YOKOHAMA MATHEMATICAL JOURNAL VOL. 26, 1978

CLOSED 4-MANIFOLDS COVERED BY THREE 4-BALLS

By

HIROSHI IKEDA and MASAKATSU YAMASHITA

(Received February 14, 1978)

1. Introduction.

K. Kobayashi and Y. Tsukui introduced the concept of the ball coverings of manifolds in [1]. For a manifold W, the minimum number of balls of the ball coverings of W is called the *covering number* of W and is denoted by b(W).

In [1], they obtained the following result.

Theorem. For a closed n-manifold W, we have $2 \leq b(W) \leq n+1$.

Clearly, a closed *n*-manifold W is an *n*-sphere if and only if b(W)=2. It is difficult, however, to determine the *n*-manifold W with b(W)=2 when the boundary of W is non-empty and $n \ge 4$. The answer to this problem implies the classification of closed *n*-manifolds W with b(W)=3. Recently, Y. Tsukui obtained a complete answer to the problem under the situation $H_2(W)=0$ and n=4, in [2].

In the present paper, we are interested in the case $H_2(W)=Z$ (the additive group of integers) and n=4.

2. Preliminaries.

For a manifold W, we denote the boundary of W by W and the interior of W by W. For topological spaces X and Y, X+Y means the disjoint union of X and Y, and $X \lor Y$ means a one point union of X and Y in the usual sense. For groups G and H, we denote the direct sum of G and H by G+H. For a group G and an integer p, pG means the direct sum $G+\cdots+G$ (p times).

Definition 1. The class C(p, q) consists of connected compact bounded *PL* 4-manifolds *W* satisfying the following conditions;

(C.1) b(W)=2,

- (C.2) $H_1(W) = pZ$,
- (C.3) $H_2(W) = qZ$.

C(p, q) denotes the subclass of C(p, q) defined by the condition;

(C.4) $\dot{W} = S^3$ (the 3-sphere).

For any $W \in C(p, q)$, there exist two 4-balls A and B such that $W = A \cup B$ and

 $A \cap B$ is a compact 3-manifold. Usually, by F, we denote $A \cap B$ and call it the *attaching face* (of A and B). $W_F = (A, B; F)$ is called a *realization* of W.

Lemma 2.1. For any realization W_F of W in C(p,q), $H_{k-1}(F) = H_k(W)$ and $H_1(\dot{F}) = 2qZ$.

Proof. Suppose $W_F = (A, B; F)$ is an arbitrary realization of W. The first half is an immediate consequence of the Mayer-Vietoris sequence since $W = A \cup B$, $F = A \cap B$ and A and B are both 4-balls. The latter half is shown as follows. First, we call the reader's attention to F being a subset of 3-sphere (for instance, $\dot{A} > S^3$. Put $E = \overline{S^3} - F$. Then, we conclude $H_1(\dot{F}) = H_1(E) + H_1(F)$ using the Mayer-Vietoris sequence. On the other hand, applying the Alexander duality, we get $H_1(E) = H_1(S^3 - F) = H^1(F)$. Since $H_1(F) = H_2(W) = qZ$, $H^1(F) = \text{Hom }(H_1(F), Z) = \text{Hom }(qZ, Z) = qZ$. Hence, we get $H_1(\dot{F}) = 2qZ$.

Remark 2.2. Suppose W_F is a realization of $W \in C(p, q)$. Then, the attaching face F is a subset of S^3 and is a disjoint union

$$F = F_0 + F_1 + \cdots + F_p$$

of connected compact 3-manifolds F_i $(i=0, 1, \dots, p)$ with non-empty boundary \dot{F}_i , since $H_0(F) = H_1(W) = pZ$.

