsw da Y“(”"”“Laz)dz

—co —o0 (1+le)z 0
C (5n o dx C(~ dx
=-\"L.2d . S L, Z)dzg 2
SRC N S Bl I gt

=" L@azrc|" Q.

n JO £

n

The proof is thus completed.
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Lemma 2 ([8]). Let X be a random variable with distribution F(x), and write

L(z):S WdF(u) .

lul>z

Let 0=6<1. If

E X[ <co, for 0<é<1,
EX*log (1+|X|)<eo for 0=0,
then

i P CRIE S~nL(z)dz<oo .

n=1 G

Proof of Theorem 12. We first show that (3.5) implies [3.6). From [Lemmal
1 (i),

Sw 1+l d(x)dx

° dz

vn %

C Vo 2
=< g a’zg o dF(u)+CS
\/7’1 0 luli>z

S 1’ d F(1t)
lul>z

_ C»S
vVn ul=vn

+CS

0

{2l
wWd F(u) S dz+- ¢
0

24 F S“"d
vV quwzu (ae) ?

. lul
zde(u)S 1 dz
lul>vn vn 2

< ¢ S
Vo Yuszva
+C§ o’ log (1+ |u))d F(x)
lui>va
T
log(I1+vn)Yuzva

[ztl3dF(2t)+C§ w’dF(u)

lul >vn

IA

0’ log (1+|u))d F(u)+o(1)=o0(1) .

In order to show [(3.8), we suppose that (3.7) is satisfied. We have from [Lemmal
1 again,

507 b
n=1 7} — 00
s L Sv,,LL(Z)dZJr cs r L@,
n=172 0 n=1 3 ). 2
=y,

say. It follows from with =0 that 2, is finite. As to Y;, we have

o o (Vmil
Y,=C 3 1 S "L g,
=

Z\
Ym 2

m="mn
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S wlf(x/erlr—— Vm)L(v'm)

1 = - .
n=1 B m=n 1/m

5 Litvm)

n=1 1N m=n M

Vil 2
- wdF(u)

v

=C f; log® (n+l)g
1

=

<CEXilog’ (1+]X,])<eo

’

which completes the proof of the theorem.

4. In this section, we shall extend Theorems 11 and 12 to the case of non-
identically distributed random variables. Therefore, throughout this section, we
suppose that {X,} is a sequence of independent, but not necessarily identically
distributed random variables. We begin with the following lemma.

Lemma 3 ([5]). Suppose that

(A) there exist a random variable X and a positive constant x, such that

;lz él P(| X z2) = P(1X| = 2)

Jor all n and for all x=x,. Then under the condition EX*<oo, we have
S u2d< L5 Fk(u)>§s W d Flue)
lul >z n k=1 lul >z

Jor all n and for all x=x,, where Flu)=P(X<u).

Moreover, we suppose that
(B) there exists p such that si/n>p>0.

Then, we have the following result which is an extension of to the
case of non-identically distributed random variables.

Theorem 13. Let 0<io<1. Under the assumptions (A) and (B), if E|X|*"° < o,
then
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oo

(14 |z du(z)dz < oo .

(41) i n—lfﬁ/zg
n=1

Proof. It is readily seen from and EX®< co that sz <Cn. Therefore,

in order to prove from Lemmas 1 and 3, and the assumption (B), it suffices
to show

o o fCYn
4.2) 3 n“(s—"”zg L(z)dz< oo
n=1 0
and
(4.3) i Lo Sw L,(§)<Oo ,
n=1 cvn 2

where L(z) is the one defined in Lemma 2. (4.2) follows from Lemma 2, and the
validity of (4.3) can be shown by the same way as in [10].

Furthermore, the case 6=0 can be handled by a way similar to Theorem 12.

Theorem 14. Under the assumptions (A) and (B), if EX* log (1+|X|)< oo, then
S“’ (1+ |z du(@)dz=0(1) ,
and if EX*log’ 1+|X|)<co, then

5 L Sm (1 + ) dn(w)dz < o .

n=1 N

— o0

5. In this section, we shall deal with non-uniform estimates in asymptotic
expansions in the central limit theorem. As to this problem, Osipov [13], [14] has
given some estimates analogous to Bikelis’ estimate (3.9). In what follows, using
Osipov’s estimate, we shall show some results on asymptotic expansions anologous
to Theorems 5, 10 and 11.

Throughout this last section, we suppose that {X;} is a sequence of i.i.d. ran-
dom variables with EX;=0, EX;=1 and with distribution F(x), and suppose that
E| X |’"*< oo for some integer p=>1. Furthermore, we suppose Cramér condition

(©) lifﬂ sup | f(#)] <1

to be satisfied, where f(¢) is the characteristic function of X;. Write

where

Gm,(a;):(p(x) + 712T;e~x2/2 J.Z; n~j/sz(x)

is the Chebyshev series corresponding to the X;. Here @;(x) is a polynomial of
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degree 37—1 whose coefficients depend on the first ( J+1) moments of X;. (See
Gnedenko-Kolmogorov [7], Section 38.)
We first state Osipov’s estimate, which will be used below in having some

non-uniform estimates for R, ,(x).
Theorem 15 ([14]). If E|X\|""*<co for some integer p=1, then

7 n S ‘
(V7 (L4|a)))? " el S VR + )

2¢]” " 2d F(1s)

5.1) Rnp(x)gcp{ ) *d ()

(‘/n(l’*"lxl))mz Jul>Vn(1+|z))

1 %(‘/“nr)(lv);fiz)(pr:ij
+(s s+, ) L+ Ja]y? }

where C, is a positive constant depending on p, and y=(15E|X;*)".
The first result we are going to prove here is the following.

