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1. Introdnction and a result

Let {X,, k=1, 2, ---} be a sequence of independent and identically distributed
random variables with EX;=0, EX;=1, and with distribution function F(x). Write
Zp=n"1% éle, and let p.(x) denote the density function of Z,, when Z, has an
absolutely continuous distribution. Furthermore, denote the standard normal den-
sity by ¢(x). ' '

In this paper, we shall deal with the convergence rate of a non-uniform esti-
mate in the local limit theorem, and give the necessary and sufficient condition
for the validity of X #7"%% sup (1+|%|)®|pu(x) —$(x)] < o0, 0=d<1. Our theorem is
an extension of a result of Gglstjan who studied the uniform convergence of
|pa(x)—H(x)]. Non-uniform estimates in the local limit theorem for densities have
been investigated by Petrov [5], Basu and others. }

" The theorem we are going to show is the following, which is a local version
of a result due to Heyde (4], Theorem 1 (i), (ii)).

Theorem. Let 0<d<1. Suppose that
(@) there exists N such that sup pn(x) < oo,

Then, in order that
ne2(N+1)

n—-1+8/2 Sl;lp 1+ lxl)zlp”(w)_¢(x)l <oo,

it is necéssary and sufficient that
(b) E|Xi|**’<oo, if 0<d<l, EX:log(1+|Xi)<co, if 6=0.

Galstjan [2] proved that (b) is equivalent to X #™***sup |pa(x)—g(@)| <o,
under the condition (a). Therefore, it suffices only to show the sufficiency part
of the theorem and to get the estimate for sup 2*|p.(x)—¢(x)|.

2. Proof

Write f(t)=Ee**! and 0,(t)=Ee**?»={f(n""*t)}". Since pn(x) is bounded, we
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have pn(x)eL? so that Ox()eL® by Parseval identity. Thus, it follows that
6.(8) € L for all #=2N, so that we may write '

oo

Da(x)= (Zn)"ls e”*%0,(t)dt .
Since the variance of X, exists by our assumption, we have
2.1) On @)=m—D{f 2 OF S 2O 2+ 7 PO fn T 2
Noting that [f'(-)|<1 and |f'(-)|=<1, we have
02 @) <nl|fin”%0)" " .

Hence, we see that 6,/ (f)e L' for n=2(N+1), so that

-]

o pala)= _(2n)“1§ 0! (Bt .

—00

Therefore, making use of

o' ¢(z)=—(2m)"" Sw e (' 1™t

we have
(2-2) sup x’lpn(x)—sb(w)lés |62 (8)—(t*—1)e™** |t .
Now, under our assumption of finite variance, we can express fi?), f'(¢), f'(¢)
in the following respective form: '
Aty =1—G£L+rt)=exp {5 A+ret] ,

F@#) =—t1+n@),

F®O=—Q0Q+7r@),

where 1,‘_,“} r@#)=0 and ltmol ri#)=0 (=0, 1, 2).

For convenience, the proof of the theorem will be divided into two lemmas.

2.3)

Lemma 1. Let O§_5<1. If

@.4) | § £ Adldi<oo,  §=0,1,2
[1]

Jor some ¢>0, then we have

772 sup | po(ar) — ()| < oo .
n22AN+1) x

Proof. We have from [2.2),
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71102 sup 2| pala) — ()
n=3(N+1) z

é Z n*1+3/3 S Iﬁ:‘,(t)f—'(tz—l)e“ZI’ldt

1t1<snl/2

LTS T W e L

1tizenl/2

+ Z n—1+8/2 S
=L+L+1,

iz enl/2

say, where ¢ is chosen so small that 0<e<2 and

1
(2.5) max [ro(®)] §10 .

We first show that I; <co. From and [2.3), we have
0 (&) =(n—Dn"*(L+7:(n™*)" exp {—(n—2)(2n) "t*(L+7o(n™ "))

— (12 ) (L= £2@n) L+ 7(n2))) exp | —(n—2)(2m) L+ 1ol ')}

=('—1)ca(t) exp { — % t"(1+ro(n'“’t))}+Rn(t) ,

where
ca(t)=exp (B A +ron ' 20)}
and .
R()={—n"" A+ 1007 t)*+ @™ °t) +{r1(n” "))
+ @) A+ ) — el (L — @) (LT )
- exp {—(n—2)2n) ' (L+1on 1))}
=hs+ L+ 1is+ 1,

say. Now we need the estimate of the following quantity:
|6 (8)— (¢ —D)e™ 7|

<|t*—1]e”""*|1—ca(t) exp { — %t”ro(n'”’t)}‘ + | Ra(8)]

< (t2+ l)e—t2/2

1—exp { — —é—tzro(n—mt)} \

+(E+ 12| 1—cu®)llexp {—27 o 2t} + | Ra(®)]
6
=5 +5L,+) ;L:s Li;| ,

(F1)

say. Using the inequality |¢—1|<|z|¢"*, we have for |t|<en'”?,

Iué% £ +1)7olnt)| exp { — »%tza— lro(n'“”tm} |

1 ,2,0 -1/2 9 2}
2 _7
< ) @t +1)|To(_" t)lexp{ 20t ,
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because of [2.5). Hence,