Let us consider a realization W_F of $W \in C(p, 1)$. The connected components of \dot{F} are all 2-spheres but exactly one torus $S^1 \times S^1$, since $H_1(\dot{F}) = Z + Z$ and \dot{F} is a disjoint union of closed surfaces. Without loss of generality, we assume $S^1 \times S^1 \subset \dot{F}_0$. Then, \dot{F} is completely described as follows.

$$\dot{F} = F_0 + \dot{F_1} + \dots + \dot{F_p}$$
,
 $\dot{F_0} = S^1 \times S^1 + S^2_{01} + \dots + S^2_{0r_0}$,
 $\dot{F_i} = S^2_{i1} + \dots + S^2_{ir_i}$, $i = 1, \dots, p$,

where S_{ij}^2 is a 2-sphere and $r_0 \ge 0$, $r_i \ge 1$ $(i \ne 0)$. Since each F_i $(i \ne 0)$ is a 3-dimensional connected submanifold of a 3-sphere and

$$F_i = S_{i_1}^2 + \cdots + S_{i_{r_i}}^2$$

 F_i is constructed by removing (r_i-1) small 3-balls from the interior of a large 3-ball. For details, it is shown by the induction on the number r_i using (3, 2)-Schoenflies theorem.

3. The class $\overline{C}(p, 1)$.

By \hat{W} , we denote the closed 4-manifold obtained by attaching a 4-ball C to

110

CLOSED 4-MANIFOLDS

an element W of $\overline{C}(p,q)$ at the boundary naturally. That is to say,

$$\hat{W} = W \cup C$$
 and $W \cap C = \dot{W} = \dot{C}$.

Obviously, \hat{W} is uniquely determined by W in the sense of PL homeomorphism. We say \hat{W} the *completion* of W.

Suppose $W_F = (A, B; F)$ is an arbitrary realization of $W \in \overline{C}(p, q)$. Then, \hat{W} can be expressed as $\hat{W} = A \cup B \cup C$. Now, put $W' = A \cup C$ and $W'' = B \cup C$. Then, each of W, W' and W'' is obtained from W by removing a 4-ball. Thus, W, W' and W'' are PL homeomorphic to each other by the homogeneity of manifold. Put $F' = A \cap C$ and $F'' = B \cap C$. Then, $W_{F'} = (A, C; F')$ and $W_{F'} = (B, C; F'')$ are regarded as other realizations of W and are naturally determined by W_F .

Let us consider the expression $W_F = (A, B; F)$ a realization of W. Let A and B be 4-balls and F a compact 3-manifold. Let $f_A: F \rightarrow \dot{A}$ and $f_B: F \rightarrow \dot{B}$ be PL embeddings. Put $F_A = f_A(F)$ and $F_B = f_B(F)$. Then, $f = f_B \circ f_A^{-1}$; $F_A \rightarrow F_B$ is a PL homeomorphism and $W = A \cup_f B$ is a connected compact PL 4-manifold with b(W) = 2. Conversely, any connected compact 4-manifold W with b(W) = 2 can be obtained by the construction above. For this reason, we adopt the notation $((A, F_A), (B, F_B); F)_f$ (or shortened one $(A, B; F)_f$, if there is no confusion) for a realization W_F of W. In this sense, the completion $\hat{W} = A \cup B \cup C$ of $W \in \overline{C}(p, q)$ determines the following three realizations.

$$W_{cF} = (A, B; {}_{c}F)_{f_{c}} = ((A, {}_{c}F_{A}), (B, {}_{c}F_{B}); {}_{c}F)_{f_{c}} = W_{F},$$

$$W_{aF} = (B, C; {}_{a}F)_{f_{a}} = ((B, {}_{a}F_{B}), (C, {}_{a}F_{C}); {}_{a}F)_{f_{a}} = W_{F'},$$

$$W_{bF} = (C, A; {}_{b}F)_{f_{b}} = ((C, {}_{b}F_{C}), (A, {}_{b}F_{A}); {}_{b}F)_{f_{b}} = W_{F''}.$$

Note that, in W, there are equalities

 ${}_{a}F_{B} = {}_{a}F_{C} = \dot{B} \cap \dot{C}$, ${}_{b}F_{C} = {}_{b}F_{A} = \dot{C} \cap \dot{A}$ and ${}_{c}F_{A} = {}_{c}F_{B} = \dot{A} \cap \dot{B}$. Lemma 3.1. In W, ${}_{a}\dot{F}_{B} = {}_{b}\dot{F}_{C} = {}_{c}\dot{F}_{A} = \dot{A} \cap \dot{B} \cap \dot{C}$.

