CLOSED 4-MANIFOLDS COVERED BY THREE 4-BALLS

By
Hiroshi Ikeda and Masakatsu Yamashita

(Received February 14, 1978)

1. Introduction.

K. Kobayashi and Y. Tsukui introduced the concept of the ball coverings of manifolds in [1]. For a manifold W, the minimum number of balls of the ball coverings of W is called the covering number of W and is denoted by $b(W)$.

In [1], they obtained the following result.
Theorem. For a closed n-manifold W, we have $2 \leqq b(W) \leqq n+1$.
Clearly, a closed n-manifold W is an n-sphere if and only if $b(W)=2$. It is difficult, however, to determine the n-manifold W with $b(W)=2$ when the boundary of W is non-empty and $n \geqq 4$. The answer to this problem implies the classification of closed n-manifolds W with $b(W)=3$. Recently, Y. Tsukui obtained a complete answer to the problem under the situation $H_{2}(W)=0$ and $n=4$, in [2].

In the present paper, we are interested in the case $H_{2}(W)=Z$ (the additive group of integers) and $n=4$.

2. Preliminaries.

For a manifold W, we denote the boundary of W by \dot{W} and the interior of W by \dot{W}. For topological spaces X and $Y, X+Y$ means the disjoint union of X and Y, and $X \vee Y$ means a one point union of X and Y in the usual sense. For groups G and H, we denote the direct sum of G and H by $G+H$. For a group G and an integer $p, p G$ means the direct sum $G+\cdots+G$ (p times).

Definition 1. The class $C(p, q)$ consists of connected compact bounded $P L 4$ manifolds W satisfying the following conditions;
(C.1) $\quad b(W)=2$,
(C.2) $H_{1}(W)=p Z$,
(C.3) $\quad H_{2}(W)=q Z$.
$\bar{C}(p, q)$ denotes the subclass of $C(p, q)$ defined by the condition;
(C.4) $\dot{W}=S^{3}$ (the 3 -sphere).

For any $W \in C(p, q)$, there exist two 4 -balls A and B such that $W=A \cup B$ and
$A \cap B$ is a compact 3 -manifold. Usually, by F, we denote $A \cap B$ and call it the attaching face (of A and B). $W_{F}=(A, B ; F)$ is called a realization of W.

Lemma 2.1. For any realization W_{F} of W in $C(p, q), H_{k-1}(F)=H_{k}(W)$ and $H_{1}(\dot{F})=2 q Z$.

Proof. Suppose $W_{F}=(A, B ; F)$ is an arbitrary realization of W. The first half is an immediate consequence of the Mayer-Vietoris sequence since $W=A \cup B$, $F=A \cap B$ and A and B are both 4 -balls. The latter half is shown as follows. First, we call the reader's attention to F being a subset of 3 -sphere (for instance, A) S^{3}. Put $E=\bar{S}^{3}-F$. Then, we conclude $H_{1}(\dot{F})=H_{1}(E)+H_{1}(F)$ using the MayerVietoris sequence. On the other hand, applying the Alexander duality, we get $H_{1}(E)=H_{1}\left(S^{3}-F\right)=H^{1}(F)$. Since $\quad H_{1}(F)=H_{2}(W)=q Z, \quad H^{1}(F)=\operatorname{Hom}\left(H_{1}(F), Z\right)=$ $\operatorname{Hom}(q Z, Z)=q Z$. Hence, we get $H_{1}(\dot{F})=2 q Z$.

Remark 2.2. Suppose W_{F} is a realization of $W \in C(p, q)$. Then, the attaching face F is a subset of S^{3} and is a disjoint union

$$
F=F_{0}+F_{1}+\cdots+F_{p}
$$

of connected compact 3 -manifolds $F_{i}(i=0,1, \cdots, p)$ with non-empty boundary \dot{F}_{i}, since $H_{0}(F)=H_{1}(W)=p Z$.

