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1. Introduction.

K. Kobayashi and Y. Tsukui introduced the concept of the ball coverings

of manifolds in [1]. For a manifold $W$, the minimum number of balls of the ball
coverings of $W$ is called the covering number of $W$ and is denoted by $b(W)$ .

In [1], they obtained the following result.

Theorem. For a closed n-manifold $W$, we have $2\leqq b(W)\leqq n+1$ .
Clearly, a closed n-manifold $W$ is an n-sphere if and only if $b(W)=2$ . It is

difficult, however, to determine the n-manifold $W$ with $b(W)=2$ when the boundary
of $W$ is non-empty and $n\geqq 4$ . The answer to this problem implies the classification
of closed n-manifolds $W$ with $b(W)=3$ . Recently, Y. Tsukui obtained a complete

answer to the problem under the situation $H_{2}(W)=0$ and $n=4$ , in [2].

In the present paper, we are interested in the case $H_{2}(W)=Z$ (the additive
group of integers) and $n=4$ .

2. Preliminaries.

For a manifold $W$, we denote the boundary of $W$ by $\dot{W}$ and the interior of
$W$ by $\dot{W}$. For topological spaces $X$ and $Y,$ $X+Y$ means the disjoint union of $X$

and $Y$, and $X\vee Y$ means a one point union of $X$ and $Y$ in the usual sense. For
groups $G$ and $H$, we denote the direct sum of $G$ and $H$ by $G+H$. For a group
$G$ and an integer $p,$ $pG$ means the direct sum $G+\cdots+G$ ( $p$ times).

Definition 1. The class $C(p, q)$ consists of connected compact bounded $PL4-$

manifolds $W$ satisfying the following conditions;

(C.1) $b(W)=2$ ,
(C.2) $H_{1}(W)=pZ$,
(C.3) $H_{2}(W)=qZ$.
$\overline{C}(p, q)$ denotes the subclass of $C(p, q)$ defined by the condition;

(C.4) $\dot{W}=S^{3}$ (the 3-sphere).

For any $W\in C(p, q)$ , there exist two 4-balls $A$ and $B$ such that $W=A\cup B$ and
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$A\cap B$ is a compact 3-manifold. Usually, by $F$, we denote $A\cap B$ and call it the
attaching face (of $A$ and $B$ ). $W_{F}=(A, B;F)$ is called a realization of $W$.

Lemma 2.1. For any realization $W_{F}$ of $W$ in $C(p, q),$ $H_{k-1}(F)=H_{k}(W)$ and
$H_{1}(\dot{F})=2qZ$.

Proof. Suppose $W_{F}=(A, B;F)$ is an arbitrary realization of $W$. The first
half is an immediate consequence of the Mayer-Vietoris sequence since $W=A\cup B$ ,
$F=A\cap B$ and $A$ and $B$ are both 4-balls. The latter half is shown as follows.
First, we call the reader’s attention to $F$ being a subset of 3-sphere (for instance,
$A)S^{3}$ . Put $E=\overline{S}^{3}-F$. Then, we conclude $H_{1}(F)=H_{1}(E)+H_{1}(F)$ using the Mayer-
Vietoris sequence. On the other hand, applying the Alexander duality, we get
$H_{1}(E)=H_{1}(S^{3}-F)=H^{1}(F)$ . Since $H_{\perp}(F)=H_{2}(W)=qZ$, $H^{1}(F)=Hom(H_{1}(F), Z)=$

Hom $(qZ, Z)=qZ$. Hence, we get $H_{1}(\dot{F})=2qZ$.

Remark 2.2. Suppose $W_{f}$, is a realization of $W\in C(p, q)$ . Then, the attaching
face $F$ is a subset of $S^{3}$ and is a disjoint union

$F=F_{0}+F_{1}+\cdots+F_{p}$

of connected compact 3-manifolds $F_{i}(i=0,1, \cdots, p)$ with non-empty boundary $F_{i}$ ,
since $H_{0}(F)=H_{1}(W)=pZ$.

Let us consider a realization $W_{F}$ of $W\in C(p, 1)$ . The connected components
of $F$ are all 2-spheres but exactly one torus $S^{1}\times S^{1}$ , since $H_{1}(F)=Z+Z$ and $F$ is a
disjoint union of closed surfaces. Without loss of generality, we assume $S^{1}\times S^{1}\subset\dot{F}_{0}$ .
Then, $\dot{F}$ is completely described as follows.