Proof. Since other cases hold similarly, we show ${}_{c}\dot{F}_{A} = \dot{A} \cap \dot{B} \cap \dot{C}$, as a typical case. From the construction, it is obvious that

$${}_{c}F_{A} = {}_{c}F_{B} = \dot{A} \cap \dot{B}$$
, ${}_{c}\dot{F}_{A} \subset \dot{W} = \dot{C}$ and ${}_{c}\dot{F}_{A} \subset \dot{W}$

where $W = A \cup B$. Thus, ${}_{c}\dot{F}_{A} \subset \dot{A} \cap \dot{B} \cap \dot{C}$. Conversely, take a point $x \in \dot{A} \cap \dot{B} \cap \dot{C}$ and assume $x \notin {}_{c}\dot{F}_{A}$. Since x belongs to $\dot{A} \cap \dot{B}$, $x \in {}_{c}\dot{F}_{A} \subset \dot{W}$. This implies $x \notin \dot{C}$, because $\dot{W} \cap C$ is empty. This is a contradiction. This completes the proof.

Let us consider the 3-sphere \dot{A} . Note that ${}_{b}F_{A}$ and ${}_{c}F_{A}$ are submanifolds of \dot{A} satisfying

HIROSHI IKEDA AND MASAKATSU YAMASHITA

$${}_{b}F_{A} \cup {}_{c}F_{A} = \dot{A}$$
 and ${}_{b}F_{A} \cap {}_{c}F_{A} = {}_{b}\dot{F}_{A} \cap {}_{c}\dot{F}_{A} = {}_{b}\dot{F}_{A} = {}_{c}\dot{F}_{A}$.

We say that the pair $({}_{b}F_{A}, {}_{c}F_{A})$ is the *splitting* of \dot{A} determined by the completion $\hat{W} = A \cup B \cup C$.

Hereafter, we deal with the manifold $W \notin \overline{C}(p, 1)$. For the simplicity, we confuse ${}_{b}F_{A}$ and ${}_{b}F$, and write $F = {}_{b}F_{A} = {}_{b}F$ and $F' = {}_{c}F_{A} = {}_{c}F$. Therefore, (F, F') means the splitting $({}_{b}F_{A}, {}_{c}F_{A})$.

Lemma 3.2. For the splitting (F, F') of \dot{A} , $F_0 \cap F'_0 = \dot{F}_0 \cap \dot{F}'_0 = S^1 \times S^1$.

Proof. It is trivial that $F_0 \cap F'_0 = \dot{F}_0 \cap \dot{F}'_0$. We claim that \dot{F}_0 and \dot{F}'_0 have $S^1 \times S^1$ in common. Recall that each of \dot{F} and \dot{F}' has unique torus component. Let T and T' denote the torus components of \dot{F} and \dot{F}' , respectively. Then T and T' belong to \dot{F}_0 and \dot{F}'_0 , respectively. Now, we have T=T' because $\dot{F}=\dot{F}'$. This means $T=S^1 \times S^1 \subset \dot{F}_0 \cap \dot{F}'_0$. The torus T divides \dot{A} into two connected components \dot{X} and \dot{Y} such that $X \cup Y = \dot{A}$ and $X \cap Y = T$. Without loss of generality, we assume $F_0 \subset X$ and $F'_0 \subset Y$ since F_0 and F'_0 are connected and $\dot{F}_0 \cap \dot{F}'_0 = \emptyset$. Therefore, $\dot{F}_0 \cap \dot{F}'_0 = F_0 \cap F'_0 \subset X \cap Y = T$, completing the proof.