Let us consider a realization W_{F} of $W \in C(p, 1)$. The connected components of \dot{F} are all 2 -spheres but exactly one torus $S^{1} \times S^{1}$, since $H_{1}(\dot{F})=Z+Z$ and \dot{F} is a disjoint union of closed surfaces. Without loss of generality, we assume $S^{1} \times S^{1} \subset \dot{F}_{0}$. Then, \dot{F} is completely described as follows.

$$
\begin{aligned}
\dot{F} & =\dot{F}_{0}+\dot{F}_{1}+\cdots+\dot{F}_{p}, \\
\dot{F}_{0} & =S^{1} \times S^{1}+S_{01}^{2}+\cdots+S_{0_{0}}^{2}, \\
\dot{F}_{i} & =S_{i 1}^{2}+\cdots+S_{i r_{i}}^{2}, \quad i=1, \cdots, p,
\end{aligned}
$$

where $S_{i j}^{2}$ is a 2 -sphere and $r_{0} \geqq 0, r_{i} \geqq 1(i \neq 0)$. Since each $F_{i}(i \neq 0)$ is a 3dimensional connected submanifold of a 3 -sphere and

$$
\dot{F}_{i}=S_{i 1}^{2}+\cdots+S_{i r_{i}}^{2},
$$

F_{i} is constructed by removing ($r_{i}-1$) small 3-balls from the interior of a large 3 -ball. For details, it is shown by the induction on the number r_{i} using (3,2)Schoenflies theorem.

3. The class $\bar{C}(p, 1)$.

By \hat{W}, we denote the closed 4 -manifold obtained by attaching a 4 -ball C to
an element W of $\bar{C}(p, q)$ at the boundary naturally. That is to say,

$$
\hat{W}=W \cup C \quad \text { and } \quad W \cap C=\dot{W}=\dot{C} .
$$

Obviously, \hat{W} is uniquely determined by W in the sense of PL homeomorphism. We say \hat{W} the completion of W.

Suppose $W_{F}=(A, B ; F)$ is an arbitrary realization of $W \in \bar{C}(p, q)$. Then, \hat{W} can be expressed as $\hat{W}=A \cup B \cup C$. Now, put $W^{\prime}=A \cup C$ and $W^{\prime \prime}=B \cup C$. Then, each of W, W^{\prime} and $W^{\prime \prime}$ is obtained from W by removing a 4-ball. Thus, W, W^{\prime} and $W^{\prime \prime}$ are PL homeomorphic to each other by the homogeneity of manifold. Put $F^{\prime}=A \cap C$ and $F^{\prime \prime}=B \cap C$. Then, $W_{F^{\prime}}=\left(A, C ; F^{\prime}\right)$ and $W_{F^{\prime}}=\left(B, C ; F^{\prime \prime}\right)$ are regarded as other realizations of W and are naturally determined by W_{F}.

Let us consider the expression $W_{F}=(A, B ; F)$ a realization of W. Let A and B be 4-balls and F a compact 3 -manifold. Let $f_{A}: F \rightarrow \dot{A}$ and $f_{B}: F \rightarrow \dot{B}$ be PL embeddings. Put $F_{A}=f_{A}(F)$ and $F_{B}=f_{B}(F)$. Then, $f=f_{B} \circ f_{A}^{-1} ; F_{A} \rightarrow F_{B}$ is a PL homeomorphism and $W=A \cup_{f} B$ is a connected compact PL 4-manifold with $b(W)=2$. Conversely, any connected compact 4-manifold W with $b(W)=2$ can be obtained by the construction above. For this reason, we adopt the notation $\left(\left(A, F_{A}\right),\left(B, F_{B}\right) ; F\right)_{f}$ (or shortened one $(A, B ; F)_{f}$, if there is no confusion) for a realization W_{F} of W. In this sense, the completion $\hat{W}=A \cup B \cup C$ of $W \in \bar{C}(p, q)$ determines the following three realizations.

$$
\begin{aligned}
& W_{c F}=\left(A, B ;{ }_{c} F\right)_{f_{c}}=\left(\left(A,{ }_{c} F_{A}\right),\left(B,{ }_{c} F_{B}\right) ;{ }_{c} F\right)_{f_{c}}=W_{F}, \\
& W_{a F}=\left(B, C ;{ }_{a} F\right)_{f_{a}}=\left(\left(B,{ }_{a} F_{B}\right),\left(C,{ }_{a} F_{C}\right){ }_{a} F\right)_{f_{a}}=W_{F^{\prime}}, \\
& W_{b}=\left(C, A ;_{b} F\right)_{f_{b}}=\left(\left(C,{ }_{b} F_{C}\right),\left(A,{ }_{b} F_{A}\right) ;{ }_{b} F\right)_{f_{b}}=W_{F^{\prime \prime}} .
\end{aligned}
$$

Note that, in W, there are equalities

$$
{ }_{a} F_{B}={ }_{a} F_{C}=\dot{B} \cap \dot{C}, \quad{ }_{b} F_{C}={ }_{b} F_{A}=\dot{C} \cap \dot{A} \quad \text { and } \quad{ }_{c} F_{A}={ }_{c} F_{B}=\dot{A} \cap \dot{B} .
$$