$\dot{F}=\dot{F}_{0}+\dot{F}_{1}+\cdots+\dot{F}_{p}$ ,
$\dot{F}_{0}=S^{1}\times S^{1}+S_{01}^{2}+\cdots+S_{0r_{0}}^{2}$ ,
$F_{i}=S_{i1}^{2}+\cdots+S_{ir_{i}}^{2}$ , $i=1,$ $\cdots,$ $p$ ,

where $S_{ij}^{2}$ is a 2-sphere and $r_{0}\geqq 0$ , $r_{i}\geqq 1(i\neq 0)$ . Since each $F_{i}(i\neq 0)$ is a 3-
dimensional connected submanifold of a 3-sphere and

$\dot{F}_{i}=S_{i1}^{2}+\cdots+S_{ir_{i}}^{2}$ ,

$F_{i}$ is constructed by removing $(r_{i}-1)$ small 3-balls from the interior of a large
3-ball. For details, it is shown by the induction on the number $r_{i}$ using $(3, 2)-$

Schoenflies theorem.

3. The class $\overline{C}(p, 1)$ .
By $\hat{W}$ , we denote the closed 4-manifold obtained by attaching a 4-ball $C$ to
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an element $W$ of $\overline{C}(p, q)$ at the boundary naturally. That is to say,

$\hat{W}=W\cup C$ and $W\cap C=\dot{W}=\dot{C}$ .

Obviously, $\hat{W}$ is uniquely determined by $W$ in the sense of PL homeomorphism.

We say $\hat{W}$ the completion of $W$.
Suppose $W_{F}=(A, B;F)$ is an arbitrary realization of $W\in\overline{C}(p, q)$ . Then, $\hat{W}$

can be expressed as $\hat{W}=A\cup B\cup C$ . Now, put $W^{f}=A\cup C$ and $W^{\prime\prime}=B\cup C$ . Then,

each of $W,$ $W^{f}$ and $W^{\prime\prime}$ is obtained from $W$ by removing a 4-ball. Thus, $W$,
$W^{f}$ and $W^{\prime\prime}$ are PL homeomorphic to each other by the homogeneity of manifold.
Put $F^{f}=A\cap C$ and $F^{\prime\prime}=B\cap C$ . Then, $W_{F^{\prime}}=(A, C;F^{\prime})$ and $W_{F^{\prime}}=(B, C;F^{\prime\prime})$ are
regarded as other realizations of $W$ and are naturally determined by $W_{F}$ .

Let us consider the expression $W_{F}=(A, B;F)$ a realization of $W$. Let $A$ and
$B$ be 4-balls and $F$ a compact 3-manifold. Let $f_{A}:F\rightarrow A$ and $f_{B}:F\rightarrow\dot{B}$ be PL
embeddings. Put $F_{A}=f_{A}(F)$ and $F_{B}=f_{B}(F)$ . Then, $f=f_{B^{\circ}}f_{1}^{-1}$ ; $F_{A}\rightarrow F_{B}$ is a PL

homeomorphism and $W=A\bigcup_{f}B$ is a connected compact PL 4-manifold with

$b(W)=2$ . Conversely, any connected compact 4-manifold $W$ with $b(W)=2$ can be

obtained by the construction above. For this reason, we adopt the notation
$((A, F_{A}),$ $(B, F_{B});F)_{f}$ (or shortened one $(A,$ $B;F)_{f}$ , if there is no confusion) for a
realization $W_{F}$ of $W$. In this sense, the completion $\hat{W}=A\cup B\cup C$ of $W\in\overline{C}(p, q)$

determines the following three realizations.

$W_{c^{F}}=(A, B;_{c}F)_{f_{c}}=((A,F),$ $(B,F);_{c}F)_{f_{G}}=W_{F}$ ,

$W_{a^{F}}=(B, C;_{a}F)_{f_{a}}=((B,F),$ $(C,F);_{a}F)_{f_{a}}=W_{F^{\prime}}$ ,

$W_{b^{F}}=(C, A;_{b}F)_{f_{b}}=((C, bF_{c}),$ $(A, bF_{A});_{b}F)_{f_{b}}=W_{F^{\prime\prime}}$ .