For the splitting (F, F'), F_0 has r_0 2-spheres S_{0j}^2 $(j=1, \dots, r_0)$ as its boundary components. We will cap off these r_0 boundary components by 3-balls D_j^3 . Since F_0 is connected and is contained in the 3-sphere \dot{A} , we can take the 3-balls D_j in $\dot{A} - \dot{F_0}$ by the aid of (3, 2)-Schönflies theorem. We denote the resulting 3manifold in \dot{A} by $\hat{F_0}$. That is to say,

$$\hat{F}_0 = F_0 \cup D_1^3 \cup \cdots \cup D_{r_0}^3 \subset \dot{A} ,$$

$$F_0 \cap D_j^3 = S_{0j}^2 ,$$

$$D_j^3 \cap D_k^3 = \emptyset \quad (j \neq k) .$$

Similarly, we construct \hat{F}'_0 from F'_0 in the same 3-sphere \dot{A} . We call the pair (\hat{F}_0, \hat{F}'_0) the *capping* of the splitting (F_0, F'_0) .

Since \hat{F}_0 is a submanifold of the 3-sphere \dot{A} and the boundary component of \hat{F}_0 is just a torus, \hat{F}_0 should be the exterior of some knot (may be trivial) in \dot{A} . Similarly, \hat{F}'_0 is also the exterior of some (other) knot it \dot{A} . Each of \hat{F}_0 and \hat{F}'_0 has a common torus $T=S^1\times S^1\subset \dot{A}$ as the boundary by Lemma 3.2. Since T divides the 3-sphere \dot{A} into two components and $\hat{F}_0\neq\hat{F}'_0$, we obtain the following lemma.

Lemma 3.3. $\hat{F}_0 \cup \hat{F}'_0 = \dot{A}$ and $\hat{F}_0 \cap \hat{F}'_0 = T$.

Corollary 3.4. One of \hat{F}_0 and \hat{F}'_0 is homeomorphic to the solid torus $S^1 \times D^2$.

CLOSED 4-MANIFOLDS

Theorem 3.5. For a completion $W = A \cup B \cup C$ of $W \in \overline{C}(p, 1)$, one of three 3spheres \dot{A} , \dot{B} and \dot{C} has a splitting (F, F') such that both \hat{F}_0 and \hat{F}'_0 are homeomorphic to the solid torus $S^1 \times D^2$.

Proof. We use the full notation of the splitting within this proof. First, we claim that ${}_{a}\hat{F}_{B0}$, ${}_{b}\hat{F}_{C0}$ and ${}_{c}\hat{F}_{A0}$ are homeomorphic to ${}_{a}\hat{F}_{C0}$, ${}_{b}\hat{F}_{A0}$ and ${}_{c}\hat{F}_{B0}$, respectively, but ${}_{a}\hat{F}_{B0} \neq {}_{a}\hat{F}_{C0} \neq {}_{b}\hat{F}_{A0}$ and ${}_{c}\hat{F}_{A0} \neq {}_{c}\hat{F}_{B0}$ as subsets in W. Let us consider the splitting $({}_{b}F_{A}, {}_{o}F_{A})$ of \dot{A} . By Lemma 3.4, one of ${}_{b}\hat{F}_{A0}$ and ${}_{c}\hat{F}_{A0}$, say ${}_{b}\hat{F}_{A0}$, is homeomorphic to the solid torus. If ${}_{c}\hat{F}_{A0}$ is also homeomorphic to the solid torus, we choose $({}_{b}F_{A}, {}_{c}F_{A})$ as a required splitting. We consider the splitting $({}_{a}F_{C}, {}_{b}F_{C})$ of \dot{C} . Since ${}_{b}\hat{F}_{A0}$ and ${}_{b}\hat{F}_{C0}$ are homeomorphic and ${}_{b}\hat{F}_{A0}$ is the solid torus, ${}_{a}\hat{F}_{A0}$ and ${}_{b}\hat{F}_{C0}$ are homeomorphic and ${}_{b}\hat{F}_{A0}$ is homeomorphic to the solid torus, and we consider the splitting $({}_{a}F_{C}, {}_{b}F_{C})$ of \dot{C} . Since ${}_{b}\hat{F}_{A0}$ and ${}_{b}\hat{F}_{C0}$ are homeomorphic and ${}_{b}\hat{F}_{A0}$ is homeomorphic to the solid torus. Now, it is sufficient to show that ${}_{a}\hat{F}_{C0}$ is homeomorphic to the solid torus. Suppose not. Let us consider the splitting $({}_{c}F_{B}, {}_{a}F_{B})$ of \dot{B} . Since ${}_{c}\hat{F}_{B0}$ and ${}_{a}\hat{F}_{B0}$ are homeomorphic to ${}_{c}\hat{F}_{A0}$ and ${}_{a}\hat{F}_{B0}$ and ${}_{a}\hat{F}_{B0}$ are homeomorphic to ${}_{c}\hat{F}_{A0}$ and ${}_{a}\hat{F}_{C0}$, both ${}_{c}\hat{F}_{B0}$ and ${}_{a}\hat{F}_{B0}$ are not homeomorphic to the solid torus. This is a contradiction to Lemma 3.4. This completes the proof.