Lemma 3.1. In $W,{ }_{a} \dot{F}_{B}={ }_{b} \dot{F}_{C}={ }_{c} \dot{F}_{A}=\dot{A} \cap \dot{B} \cap \dot{C}$.
Proof. Since other cases hold similarly, we show ${ }_{c} \dot{F}_{A}=\dot{A} \cap \dot{B} \cap \dot{C}$, as a typical case. From the construction, it is obvious that

$$
{ }_{c} F_{A}={ }_{c} F_{B}=\dot{A} \cap \dot{B}, \quad{ }_{c} \dot{F}_{A} \subset \dot{W}=\dot{C} \quad \text { and } \quad{ }_{c} \dot{F}_{A} \subset \dot{W}
$$

where $W=A \cup B$. Thus, ${ }_{c} \dot{F}_{A} \subset \dot{A} \cap \dot{B} \cap \dot{C}$. Conversely, take a point $x \in \dot{A} \cap \dot{B} \cap \dot{C}$ and assume $x \notin \dot{F}_{A}$. Since x belongs to $\dot{A} \cap \dot{B}, x \in_{c} \dot{F}_{A} \subset \dot{W}$. This implies $x \notin \dot{C}$, because $\dot{W} \cap C$ is empty. This is a contradiction. This completes the proof.

Let us consider the 3 -sphere \dot{A}. Note that ${ }_{b} F_{A}$ and ${ }_{c} F_{A}$ are submanifolds of \dot{A} satisfying

$$
{ }_{b} F_{A} \cup{ }_{c} F_{A}=\dot{A} \quad \text { and } \quad{ }_{b} F_{A} \cap{ }_{c} F_{A}={ }_{b} \dot{F}_{A} \cap{ }_{c} \dot{F}_{A}={ }_{b} \dot{F}_{A}={ }_{c} \dot{F}_{A} .
$$

We say that the pair $\left({ }_{b} F_{A},{ }_{c} F_{A}\right)$ is the splitting of \dot{A} determined by the completion $\hat{W}=A \cup B \cup C$.

Hereafter, we deal with the manifold $W \notin \bar{C}(p, 1)$. For the simplicity, we confuse ${ }_{b} F_{A}$ and ${ }_{b} F$, and write $F={ }_{b} F_{A}={ }_{b} F$ and $F^{\prime}={ }_{c} F_{A}={ }_{c} F$. Therefore, $\left(F, F^{\prime}\right)$ means the splitting $\left({ }_{b} F_{A},{ }_{c} F_{A}\right)$.

Lemma 3.2. For the splitting $\left(F, F^{\prime}\right)$ of $\dot{A}, F_{0} \cap F_{0}^{\prime}=\dot{F}_{0} \cap \dot{F}_{0}^{\prime}=S^{1} \times S^{1}$.
Proof. It is trivial that $F_{0} \cap F_{0}^{\prime}=\dot{F}_{0} \cap \dot{F}_{0}^{\prime}$. We claim that \dot{F}_{0} and \dot{F}_{0}^{\prime} have $S^{1} \times S^{1}$ in common. Recall that each of \dot{F} and \dot{F}^{\prime} has unique torus component. Let T and T^{\prime} denote the torus components of \dot{F} and \dot{F}^{\prime}, respectively. Then T and T^{\prime} belong to \dot{F}_{0} and \dot{F}_{0}^{\prime}, respectively. Now, we have $T=T^{\prime}$ because $\dot{F}=\dot{F}^{\prime}$. This means $T=S^{1} \times S^{1} \subset \dot{F}_{0} \cap \dot{F}_{0}^{\prime}$. The torus T divides \dot{A} into two connected components \dot{X} and \dot{Y} such that $X \cup Y=\dot{A}$ and $X \cap Y=T$. Without loss of generality, we assume $F_{0} \subset X$ and $F_{0}^{\prime} \subset Y$ since F_{0} and F_{0}^{\prime} are connected and $\dot{F}_{0} \cap \dot{F}_{0}^{\prime}=\varnothing$. Therefore, $\dot{F}_{0} \cap \dot{F}_{0}^{\prime}=F_{0} \cap F_{0}^{\prime} \subset X \cap Y=T$, completing the proof.