Note that, in $W$, there are equalities

$aF_{B}=_{a}F_{c}=B\cap\dot{C}$ , $bCbA$ and $CF_{A}=_{c}F_{B}=AnB$ .

Lemma 3.1. In $W,$ $aBbcA\angle nBn\dot{c}$ .

Proof. Since other cases hold similarly, we show . $I_{A}^{\urcorner}=\dot{A}nBn\dot{c}$ , as a typical

case. From the construction, it is obvious that

$cF_{A}=_{c}F_{B}=AnB$ , $c\dot{F}_{A}\subset\dot{W}=\dot{C}$ and $CF_{A}^{o}\subset W^{o}$

where $W=A\cup B$ . Thus, $c\dot{F}_{A}\subset A\cap BnC$ . Conversely, take a point $x\in A\cap B\cap\dot{C}$

and assume $x\not\in t\dot{F}_{A}$ . Since $x$ belongs to $A\cap\dot{B},$ $x\in CF_{A}^{o}\subset W^{o}$. This implies $x\not\in\dot{C}$ ,

because $W^{o}\cap C$ is empty. This is a contradiction. This completes the proof.

Let us consider the 3-sphere $\dot{A}$ . Note that $bF_{\Lambda}$ and $ cF\Lambda$ are submanifolds of
$A$ satisfying
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$bF_{A}\bigcup_{c}F_{\Lambda\angle}=\angle i$ and $bF_{A}\bigcap_{c}F_{Ab}=\dot{F}_{A}\bigcap_{c}\dot{F}_{Ab}=\dot{F}_{A}=_{c}\dot{F}_{A}$ .
We say that the pair $(_{b}F_{Ac}F_{A})$ is the sPlitting of $A$ determined by the completion
$\hat{W}=A\cup B\cup C$ .

Hereafter, we deal with the manifold $W\not\in\overline{C}(p, 1)$ . For the simplicity, we
confuse $bF_{A}$ and $bF$, and write $F=F=F$ and $F^{\prime}=_{c}F_{\Lambda}=_{c}F$. Therefore, $(F, F^{f})$

means the splitting $(_{b}F_{A,c}F_{A})$ .

Lemma 3.2. For the spljtting $(F, F^{\prime})$ of $A,$ $F_{0}\cap F_{0}^{\prime}=\dot{F}_{0}\cap\dot{F}_{0}^{\prime}=S^{1}\times S^{1}$ .

Proof. It is trivial that $F_{0}\cap F_{0}^{\prime}=\dot{F}_{0}\cap\dot{F}_{0}^{\prime}$ . We claim that $\dot{F}_{0}$ and $F_{0}^{\prime}$ have
$S^{1}\times S^{1}$ in common. Recall that each of $F$ and $F^{\prime}$ has unique torus component.
Let $T$ and $T^{\prime}$ denote the torus components of $F$ and $F^{f}$ , respectively. Then $T$

and $T^{f}$ belong to $\dot{F}_{0}$ and $\dot{F}_{0}^{\prime}$ , respectively. Now, we have $T=T^{\prime}$ because $\dot{F}=\dot{F}^{\prime}$ .
This means $T=S^{1}\times S^{1}\subset\dot{F}_{0}nF_{0}^{f}$ . The torus $T$ divides $A$ into two connected com-
ponents $\mathring{X}$ and $\dot{Y}$ such that $X\cup Y=A$ and $X\cap Y=T$. Without loss of generality,
we assume $F_{0}\subset X$ and $F_{0}^{\prime}\subset Y$ since $F_{0}$ and $F_{0}^{\prime}$ are connected and $ F_{0}^{o}\cap F_{0}^{o}’=\emptyset$ .
Therefore, $\dot{F}_{0}\cap\dot{F}_{0}^{f}=F_{0}\cap F_{0}^{\prime}\subset X\cap Y=T$, completing the proof.