Remark 3.6. For the splitting obtained in Theorem 3.5, both \hat{F}_0 and \hat{F}'_0 are trivial solid tori in the 3-sphere.

4. Realizations.

In this section, we give some properties with respect to the form of the attaching face. The typical result is Theorem 4.7 which mentions that a manifold $W \in \overline{C}(p, 1)$ has a realization $W_F = (A, B; F)$ such that F has a 3-ball as a connected component.

Without loss of generality, we may assume that the splitting (F, F') of \dot{A} satisfies the condition of Theorem 3.5, namely, both F_0 and F'_0 are homeomorphic to the solid torus $S^1 \times D^2$. Remember that F is the attaching face of a realization $W_F = (A, B; F)$ of $W \in \overline{C}(p, 1)$ and that \dot{F} is characterized by

$$\dot{F} = \dot{F_0} + \dot{F_1} + \dots + \dot{F_p} ,$$

$$\dot{F_0} = S^1 \times S^1 + (S^2_{01} + S^2_{02} + \dots + S^2_{0r_0}) ,$$

$$\dot{F_i} = S^2_{i1} + S^2_{i2} + \dots + S^2_{ir_i} , \quad i = 1, 2, \dots, p ,$$

where S_{ij}^2 is a 2-sphere and $r_0 \ge 0$, $r_i \ge 1$ $(i \ne 0)$.

Proposition 4.1. For any realization $W_F = (A, B; F)$ of $W \in \overline{C}(p, 1)$, the inequality $r_0 \leq p$ holds.

Proof. Let (F, F') be the splitting of \dot{A} . If p=0, we have $F=F_0$ and $F'=F'_0$. This implies $F_0 \cup F'_0 = F \cup F' = \dot{A}$, and hence $\hat{F}_0 = F_0$ and $\hat{F}'_0 = F'_0$. Thus \dot{F}_0 should be just $S^1 \times S^1$. That is, $r_0 = 0 = p$. Now, we assume $p \ge 1$. Let us consider the characterization of \dot{F}_0 above and

$$F_0 = F_0 + (D_1^3 + D_2^3 + \dots + D_{r_0}^3)$$
.