For the splitting $\left(F, F^{\prime}\right), F_{0}$ has $r_{0} 2$-spheres $S_{0 j}^{2}\left(j=1, \cdots, r_{0}\right)$ as its boundary components. We will cap off these r_{0} boundary components by 3 -balls D_{j}^{3}. Since F_{0} is connected and is contained in the 3 -sphere \dot{A}, we can take the 3 -balls D_{j} in $\dot{A}-\dot{F}_{0}$ by the aid of (3,2)-Schönflies theorem. We denote the resulting 3 manifold in \dot{A} by \hat{F}_{0}. That is to say,

$$
\begin{aligned}
& \hat{F}_{0}=F_{0} \cup D_{1}^{3} \cup \cdots \cup D_{r_{0}}^{3} \subset \dot{A}, \\
& F_{0} \cap D_{j}^{3}=S_{0 j}^{2}, \\
& D_{j}^{3} \cap D_{k}^{3}=\varnothing \quad(j \neq k) .
\end{aligned}
$$

Similarly, we construct \hat{F}_{0}^{\prime} from F_{0}^{\prime} in the same 3 -sphere \dot{A}. We call the pair ($\hat{F}_{0}, \hat{F}_{0}^{\prime}$) the capping of the splitting (F_{0}, F_{0}^{\prime}).

Since \hat{F}_{0} is a submanifold of the 3 -sphere \dot{A} and the boundary component of \hat{F}_{0} is just a torus, \hat{F}_{0} should be the exterior of some knot (may be trivial) in \dot{A}. Similarly, \hat{F}_{0}^{\prime} is also the exterior of some (other) knot it \dot{A}. Each of \hat{F}_{0} and \hat{F}_{0}^{\prime} has a common torus $T=S^{1} \times S^{1} \subset \dot{A}$ as the boundary by Lemma 3.2, Since T divides the 3 -sphere \dot{A} into two components and $\hat{F}_{0} \neq \hat{F}_{0}^{\prime}$, we obtain the following lemma.

Lemma 3.3. $\hat{F}_{0} \cup \hat{F}_{0}^{\prime}=\dot{A}$ and $\hat{F}_{0} \cap \hat{F}_{0}^{\prime}=T$.
Corollary 3.4. One of \hat{F}_{0} and \hat{F}_{0}^{\prime} is homeomorphic to the solid torus $S^{1} \times D^{2}$.

Theorem 3.5. For a completion $W=A \cup B \cup C$ of $W \in \bar{C}(p, 1)$, one of three 3spheres \dot{A}, \dot{B} and \dot{C} has a splitting $\left(F, F^{\prime}\right)$ such that both \hat{F}_{0} and \hat{F}_{0}^{\prime} are homeomorphic to the solid torus $S^{1} \times D^{2}$.

Proof. We use the full notation of the splitting within this proof. First, we claim that ${ }_{a} \hat{F}_{B 0},{ }_{b} \hat{F}_{C 0}$ and ${ }_{c} \hat{F}_{A 0}$ are homeomorphic to ${ }_{a} \hat{F}_{C 0},{ }_{b} \hat{F}_{A 0}$ and ${ }_{c} \hat{F}_{B 0}$, respectively, but ${ }_{a} \hat{F}_{B 0} \neq{ }_{a} \hat{F}_{C 0},{ }_{b} \hat{F}_{C 0} \neq{ }_{b} \hat{F}_{A 0}$ and ${ }_{c} \hat{F}_{A 0} \neq{ }_{c} \hat{F}_{B 0}$ as subsets in W. Let us consider the splitting $\left({ }_{b} F_{A},{ }_{c} F_{A}\right)$ of \dot{A}. By Lemma 3.4, one of ${ }_{b} \hat{F}_{A 0}$ and ${ }_{c} \hat{F}_{A 0}$, say ${ }_{b} \hat{F}_{A 0}$, is homeomorphic to the solid torus. If ${ }_{c} \hat{F}_{A 0}$ is also homeomorphic to the solid torus, we choose $\left({ }_{b} F_{A},{ }_{c} F_{A}\right)$ as a required splitting. We consider the case that ${ }_{c} \hat{F}_{A 0}$ is not homeomorphic to the solid torus, and we consider the splitting $\left({ }_{a} F_{C},{ }_{b} F_{C}\right)$ of \dot{C}. Since ${ }_{b} \hat{F}_{A 0}$ and ${ }_{b} \hat{F}_{C 0}$ are homeomorphic and ${ }_{b} \hat{F}_{A 0}$ is the solid torus, ${ }_{b} \hat{F}_{C 0}$ is the solid torus. Now, it is sufficient to show that ${ }_{a} \hat{F}_{C 0}$ is homeomorphic to the solid torus. Suppose not. Let us consider the splitting $\left({ }_{c} F_{B},{ }_{a} F_{B}\right)$ of \dot{B}. Since ${ }_{c} \hat{F}_{B 0}$ and ${ }_{a} \hat{F}_{B 0}$ are homeomorphic to ${ }_{c} \hat{F}_{A 0}$ and ${ }_{a} \hat{F}_{C 0}$, both ${ }_{c} \hat{F}_{B 0}$ and ${ }_{a} \hat{F}_{B 0}$ are not homeomorphic to the solid torus. This is a contradiction to Lemma 3.4. This completes the proof.