For the splitting $(F, F^{\prime}),$ $F_{0}$ has $r_{0}$ 2-spheres $S_{0j}^{2}(j=1, \cdots, r_{0})$ as its boundary
components. We will cap off these $r_{0}$ boundary components by 3-balls $D_{j}^{3}$ . Since
$F_{0}$ is connected and is contained in the 3-sphere $A$ , we can take the 3-balls $D_{j}$

in $A_{-}F_{0}$ by the aid of $(3, 2)$ -Sch\"onflies theorem. We denote the resulting 3-
manifold in $\dot{A}$ by $\hat{F}_{0}$ . That is to say,

$\hat{F}_{0}=F_{0}\cup D_{1}^{3}\cup\cdots\cup D_{r_{0}}^{3}\subset A$ ,
$F_{0}\cap D_{j}^{3}=S_{0j}^{2}$ ,
$ D_{j}^{3}\cap D_{k}^{3}=\emptyset$ $(j\neq k)$ .

Similarly, we construct $F_{0}^{\prime}$ from $F_{0}^{\prime}$ in the same 3-sphere $\dot{A}$ . We call the pair
$(\hat{F}_{0},\hat{F}_{0}^{f})$ the caPping of the splitting $(F_{0}, F_{0}^{\prime})$ .

Since $\hat{F}_{0}$ is a submanifold of the 3-sphere $\dot{A}$ and the boundary component of
$\hat{F}_{0}$ is just a torus, $\hat{F}_{0}$ should be the exterior of some knot (may be trivial) in $\lrcorner\dot{4}$ .
Similarly, $\hat{F}_{0}^{\prime}$ is also the exterior of some (other) knot it $A$ . Each of $\hat{F}_{0}$ and $\hat{F}_{0}^{\prime}$

has a common torus $T=S^{1}\times s^{1}\subset A$ as the boundary by Lemma 3.2. Since $T$

divides the 3-sphere $A$ into two components and $\hat{F}_{0}\neq\hat{F}_{0}^{\prime}$ , we obtain the following
lemma.

Lemma 3.3. $\hat{F}_{0}\cup\hat{F}_{0}^{f}=\angle\dot{4}$ and $\hat{F}_{0}\cap\hat{F}_{0}^{\prime}=T$.

Corollary 3.4. One of $\hat{F}_{0}$ and $\hat{F}_{0}^{f}$ is homeomorphic to the solid torus $S^{1}\times D^{2}$ .
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Theorem 3.5. For a comPletion $W=A\cup B\cup C$ of $W\in\overline{C}(p, 1)$ , one of three 3-

spheres $A,$ $B$ and $\dot{C}$ has a spljtting $(F, F^{\prime})$ such that both $fi_{0}$ and $fi_{0}^{\prime}$ are homeo-

morPhic to the solid torus $S^{1}\times D^{2}$ .

Proof. We use the full notation of the splitting within this proof. First,

we claim that $a\hat{F}B0,$ $b\hat{F}_{C0}$ and $c\hat{F}A0$ are homeomorphic to $a\hat{F}C0,$ $b\hat{F}A0$ and $c\hat{F}B0$ ,

respectively, but $aB0aC0,$ $bC0bA0$ and $c\hat{F}_{A0}\neq\hat{F}$ as subsets in $W$. Let us

consider the splitting $(_{b}F_{A,c}F_{A})$ of $A$ . By Lemma 3.4, one of $b\hat{F}A0$ and $c\hat{F}A0$ , say
$b\hat{F}_{A0}$ , is homeomorphic to the solid torus. If $0\hat{F}_{A0}$ is also homeomorphic to the

solid torus, we choose $(_{b}F_{Ac}F_{A})$ as a required splitting. We consider the case

that $c\hat{F}A0$ is not homeomorphic to the solid torus, and we consider the splitting

$(_{a}F_{C,b}F_{C})$ of $\dot{C}$ . Since $b\hat{F}_{A0}$ and $b\hat{F}_{co}$ are homeomorphic and $b\hat{F}_{A0}$ is the solid torus,

$b\hat{F}_{c\sigma}$ is the solid torus. Now, it is sufficient to show that $a\hat{F}C0$ is homeomorphic

to the solid torus. Suppose not. Let us consider the splitting $(_{c}F_{B}, aFB)$ of $B$.
Since $c\hat{F}B0$ and $a\hat{F}B0$ are homeomorphic to $\theta fl_{A0}$ and $a\hat{F}C0$ , both $c\hat{F}B0$ and $a\hat{F}B0$ are

not homeomorphic to the solid torus. This is a contradiction to Lemma 3.4.