Where D_j^3 is a 3-ball and $F_0 \cap D_j^3 = \dot{F}_0 \cap \dot{D}_j^3 = S_{0j}^2$. Since

$$F \cup F' = (F_0 + (F_1 + \dots + F_p))(F'_0 + (F'_1 + \dots + F'_p)) = \dot{A}$$
,

and S_{0j}^2 belongs to \dot{F}_0 , exactly one of F'_0, \dots, F'_p has S_{0j}^2 as a boundary component. Because $F'_0 \cap S_{0j}^2 = \emptyset$ follows from $F_0 \cap F'_0 = \dot{F}_0 \cap \dot{F}'_0 = S^1 \times S^1$ by Lemma 3.2, F'_0 can not contain S_{0j}^2 as a boundary component. Hence one of F'_1, \dots, F'_p , say $F'_{i(j)}$, has S_{0j}^2 as its boundary component. Since $F'_{i(j)}$ is connected, $F'_{i(j)}$ should be contained in D_j^3 . $F'_{i(j)}$ does not contain other 2-spheres S_{0k}^2 because $D_j^3 \cap D_k^3$ is empty if $j \neq k$. Therefore, r_0 can not exceed p.

A splitting (F, F') of \dot{A} induces two realizations W_F and $W_{F'}$. In the following, we choose a good realization from W_F and $W_{F'}$.

Proposition 4.2. For $p \ge 1$, there exists a realization W_F of $W \in \overline{C}(p, 1)$ such that $r_0 \ge 1$ and \widehat{F}_0 is a solid torus $S^1 \times D^2$.

Proof. For a completion $\hat{W}=A\cup B\cup C$, we can take a splitting (F, F') of \dot{A} such that both \hat{F}_0 and \hat{F}'_0 are homeomorphic to the solid torus by Theorem 3.5. Let us consider the characterizations

$$\dot{F}_0 = S^1 \times S^1 + (S_{01}^2 + \dots + S_{0r_0}^2),$$

 $\dot{F}_0' = S^1 \times S^1 + (S_{01}'^2 + \dots + S_{0r_0}'^2).$

If we assume $r_0=0=r'_0$, we have $\dot{F_0}=\dot{F_0}=S^1\times S^1$. Hence $\hat{F_0}=F_0$ and $\hat{F_0}=F'_0$. Then $\hat{F_0}\cup\hat{F_0}=F_0\cup F'_0=\dot{A}$. This implies $F=F_0$ and $F'=F'_0$. Thus, we have p=0. This contradicts to our hypothesis $p\geq 1$. Therefore, either $r_0\geq 1$ or $r'_0\geq 1$ holds. If $r_0\geq 1$, we take W_F as a required realization of W. If $r_0=0$, $W_{F'}$ is a required one.

Proposition 4.3. For the realization W_F of Theorem 4.2, we obtain

$$F_0 \simeq S^1 \lor (S_1^2 \lor \cdots \lor S_{r_0}^2) \quad and$$

$$F_i \simeq \begin{cases} one \ point, & if \ r_i = 1, \\ S_1^2 \lor \cdots \lor S_{r_{i-1}}^2, & if \ r_i \ge 2. \end{cases}$$

where \simeq means "homotopically equivalent to".

114

Proof. F_0 is obtained from a solid torus by removing r_0 small disjoint 3-balls in its interior. Thus, the first half part of the proposition is obtained by collapsing F_0 naturally. By the same way, the latter half is an immediate consequence of the characterization of F_i in section 2.

Corollary 4.4. For the realization W_F of Theorem 4.2, we obtain

$$H_2(F_0) = r_0 Z$$
, and
 $H_2(F_i) = (r_i - 1)Z$, $i = 1, \dots, p$.

Proposition 4.5. For a manifold W of $\overline{C}(p, q)$, we obtain $H_3(W; Z_2) = pZ_2$.

Proof. Using the Poincaré duality of Z_2 -coefficient, we have

$$H_3(W; Z_2) = H^1(W, W; Z_2) = H^1(W, S^3; Z_2) = \text{Hom}(H_1(W, S^3), Z_2)$$

On the other hand, the exact sequence of the pair (W, S^3) shows $H_1(W, S^3) = pZ$. Thus, $H_3(W; Z_2) = \text{Hom}(pZ, Z_2) = pZ_2$.

Corollary 4.6. For the realization W_F of Theorem 4.2, we obtain

$$r_0+r_1+\cdots+r_p=2p$$
.