Theorem 16. Let p=1 be an integer and 0=0<1, and suppose that Cramér
condition (C) is satisfied. If

EX P < oo, for 0<a<1,
EIX\ " log (1+]|X\)<oo,  for =0,
then
(5.2) i}li/z"l“”""s”z sup (1- [2])P 2Ry () < co .

This theorem is a non-uniform extension of results by Galstjan [6] and Heyde-
Leslie [9] who proved, under same assumptions,

Zl gt ez sup RM,((IJ)<OO )
n= z

Moreover, this theorem is related to that Heyde proved with

p=0 without Cramér condition (C).

Proof of [Theorem 16. We note that is equivalent

n Va(1+z))
(T/n(lﬂwl))”“’s
1 n(‘/'h’)(erZ)(pfS)
t - A [ A -
Hamioie,, ) C PG

(53) Rnp(x)gcp{ Mp(Z)dZ

0

where

Mp(z):S Wl dFa) .

lul>z
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Therefore,

M, (z)dz

C Va(l+ls))
1 1, prRn <. a S
(1+x)) p(x):(W

2P+ 1z)) Jo
NNy
+C<|stg lf(f)1+2n> (1+]x))

Since M,(z) decreases as z increases, we have

vy

1 Vo (l+lz)) "
S M,(2)dz

), =]

0 0

so that

o

— (p+é)/2 SI;ID (14 lx])p:sz)(x)

n=1

A

C i_o} 130 SW M, (z)dz

1 0

+C X n"‘””””z(sup B+ 1) (V)P
n=l Itz y 2n

where the second term is obviously finite, because of Cramér condition (C). As
to the first term, we have
-

n~<3—51/28 nM,,(Z)dZ

0
<CEIX)|\"*"?<co if 0<o<1,
<CE|X,|""* log (1+]X)<eo, if =0,

1

by the same way as Heyde [8] showed in Section 3. This completes
the proof of [Lheorem 16|
The next theorem is an asymptotic expansion analogue of [Theorem I0.

Theorem 17. Let p=1 be an integer, and let 0<i<1. If E|X\"*"°<co and
Crameér condition (C) is satisfied, then

Sw A+lz)? ' R, (x)dx=00"""""") .

— 00

Osipov remarked that, under the same conditions as in [Theorem 17, there
exists a positive function &(z) such that lim ¢(#)=0 and

U —r00

L dV a4l
Rnp(x):\( \/ ﬁ_)P 1’-5(1 + le)m 2+6 °

We mention here that describes that the function :(z«) also satisfies
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= o1+ ]al)
S gy c oo
L (Lt fa) °°

Proof of From [(5.1), we have

S“’ (L+ 2" R, (@)

—(pr1y/o dx +
<Cn (pl)/~§ . br _;S ul"*d Fi
e (1) Iu\gmuﬂxl)l | ®)
_ o dx +
+Cn?? S A—~/-'*:S »dF
e (L)' 1ur>v92<1+|x1>|ul )

1N s (® dw
C t 4 ‘/ (p\ZHp.ﬂ)S B ey
+ (ﬁ}i‘i A >[+2n)( n) Al
EI1+12+I:;:

say. It is obvious that I,=0(@x '*"*"’*). Furthermore, we have
II+I2§Cn—(p%5)/2ElX1|p+2+5

by a way similar to the one when the author [I0] has proved
Finally we show the following result which somewhat improves the non-
uniformity of in the case 0<d<1.

Theorem 18. Let p=1 be an integer, and let 0<do<1. If E|X,)|""*"°<co, and
if Cramér condition (C) is satisfied, then

oo

i_o:l n—«ll(plﬁ)/ZS (1+lwl)p(fanP(x)dx<oo .

Proof. We have from [5.3),

" el R
& =gz dx Va(1+|z)
§Cﬂ§1n S_m (1+lx|)z SO Mp(z)dz

o —1i(pid)/2 ,lﬁ t tpi2)piay | % __d:v_»
HC I s 0l ) (e [Tl

The second series is trivially finite. The first series is equal to

oo el ‘/; ES dx ©o dx
o | i W 2)dz | -
nZ=:1 0 l2) —eo (1-+]2]) Va (2) lot> o vm -1 (14 ]))®
" M(2)dz4-C 5 n‘“"”zr M2 4,

n=1

v V4

o —(3-3)/2
=C X n S
n=1 0

§E1X1lp+2+5< oo,
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where the last step is readily seen by the same manner as the author has
shown [Theorem TIl.
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