This completes the proof.

Remark 3.6. For the splitting obtained in Theorem 3.5, both $\hat{F}_{0}$ and $\hat{F}_{0}^{f}$ are

trivial solid tori in the 3-sphere.

4. Realizations.

In this section, we give some properties with respect to the form of the

attaching face. The typical result is Theorem 4.7 which mentions that a manifold
$W\in\overline{C}(p, 1)$ has a realization $W_{F}=(A, B;F)$ such that $F$ has a 3-ball as a connected

component.

Without loss of generality, we may assume that the splitting $(F, F^{\prime})$ of $\dot{A}$

satisfies the condition of Theorem 3.5, namely, both $F_{0}$ and $F_{0}^{\prime}$ are homeomorphic

to the solid torus $S^{1}\times D^{2}$ . Remember that $F$ is the attaching face of a realization
$W_{F}=(A, B;F)$ of $W\in\overline{C}(p, 1)$ and that $F$ is characterized by

$I^{\dot{\tau}}\backslash _{\prec}=\dot{F}_{\sigma}+\dot{F}_{1}+\cdots+\dot{F}_{p}$ ,
$\dot{F}_{0}=S^{1}\times S^{1}+(S_{01}^{2}+S_{02}^{2}+\cdots+S_{0r_{0}}^{2})$ ,

$\dot{F}_{i}=S_{i1}^{2}+S_{i2}^{2}+\cdots+S_{ir_{i}}^{2}$ , $i=1,$ 2, $\cdot\cdot,$
$p$ ,

where $S_{ij}^{2}$ is a 2-sphere and $r_{0}\geqq 0,$ $r_{i}\geqq 1(i\neq 0)$ .

Proposition 4.1. For any realization $W_{F}=(A, B;F)$ of $W\in\overline{C}(p, 1)$ , the in-

equality $r_{0}\leqq p$ holds.
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Proof. Let $(F, F^{\prime})$ be the splitting of $A$ . If $P=0$ , we have $F=F_{0}$ and $F^{\prime}=F_{0}^{\prime}$ .
This implies $F_{0}\cup F_{0}^{\prime}=F\cup F^{\prime}=A$ , and hence $\hat{F}_{0}=F_{0}$ and $\hat{F}_{0}^{\prime}=F_{0}^{\prime}$ . Thus $\dot{F}_{0}$ should
be just $S^{1}\times S^{1}$ . That is, $r_{0}=0=p$ . Now, we assume $P\geq 1$ . Let us consider the
characterization of $\dot{F}_{0}$ above and

$F_{0}=F_{0}+(D_{1}^{8}+D_{2}^{3}+\cdots+D_{r_{0}}^{3})$ .

Where $D_{j}^{3}$ is a 3-ball and $F_{0}\cap D_{j}^{3}=\dot{F}_{0}\cap\dot{D}_{j}^{3}=S_{0j}^{2}$ . Since

$F\cup F^{\prime}=(F_{0}+(F_{1}+\cdots+F_{p}))(F_{0}^{f}+(F_{1}^{\prime}+\cdots+F_{p}^{f}))=A$ ,

and $S_{0j}^{2}$ belongs to $\dot{F}_{0}$ , exactly one of $F_{0}^{\prime},$

$\cdots,$
$F_{p}^{f}$ has $S_{0j}^{2}$ as a boundary component.

Because $ F_{0}^{\prime}\cap S_{0j}^{2}=\emptyset$ follows from $F_{0}\cap F_{0}^{f}=\dot{F}_{0}\cap\dot{F}_{0}^{\prime}=S^{1}\times S^{1}$ by Lemma 3.2, $F_{0}^{\prime}$ can
not contain $S_{0j}^{2}$ as a boundary component. Hence one of $F_{1}^{\prime},$

$\cdots,$
$F_{p}^{\prime}$ , say $F_{i(j)}^{\prime}$ ,

has $S_{0j}^{2}$ as its boundary component. Since $F_{i(j)}^{\prime}$ is connected, $F_{i(j)}^{\prime}$ should be
contained in $D_{j}^{3}$ . $F_{\iota(j)}^{\prime}$ does not contain other 2-spheres $S_{0k}^{2}$ because $D_{j}^{3}\cap D_{k}^{3}$ is
empty if $j\neq k$ . Therefore, $r_{0}$ can not exceed $p$ .