Proof. From Corollary 4.4, we have

$$egin{aligned} H_2(F) &= H_2(F_0) + H_2(F_1) + \cdots + H_2(F_p) \ &= r_0 Z + \sum (r_i - 1) Z \ &= ((r_0 + r_1 + \cdots + r_p) - p) Z \,. \end{aligned}$$

Hence $H_2(F; Z_2) = ((r_0 + r_1 + \cdots + r_p) - p)Z_2$. On the othe hand, by Proposition 4.5, $H_2(F; Z_2) = H_3(W; Z_2) = pZ_2$. Thus, we obtain $r_0 + \cdots + r_p = 2p$.

Theorem 4.7. For the realization W_F of Theorem 4.2, one of F_1, \dots, F_p , say F_p , is a 3-ball.

Proof. Suppose any of r_i , $i=1, \dots, p$, is greater than 1. Since $r_0 \ge 1$, we have $r_0 + \dots + r_p \ge 2p+1$. This contradicts to Corollary 4.6. Therefore, at least one of r_i , $i=1, \dots, p$, say r_p , is exactly 1. Then the boundary of F_p consists of exactly one 2-sphere. Since F_p is a submanifold of a 3-sphere, F_p should be a 3-ball.

5. Main results.

In this section, our main aim is to construct a correspondence between the sets $\overline{C}(p-1, 1)$ and $\overline{C}(p, 1)$ for q=1 by surgery.

Let $W_F = (A, B; F)$ be a realization of $W \in \overline{C}(p, 1)$ such that F_p is a 3-ball. Put $X = \overline{W - N(F_p, W)}$, where $N(F_p, W)$ means a regular neighborhood of F_p in W meeting the boundary regularly. Put $G = F_0 + \cdots + F_{p-1}$, $A^* = \overline{A - N(F_p, A)}$ and $B^* = \overline{B - N(F_p, B)}$. Then, clearly, $X_G = (A^*, B^*; G)$ is a realization of X. Obviously, the following assertion holds.

Assertion 5.1. X belongs to C(p-1, 1).

Note that X does not belong to $\overline{C}(p-1, 1)$.

Assertion 5.2. $\dot{X}=S_1^3+S_2^3$, where S_i^3 (i=1, 2) is a 3-sphere.

Proof. From the construction of X, it is seen that W is obtained from X by attaching a 1-handle $D^1 \times D^3$ (=N(F_p, W)) to X. That is,

$$W = X \cup D^1 \times D^3$$
,
 $X \cap D^1 \times D^3 = \dot{X} \cap (D^1 \times D^3)^{\bullet} = S^0 \times D^3 = \{-1\} \times F_p + \{1\} \times F_p$.

Hence $\dot{X} = (\dot{W} - (-1, 1) \times \dot{F_p}) \cup \{-1\} \times F_p \cup \{1\} \times F_p$. Since $\dot{F_p}$ is a 2-sphere contained in the 3-sphere \dot{W} and F_p is a 3-ball, it follows that \dot{X} is the disjoint union of two 3-spheres S_1^3 and S_2^3 .

In the following, we construct an element V of $\overline{C}(p-1, 1)$ from X by attaching a 4-ball D^4 . We define $V=X\cup D^4$ and $X\cap D^4=S_2^3=\dot{D}^4$. Then, it is easy to see that \dot{V} is a 3-sphere S_1^3 and $H_k(V)=H_k(X)$ for k=1, 2. Since the conditions on the boundary and homology groups are satisfied, it remains to check b(V)=2 in order to $V\in \overline{C}(p-1, 1)$.

Assertion 5.3. b(V)=2.

Proof. From the definition of V, it is obvious that $2 \le b(V) \le 3$ because $V = A^* \cup B^* \cup D^4$. Let us consider $\hat{V} = V \cup E^4$ where E^4 is a 4-ball satisfying $V \cap E^4 = \dot{V} = \dot{E}^4$. Then, \hat{V} is a closed 4-manifold with the ball covering $\{A^*, B^*, D^4, E^4\}$. By [1], it follows that b(V)=3, because $D^4 \cap E^4 = \emptyset$. Hence, by the homogeneity of manifold, we have b(V)=2.