Remark 3.6. For the splitting obtained in Theorem 3.5, both \hat{F}_{0} and \hat{F}_{0}^{\prime} are trivial solid tori in the 3 -sphere.

4. Realizations.

In this section, we give some properties with respect to the form of the attaching face. The typical result is Theorem 4.7 which mentions that a manifold $W \in \bar{C}(p, 1)$ has a realization $W_{F}=(A, B ; F)$ such that F has a 3 -ball as a connected component.

Without loss of generality, we may assume that the splitting $\left(F, F^{\prime}\right)$ of \dot{A} satisfies the condition of Theorem 3.5, namely, both F_{0} and F_{0}^{\prime} are homeomorphic to the solid torus $S^{1} \times D^{2}$. Remember that F is the attaching face of a realization $W_{F}=(A, B ; F)$ of $W \in \bar{C}(p, 1)$ and that \dot{F} is characterized by

$$
\begin{aligned}
\dot{F} & =\dot{F}_{0}+\dot{F}_{1}+\cdots+\dot{F}_{p}, \\
\dot{F}_{0} & =S^{1} \times S^{1}+\left(S_{01}^{2}+S_{02}^{2}+\cdots+S_{0 r_{0}}^{2}\right), \\
\dot{F}_{i} & =S_{i 1}^{2}+S_{i 2}^{2}+\cdots+S_{i r_{i}}^{2}, \quad i=1,2, \cdots, p,
\end{aligned}
$$

where $S_{i j}^{2}$ is a 2 -sphere and $r_{0} \geqq 0, r_{i} \geqq 1(i \neq 0)$.
Proposition 4.1. For any realization $W_{F}=(A, B ; F)$ of $W \in \bar{C}(p, 1)$, the inequality $r_{0} \leqq p$ holds.

Proof. Let $\left(F, F^{\prime}\right)$ be the splitting of \dot{A}. If $p=0$, we have $F=F_{0}$ and $F^{\prime}=F_{0}^{\prime}$. This implies $F_{0} \cup F_{0}^{\prime}=F \cup F^{\prime}=\dot{A}$, and hence $\hat{F}_{0}=F_{0}$ and $\hat{F}_{0}^{\prime}=F_{0}^{\prime}$. Thus \dot{F}_{0} should be just $S^{1} \times S^{1}$. That is, $r_{0}=0=p$. Now, we assume $p \geq 1$. Let us consider the characterization of \dot{F}_{0} above and

$$
F_{0}=F_{0}+\left(D_{1}^{3}+D_{2}^{3}+\cdots+D_{r_{0}}^{3}\right) .
$$

Where D_{j}^{3} is a 3 -ball and $F_{0} \cap D_{j}^{3}=\dot{F}_{0} \cap \dot{D}_{j}^{3}=S_{0 j}^{2}$. Since

$$
F \cup F^{\prime}=\left(F_{0}+\left(F_{1}+\cdots+F_{p}\right)\right)\left(F_{0}^{\prime}+\left(F_{1}^{\prime}+\cdots+F_{p}^{\prime}\right)\right)=\dot{A}
$$

and $S_{0 j}^{2}$ belongs to \dot{F}_{0}, exactly one of $F_{0}^{\prime}, \cdots, F_{p}^{\prime}$ has $S_{0 j}^{2}$ as a boundary component. Because $F_{0}^{\prime} \cap S_{0 j}^{2}=\varnothing$ follows from $F_{0} \cap F_{0}^{\prime}=\dot{F}_{0} \cap \dot{F}_{0}^{\prime}=S^{1} \times S^{1}$ by Lemma 3, $2, F_{0}^{\prime}$ can not contain $S_{0 j}^{2}$ as a boundary component. Hence one of $F_{1}^{\prime}, \cdots, F_{p}^{\prime}$, say $F_{i(j)}^{\prime}$, has $S_{0 j}^{2}$ as its boundary component. Since $F_{i(j)}^{\prime}$ is connected, $F_{i(j)}^{\prime}$ should be contained in D_{j}^{3}. $\quad F_{i(j)}^{\prime}$ does not contain other 2 -spheres $S_{0 k}^{2}$ because $D_{j}^{3} \cap D_{k}^{3}$ is empty if $j \neq k$. Therefore, r_{0} can not exceed p.