A splitting $(F, F^{\prime})$ of $A$ induces two realizations $W_{F}$ and $W_{F^{1}}$ . In the follow-
ing, we choose a good realization from $W_{F}$ and $W_{F^{\prime}}$ .

Proposition 4.2. For $P\geqq 1$ , there exists a realization $W_{F}$ of We $\overline{c}(p, 1)$ such
that $r_{0}\geq 1$ and $\hat{F}_{0}$ is a solid torus $S^{1}\times D^{2}$ .

Proof. For a completion $\hat{W}=A\cup B\cup C$ , we can take a splitting $(F, F^{\prime})$ of $\dot{A}$

such that both $\hat{F}_{0}$ and $\hat{F}_{0}^{\prime}$ are homeomorphic to the solid torus by Theorem 3.5.
Let us consider the characterizations

$\dot{F}_{0}=S^{1}\times S^{1}+(S_{01}^{2}\dashv\cdots+S_{0r_{0}}^{2})$ ,
$I_{0}^{\urcorner^{\prime}}<=S^{1}\times S^{1}+(S_{01}^{\prime 2}+\cdots+S_{0r_{0}^{r}}^{f2})$ .

If we assume $r_{0}=0=r_{0}^{\prime}$ , we have $\dot{F}_{0}=\dot{F}_{0}^{f}=S^{1}\times S^{1}$ . Hence $\hat{F}_{0}=F_{0}$ and $\hat{F}_{0}^{\prime}=F_{0}^{f}$ .
Then $\hat{F}_{0}\cup\hat{F}_{0}^{f}=F_{0}\cup F_{0}^{f}=A$ . This implies $F=F_{0}$ and $F^{f}=F_{0}^{f}$ . Thus, we have $p=0$ .
This contradicts to our hypothesis $p\geqq 1$ . Therefore, either $r_{0}\geqq 1$ or $r_{0}^{\prime}\geqq 1$ holds.
If $r_{0}\geqq 1$ , we take $W_{F}$ as a required realization of $W$. If $r_{0}=0,$ $W_{F^{\prime}}$ is a required
one.

Proposition 4.3. For the realization $W_{F}$ of Theorem 4.2, we obtain

$F_{0}\simeq S^{1}\vee(S_{1}^{2}\vee\cdots\vee S_{r_{0}}^{2})$ and

$F_{i}\simeq\left\{\begin{array}{ll}one point, & if r_{i}=1,\\S_{1}^{2}\vee\cdots\vee S_{r_{i}-1}^{2} , & if r_{i}\geqq 2,\end{array}\right.$

where $\simeq$ means “homotopjcally equivalent to”.
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Proof. $F_{0}$ is obtained from a solid torus by removing $r_{0}$ small disjoint 3-balls
in its interior. Thus, the first half part of the proposition is obtained by collapsing
$F_{0}$ naturally. By the same way, the latter half is an immediate consequence of

the characterization of $F_{i}$ in section 2.

Corollary 4.4. For the realization $W_{F}$ of Theorem 4.2, we obtain

$H_{2}(F_{0})=r_{0}Z$ , and
$H_{2}(F_{i})=(r_{i}-1)Z$ , $i=1,$ $\cdots,$ $p$ .

Proposition 4.5. For a manifold $W$ of $\overline{C}(p, q)$ , we obtain $H_{3}(W;Z_{2})=pZ_{2}$ .

Proof. Using the Poincar\’e duality of $Z_{2}$ -coefficient, we have

$H_{3}(W;Z_{2})=H^{1}(W,\dot{W}; Z_{2})=H^{1}(W, S^{3};Z_{2})=Hom(H_{1}(W, S^{3}),$ $Z_{2}$).

On the other hand, the exact sequence of the pair $(W, S^{3})$ shows $H_{1}(W, S^{3})=pZ$.
Thus, $H_{3}(W;Z_{2})=Hom(pz, z_{2})=pz_{2}$ .

Corollary 4.6. For the realization $W_{F}$ of Theorem 4.2, we obtain

$r_{0}+r_{1}+\cdots+r_{p}=2p$ .