Therefore, we proved the following theorem.

Theorem 5.4. Any manifold W of $\overline{C}(p, 1)$ is constructed from some V of $\overline{C}(p-1, 1)$ by the following way. First, remove the interior of a 4-ball D in the interior of V. Then, W is obtained by attaching a 1-handle $D^1 \times D^3$ to $V - \mathring{D}$ putting one of the components of $D^1 \times D^3$ on V and the other on D.

Theorem 5.5. Any manifold W of $\overline{C}(p, 1)$ has a spine homeomorphic to $S^2 \vee (S_1^2 \vee \cdots \vee S_p^1) \vee (S_1^3 \vee \cdots \vee S_p^3)$ for $p \ge 0$.

Proof. First we deal with the case p=0. Let W be an element of $\overline{C}(0, 1)$. Then, W has a realization (A, B; F) such that $W=A \cup B$ and $F=A \cap B$ is a solid

116

117

torus $S^1 \times D^2$. Take two interior points *a* and *b* in *A* and *B*, respectively. Then, *W* collapses to $a * F \cup b * F$, where the symbol * means the join. Since *F* collapses to the center line *C*, $a * F \cup b * F$ collapses to $a * C \cup b * C$. It is clear that $a * C \cup b * C$ is a 2-sphere S^2 , because *C* is a circle.

Now, we prove the case p=1. Let $W \in \overline{C}(1, 1)$ and V an element of C(0, 1) corresponding to W obtained in Theorem 5.4. Then, we can write

$$W \! = \! \{V \! \# \! (S^3 \! imes I)\} \cup (D^1 \! imes \! D^3)$$

where *I* denotes the closed unit interval [0, 1] and # means the connected sum. We can assume $V \cap D^1 \times D^3 = \emptyset$. Put the 3-ball $V \cap S^3 \times I = E$. Take a realization (A, B; F) of *V* such that *F* is a solid torus. We can assume that $\dot{F} \cap E$ is a 2-ball *X* properly embedded in *E*, that is, $X \cap \dot{E} = \dot{X}$. Let J_1 denote a straight line in *F* joining the center of *X* and a point of the center line *C* of *F*, that is, $F \searrow C \cup J_1 \cup X$. Since *V* collapses to S^2 as shown above, we obtain

$$V \searrow S^2 \cup J_1 \cup X$$
.

On the other hand, it is easy to see

$$S^3 imes I \cup D^1 imes D^3 \searrow S^1_1 \lor S^3_1 \cup J_2 \cup X$$

where J_2 means a straight line in $S^3 \times I$ joining the center of X and a point of $S_1^3 = S^3 \times 1/2$. Thus we have

$$W\diagdown S^2\cup J_1\cup J_2\cup X\cup S^1_1ee S^3_1$$
 .

Since X is a 2-ball, $W \searrow S^2 \cup J \cup S_1^1 \vee S_1^3$ where $J = J_1 \cup J_2$. It is not hard to deform $S^2 \cup J \cup S_1^1 \vee S_1^3$ to $S^2 \vee S_1^1 \vee S_1^3$ in W, since J is a 1-ball. Therefore, $W \searrow S^2 \vee S_1^1 \vee S_1^3$. The case $p \ge 2$ can be proved similarly.

References

- K. Kobayashi and Y. Tsukui: The ball coverings of manifolds. J. Math. Soc. Japan, 28 (1976), 133-143.
- [2] Y. Tsukui: (Preprint).
- [3] M. Yamashita and H. Ikeda: 4-manifolds of covering number 2. Math. Semi. Notes, Kobe Univ., 4 (1976), 105-111.

Kobe University, Nada, Kobe, Japan

Faculty of Engineering, Toyo University, Kawagoe-shi, Saitama, Japan