A splitting (F, F^{\prime}) of \dot{A} induces two realizations W_{F} and $W_{F^{\prime}}$. In the following, we choose a good realization from W_{F} and $W_{F^{\prime}}$.

Proposition 4.2. For $p \geqq 1$, there exists a realization W_{F} of $W \in \bar{C}(p, 1)$ such that $r_{0} \geqq 1$ and \hat{F}_{0} is a solid torus $S^{1} \times D^{2}$.

Proof. For a completion $\hat{W}=A \cup B \cup C$, we can take a splitting $\left(F, F^{\prime}\right)$ of \dot{A} such that both \hat{F}_{0} and \hat{F}_{0}^{\prime} are homeomorphic to the solid torus by Theorem 3.5. Let us consider the characterizations

$$
\begin{gathered}
\dot{F}_{0}=S^{1} \times S^{1}+\left(S_{01}^{2}+\cdots+S_{0 r_{0}}^{2}\right), \\
\dot{F}_{0}^{\prime}=S^{1} \times S^{1}+\left(S_{01}^{\prime 2}+\cdots+S_{0 r_{0}^{\prime}}^{\prime 2}\right) .
\end{gathered}
$$

If we assume $r_{0}=0=r_{0}^{\prime}$, we have $\dot{F}_{0}=\dot{F}_{0}^{\prime}=S^{1} \times S^{1}$. Hence $\hat{F}_{0}=F_{0}$ and $\hat{F}_{0}^{\prime}=F_{0}^{\prime}$. Then $\hat{F}_{0} \cup \hat{F}_{0}^{\prime}=F_{0} \cup F_{0}^{\prime}=\dot{A}$. This implies $F=F_{0}$ and $F^{\prime}=F_{0}^{\prime}$. Thus, we have $p=0$. This contradicts to our hypothesis $p \geqq 1$. Therefore, either $r_{0} \geqq 1$ or $r_{0}^{\prime} \geqq 1$ holds. If $r_{0} \geq 1$, we take W_{F} as a required realization of W. If $r_{0}=0, W_{F}$, is a required one.

Proposition 4.3. For the realization W_{F} of Theorem 4.2, we obtain

$$
\begin{aligned}
& F_{0} \simeq S^{1} \vee\left(S_{1}^{2} \vee \cdots \vee S_{r_{0}}^{2}\right) \quad \text { and } \\
& F_{i} \simeq \begin{cases}\text { one point, } & \text { if } r_{i}=1, \\
S_{1}^{2} \vee \cdots \vee S_{r_{i}-1}^{2}, & \text { if } \quad r_{i} \geqq 2,\end{cases}
\end{aligned}
$$

where \simeq means "homotopically equivalent to".

Proof. $\quad F_{0}$ is obtained from a solid torus by removing r_{0} small disjoint 3 -balls in its interior. Thus, the first half part of the proposition is obtained by collapsing F_{0} naturally. By the same way, the latter half is an immediate consequence of the characterization of F_{i} in section 2.

Corollary 4.4. For the realization W_{F} of Theorem 4.2, we obtain

$$
\begin{aligned}
& H_{2}\left(F_{0}\right)=r_{0} Z, \quad \text { and } \\
& H_{2}\left(F_{i}\right)=\left(r_{i}-1\right) Z, \quad i=1, \cdots, p .
\end{aligned}
$$

Proposition 4.5. For a manifold W of $\bar{C}(p, q)$, we obtain $H_{3}\left(W ; Z_{2}\right)=p Z_{2}$.
Proof. Using the Poincaré duality of Z_{2}-coefficient, we have

$$
H_{3}\left(W ; Z_{2}\right)=H^{1}\left(W, \dot{W} ; Z_{2}\right)=H^{1}\left(W, S^{3} ; Z_{2}\right)=\operatorname{Hom}\left(H_{1}\left(W, S^{3}\right), Z_{2}\right) .
$$

On the other hand, the exact sequence of the pair (W, S^{3}) shows $H_{1}\left(W, S^{3}\right)=p Z$. Thus, $H_{3}\left(W ; Z_{2}\right)=\operatorname{Hom}\left(p Z, Z_{2}\right)=p Z_{2}$.