Proof. From Corollary 4.4, we have

$H_{2}(F)=H_{2}(F_{0})+H_{2}(F_{1})+\cdots+H_{2}(F_{p})$

$=r_{0}Z+\Sigma(r_{i}-1)Z$

$=((r_{0}+r_{1}+\cdots+r_{p})-p)Z$ .

Hence $H_{2}(F;Z_{2})=((r_{0}+r_{1}+\cdots+r_{p})-p)Z_{2}$ . On the othe hand, by Proposition 4.5,
$H_{2}(F;Z_{2})=H_{3}(W;Z_{2})=pZ_{2}$ . Thus, we obtain $r_{0}+\cdots+r_{p}=2p$ .

Theorem 4.7. For the realization $W_{F}$ of Theorem 4.2, one of $F_{1},$
$\cdots,$

$F_{p}$ , say
$F_{p}$ , is a 3-ball.

Proof. Suppose any of $r_{i},$ $i=1,$ $\cdot$ . , , $p$ , is greater than 1. Since $r_{0}\geqq 1$ , we have
$r_{0}+\cdots+r_{p}\geq 2p+1$ . This contradicts to Corollary 4.6. Therefore, at least one of
$r_{i},$ $i=1,$ $\cdots,$ $p$ , say $r_{p}$ , is exactly 1. Then the boundary of $F_{p}$ consists of exactly

one 2-sphere. Since $F_{p}$ is a submanifold of a 3-sphere, $F_{p}$ should be a 3-ball.

5. Main results.

In this section, our main aim is to construct a correspondence between the

sets $\overline{C}(p-1,1)$ and $\overline{C}(p, 1)$ for $q=1$ by surgery.
Let $W_{F}=(A, B;F)$ be a realization of $W\in\overline{C}(p, 1)$ such that $F_{p}$ is a 3-ball.

Put $X=\overline{W}-N(\overline{F_{p},}W)$ , where $N(F_{p}, W)$ means a regular neighborhood of $F_{p}$ in $W$
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meeting the boundary regularly. Put $G=F_{0}+\cdots+F_{p-1},$ $A^{*}=\overline{A-N(F_{p},A)}$ and
$B^{*}=\overline{B-N(F_{p},B)}$ . Then, clearly, $X_{G}=(A^{*}, B^{*}; G)$ is a realization of $X$. Obviously,
the following assertion holds.

Assertion 5.1. $X$ belongs to $C(p-1,1)$ .
Note that $X$ does not belong to $\overline{C}(p-1,1)$ .
Assertion 5.2. $\dot{X}=S_{1}^{3}+S_{2}^{3}$ , where $S_{i}^{3}(i=1,2)$ is a 3-sphere.

Proof. From the construction of $X$, it is seen that $W$ is obtained from $X$

by attaching a l-handle $D^{1}\times D^{3}(=N(F_{p}, W))$ to $X$. That is,

$W=X\cup D^{1}\times D^{3}$

$X\cap D^{1}\times D^{3}=\dot{X}\cap(D^{1}\times D^{3})=S^{0}\times D^{3}=\{-1\}\times F_{p}+\{1\}\times F_{p}$ .
Hence $\dot{X}=(\dot{W}-(-1,1)\times\dot{F}_{p})\cup\{-1\}\times F_{p}\cup\{1\}\times F_{p}$ . Since $\dot{F}_{p}$ is a 2-sphere contained
in the 3-sphere $\dot{W}$ and $F_{p}$ is a 3-ball, it follows that $\dot{X}$ is the disjoint union of
two 3-spheres $S_{1}^{3}$ and $S_{2}^{3}$ .

In the following, we construct an element $V$ of $\overline{C}(p-1,1)$ from $X$ by attaching
a 4-ball $D^{4}$ . We define $V=X\cup D^{4}$ and $X\cap D^{4}=S_{2}^{3}=D^{4}$ . Then, it is easy to see
that $\dot{V}$ is a 3-sphere $S_{1}^{3}$ and $H_{k}(V)=H_{k}(X)$ for $k=1,2$ . Since the conditions on
the boundary and homology groups are satisfied, it remains to check $b(V)=2$ in
order to $Ve\overline{C}(p-1,1)$ .