Corollary 4.6. For the realization W_{F} of Theorem 4.2, we obtain

$$
r_{0}+r_{1}+\cdots+r_{p}=2 p .
$$

Proof. From Corollary 4.4, we have

$$
\begin{aligned}
H_{2}(F) & =H_{2}\left(F_{0}\right)+H_{2}\left(F_{1}\right)+\cdots+H_{2}\left(F_{p}\right) \\
& =r_{0} Z+\sum\left(r_{i}-1\right) Z \\
& =\left(\left(r_{0}+r_{1}+\cdots+r_{p}\right)-p\right) Z .
\end{aligned}
$$

Hence $H_{2}\left(F ; Z_{2}\right)=\left(\left(r_{0}+r_{1}+\cdots+r_{p}\right)-p\right) Z_{2}$. On the othe hand, by Proposition 4.5, $H_{2}\left(F ; Z_{2}\right)=H_{3}\left(W ; Z_{2}\right)=p Z_{2}$. Thus, we obtain $r_{0}+\cdots+r_{p}=2 p$.

Theorem 4.7. For the realization W_{F} of Theorem 4.2, one of F_{1}, \cdots, F_{p}, say F_{p}, is a 3-ball.

Proof. Suppose any of $r_{i}, i=1, \cdots, p$, is greater than 1 . Since $r_{0} \geqq 1$, we have $r_{0}+\cdots+r_{p} \geq 2 p+1$. This contradicts to Corollary 4.6. Therefore, at least one of $r_{i}, i=1, \cdots, p$, say r_{p}, is exactly 1 . Then the boundary of F_{p} consists of exactly one 2 -sphere. Since F_{p} is a submanifold of a 3 -sphere, F_{p} should be a 3 -ball.

5. Main results.

In this section, our main aim is to construct a correspondence between the sets $\bar{C}(p-1,1)$ and $\bar{C}(p, 1)$ for $q=1$ by surgery.

Let $W_{F}=(A, B ; F)$ be a realization of $W \in \bar{C}(p, 1)$ such that F_{p} is a 3-ball. Put $X=W-N\left(F_{p}, W\right)$, where $N\left(F_{p}, W\right)$ means a regular neighborhood of F_{p} in W
meeting the boundary regularly. Put $G=F_{0}+\cdots+F_{p-1}, A^{*}=\overline{A-N\left(F_{p}, A\right)}$ and $B^{*}=\overline{B-N\left(F_{p}, B\right)}$. Then, clearly, $X_{G}=\left(A^{*}, B^{*} ; G\right)$ is a realization of X. Obviously, the following assertion holds.

Assertion 5.1. X belongs to $C(p-1,1)$.
Note that X does not belong to $\bar{C}(p-1,1)$.
Assertion 5.2. $\dot{X}=S_{1}^{3}+S_{2}^{3}$, where $S_{i}^{3}(i=1,2)$ is a 3 -sphere.
Proof. From the construction of X, it is seen that W is obtained from X by attaching a 1 -handle $D^{1} \times D^{3}\left(=N\left(F_{p}, W\right)\right)$ to X. That is,

$$
\begin{aligned}
& W=X \cup D^{1} \times D^{3}, \\
& X \cap D^{1} \times D^{3}=\dot{X} \cap\left(D^{1} \times D^{3}\right)^{\bullet}=S^{0} \times D^{3}=\{-1\} \times F_{p}+\{1\} \times F_{p} .
\end{aligned}
$$

Hence $\dot{X}=\left(\dot{W}-(-1,1) \times \dot{F}_{p}\right) \cup\{-1\} \times F_{p} \cup\{1\} \times F_{p}$. Since \dot{F}_{p} is a 2 -sphere contained in the 3 -sphere \dot{W} and F_{p} is a 3-ball, it follows that \dot{X} is the disjoint union of two 3 -spheres S_{1}^{3} and S_{2}^{3}.

In the following, we construct an element V of $\bar{C}(p-1,1)$ from X by attaching a 4-ball D^{4}. We define $V=X \cup D^{4}$ and $X \cap D^{4}=S_{2}^{3}=\dot{D}^{4}$. Then, it is easy to see that \dot{V} is a 3 -sphere S_{1}^{3} and $H_{k}(V)=H_{k}(X)$ for $k=1$, 2. Since the conditions on the boundary and homology groups are satisfied, it remains to check $b(V)=2$ in order to $V \in \bar{C}(p-1,1)$.