$A_{88}ertion5.3$ . $b(V)=2$ .
Proof. From the definition of $V$, it is obvious that $2\leqq b(V)\leqq 3$ because $V=$

$A^{*}\cup B^{*}\cup D^{4}$ . Let us consider $\hat{V}=V\cup E^{4}$ where $E^{4}$ is a 4-ball satisfying $V\cap E^{4}=$

$\dot{V}=E^{4}$ . Then, $\hat{V}$ is a closed 4-manifold with the ball covering $\{A^{*}, B^{*}, D^{4}, E^{4}\}$ .
By [1], it follows that $b(V)=3$ , because $ D^{4}\cap E^{4}=\emptyset$ . Hence, by the homogeneity
of manifold, we have $b(V)=2$ .

Therefore, we proved the following theorem.

Theorem 5.4. Any manifold $W$ of $\overline{C}(p, 1)$ is constructed from some $V$ of
$\overline{C}(p-1,1)$ by the following way. First, remove the interior of a 4-ball $D$ in the
interior of V. Then, $W$ is obtained by attaching a l-handle $D^{1}\chi D^{3}$ to $V-D^{Q}$

putting one of the components of $D^{1}\times D^{3}$ on $\dot{V}$ and the other on $l$).

Theorem 5.5. Any manifold $W$ of $\overline{C}(p, 1)$ has a spjne homeomorphic to
$S^{2}\vee(S_{1}^{2}v\cdots vS_{p}^{1})\vee(S_{1}^{3}v\cdots vS_{p}^{3})$ for $p\geqq 0$ .

Proof. First we deal with the case $p=0$ . Let $W$ be an element of $\overline{C}(0,1)$ .
Then, $W$ has a realization $(A, B;F)$ such that $W=A\cup B$ and $F=A\cap B$ is a solid
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torus $S^{1}\times D^{2}$ . Take two interior points $a$ and $b$ in $A$ and $B$, respectively. Then,
$W$ collapses to $a*F\cup b*F$, where the symbol $*means$ the join. Since $F$ collapses

to the center line $C,$ $a*F\cup b*F$ collapses to $a*C\cup b*C$ . It is clear that $a*C\cup b*C$

is a 2-sphere $S^{2}$ , because $C$ is a circle.
Now, we prove the case $P=1$ . Let $W\in\overline{C}(1,1)$ and $V$ an element of $\overline{C}(0,1)$

corresponding to $W$ obtained in Theorem 5.4. Then, we can write

$W=\{V\#(S^{3}\times I)\}\cup(D^{1}\times D^{3})$

where $I$ denotes the closed unit interval $[0,1]$ and $\#$ means the connected sum.
We can assume $ V\cap D^{1}\times D^{3}=\emptyset$ . Put the 3-ball $V\cap S^{3}\times I=E$ . Take a realization
$(A, B;F)$ of $V$ such that $F$ is a solid torus. We can assume that $F\cap E$ is a 2-
ball $X$ properly embedded in $E$ , that is, $X\cap\dot{E}=\dot{X}$. Let $J_{1}$ denote a straight line
in $F$ joining the center of $X$ and a point of the center line $C$ of $F$, that is,
$F\searrow C\cup J_{1}\cup X$. Since $V$ collapses to $S^{2}$ as shown above, we obtain

$V\searrow S^{2}\cup J_{1}\cup X$ .
On the other hand, it is easy to see

$S^{3}\times I\cup D^{1}\times D^{3}\searrow S_{1}^{1}\vee S_{1}^{3}\cup J_{2}\cup X$

where $J_{2}$ means a straight line in $S^{3}\times I$ joining the center of $X$ and a point of
$S_{1}^{3}=S^{3}\chi 1/2$ . Thus we have

$W\searrow S^{2}\cup J_{1}\cup J_{2}\cup X\cup S_{1}^{1}vS_{1}^{3}$ .
Since $X$ is a 2-ball, $W\searrow S^{2}\cup J\cup S_{1}^{1}vS_{1}^{3}$ where $J=J_{1}\cup J_{2}$ . It is not hard to deform
$S^{2}\cup J\cup S_{1}^{1}\vee S_{1}^{3}$ to $S^{2}vS_{1}^{1}vS_{1}^{3}$ in $W$, since $J$ is a l-ball. Therefore, $W\searrow S^{2}vS_{1}^{1}vS_{1}^{3}$ .

The case $P\geqq 2$ can be proved similarly.
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