Assertion 5.3. $b(V)=2$.
Proof. From the definition of V, it is obvious that $2 \leqq b(V) \leqq 3$ because $V=$ $A^{*} \cup B^{*} \cup D^{4}$. Let us consider $\hat{V}=V \cup E^{4}$ where E^{4} is a 4-ball satisfying $V \cap E^{4}=$ $\dot{V}=\dot{E}^{4}$. Then, \hat{V} is a closed 4 -manifold with the ball covering $\left\{A^{*}, B^{*}, D^{4}, E^{4}\right\}$. By [1], it follows that $b(V)=3$, because $D^{4} \cap E^{4}=\varnothing$. Hence, by the homogeneity of manifold, we have $b(V)=2$.

Therefore, we proved the following theorem.
Theorem 5.4. Any manifold W of $\bar{C}(p, 1)$ is constructed from some V of $\bar{C}(p-1,1)$ by the following way. First, remove the interior of a 4 -ball D in the interior of V. Then, W is obtained by attaching a 1-handle $D^{1} \times D^{3}$ to $V-D$ putting one of the components of $\dot{D}^{1} \times D^{3}$ on \dot{V} and the other on \dot{D}.

Theorem 5.5. Any manifold W of $\bar{C}(p, 1)$ has a spine homeomorphic to $S^{2} \vee\left(S_{1}^{2} \vee \cdots \vee S_{p}^{1}\right) \vee\left(S_{1}^{3} \vee \cdots \vee S_{p}^{3}\right)$ for $p \geqq 0$.

Proof. First we deal with the case $p=0$. Let W be an element of $\bar{C}(0,1)$. Then, W has a realization $(A, B ; F)$ such that $W=A \cup B$ and $F=A \cap B$ is a solid
torus $S^{1} \times D^{2}$. Take two interior points a and b in A and B, respectively. Then, W collapses to $a * F \cup b * F$, where the symbol $*$ means the join. Since F collapses to the center line $C, a * F \cup b * F$ collapses to $a * C \cup b * C$. It is clear that $a * C \cup b * C$ is a 2 -sphere S^{2}, because C is a circle.

Now, we prove the case $p=1$. Let $W \in \bar{C}(1,1)$ and V an element of $\bar{C}(0,1)$ corresponding to W obtained in Theorem 5.4. Then, we can write

$$
W=\left\{V \#\left(S^{3} \times I\right)\right\} \cup\left(D^{1} \times D^{3}\right)
$$

where I denotes the closed unit interval $[0,1]$ and $\#$ means the connected sum. We can assume $V \cap D^{1} \times D^{3}=\varnothing$. Put the 3 -ball $V \cap S^{3} \times I=E$. Take a realization $(A, B ; F)$ of V such that F is a solid torus. We can assume that $\dot{F} \cap E$ is a 2 ball X properly embedded in E, that is, $X \cap \dot{E}=\dot{X}$. Let J_{1} denote a straight line in F joining the center of X and a point of the center line C of F, that is, $F \backslash C \cup J_{1} \cup X$. Since V collapses to S^{2} as shown above, we obtain

$$
V \backslash S^{2} \cup J_{1} \cup X
$$

On the other hand, it is easy to see

$$
S^{3} \times I \cup D^{1} \times D^{3} \searrow S_{1}^{1} \vee S_{1}^{3} \cup J_{2} \cup X
$$

where J_{2} means a straight line in $S^{3} \times I$ joining the center of X and a point of $S_{1}^{3}=S^{3} \times 1 / 2$. Thus we have

$$
W \backslash S^{2} \cup J_{1} \cup J_{2} \cup X \cup S_{1}^{1} \vee S_{1}^{3}
$$

Since X is a 2-ball, $W \backslash S^{2} \cup J \cup S_{1}^{1} \vee S_{1}^{3}$ where $J=J_{1} \cup J_{2}$. It is not hard to deform $S^{2} \cup J \cup S_{1}^{1} \vee S_{1}^{3}$ to $S^{2} \vee S_{1}^{1} \vee S_{1}^{3}$ in W, since J is a 1-ball. Therefore, $W \backslash S^{2} \vee S_{1}^{1} \vee S_{1}^{3}$.

The case $p \geqq 2$ can be proved similarly.

References

[1] K. Kobayashi and Y. Tsukui: The ball coverings of manifolds. J. Math. Soc. Japan, 28 (1976), 133-143.
[2] Y. Tsukui: (Preprint).
[3] M. Yamashita and H. Ikeda: 4-manifolds of covering number 2. Math. Semi. Notes, Kobe Univ., 4 (1976), 105-111.

[^0]
[^0]: Kobe University, Nada, Kobe, Japan

 Faculty of Engineering, Toyo University, Kawagoe-shi, Saitama, Japan