1/2

&en / .
(2.6) ) n-—1+a/2s Ladt< 3 n~t+2 S £ 4+ Dlroln2p)le""dt
0

1ti<enl/2

= CS w7’y P o(u)d
0

by the same arguments as in Heyde [3] and Galstjan [2]. - Here and in what fol-
lows, C and ¢ denote positive constants which may differ from one inequality to
another. Therefore, we have, using with j=0,

(2.7) Z n"”'m S Iudt< oo,

181 <enl/2

Izl

Using |¢’|<e'”, we next see that for |t|<en'”®

Lo+ 1)[1—ca(®)] exp { —Lra- |ro(n'””t)|>}
<(#'+1) exp { ~3d }11 en(®)]

=(t*+1)exp { —z%t } 17 1+ o™ 28)]) exp (157 (1L + ro(n 28}

11 ! 9 11 1\,
_10 t(t +1)exp{ (20 10” )t}

Accordingly, it follows that for all #=2(N+1)=4,

11
10

=Cn (¢’ +1)e™°% .

Las=n 't +1)exp{ 7t}

40

Thus,

2.8) 5 n-“"’”g Ladt<C ¥ n < oo

1ti<enl/3 .

Furthermore, the following inequalities are readily seen:

172

2.9) oM n"”"’zs Loldt<C X n~+"2 §" n e Pt < oo

1t <enl/ [
' . enl/2
(2.10) )3 n‘”"”s L)dt=C X n““’“s Pl *t)e~dt |
. 141 <enl/3 ] 0 ‘
. enl/2 .

(2.11) )X n"”mg IIuldtSC X opt ’S ' dt <o |

Itl<m 0
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@.12) Z‘.n’”"”S  \Leldt
1tI<enl/3
enl/2 al/2

§C Z ”~1+a/ss |T (n—llzt)le—u’dt_’_c Z n-1+a/2§ n—l —aﬂdt
0 0 .

where the second series on the right hand side trivially converges. As to 2.10)
and using the same argument as we have obtained [2.6), we have

1/2

(2.13) T Sm £lrin™ e dt < oo
| , b
and
enl/2 ’
(2.14) 5 po S ra(n28) P dt < oo,
0 : .

under the condition [2.4). The estimates (2.7)-(2.14) thus im%ply I <co,
It remains to show that ;<o and ;<oco. Since Zy has the denmsity pn(x),
we see that for any ¢>0, sup )| <e™° for some ¢>0, so that for |f|=en'’?, we have

|fin~*t)|<e™°. Then we ﬁnd from [2.T) that for all n=2N+1),
Ia;l(t)léne—e(n—ﬂ(ﬂ+l|'Iﬂn—llﬁt)liy ,

and hence

— Z n—1+512§ l0,’.’(t)|dt$ Z na/z —~c{n—2(N+1)) S Iﬂn—llzt)ISth

1812 enl/2 ItIZenl/3

éz ”(1+3)/2e—aln-8(N+1))S lﬂu)I’Ndu<°° ]
Iu|2c

As to I;, we have

Ia= b3 n-—1+6/2 S lt2_1’le—ﬂ/2dt—s— bX n—(s-d)/ﬁe-l S lt“ts_lle-t’lldt< oo,

1t1Zenl/3 1t1Zenl/2

which completes the proof of
Lemma 2. If the condition (b) is satisfied, then (2. 4) holds for j=0, 1, 2.

Proof. Heyde [3] proved the case j=0, and so it is sufficient to show that
(2.4) holds for j=1,2. We have . : : :

S‘t""ln(t)ldt=S.t'z""lt+f ()lat
° 0

< S 2N 1 Re £ (0)ldE + S £ YIm £ Oldt=To+ Ta »

say. Here we see that
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f1=S.t—2_a

0

r 2(tx—sin tx)dF(x) ‘ dt< Sw |lw|d F(z) S. 0| te—sin tz|dt
—00 -0 o

elzl
0

=§°° | la;]”"dF(w)X v v—sin vldv ,

where

A elzl ' i
e <oo, if O0<o<l1,
So v Iv sin vldv {~log le as lxl——poo ’ if d=0.

Therefore, the condition (b) implies J;<c. For J;, we find that

]z'—‘s‘t_’_‘

0

&

S; x cos txdF(x) I di— S 2

dt

r #(cos tr—1)dF(z)

oo

e[ d F() r 57 lcos v—1jdp <o ,
JO

—-—00

gr IxIdF(x)S £%c0s tx—lldtés
—oo 0

since S v Icos v—1ldv<oo if 0<d<1.
. .
~ We finally consider 7,(f). We have

S't““"|n<t)|dt=§'t“l"’|1+f“<t)|dt

0

=< S t77%14+Ref ’(t)ldt+§ 70N Im I ()dt= T+ ],

3
0 o

say. Here we have

],='§' §1-3 S; 21— cos tx)dFla) )d:g Sl S dF(z) So f‘""ll—cos taldt

[]

slzl
o

=Sw lxl”"dF(a:)S v %|1—cos v|dv ,

where

slzl i
s <co, if 0<5<1,
So v |1—cos v|dv {~log lz| as |a|—oo , if 0=0.

Thus we get J;<co by the condition (b). Furthermore, we see

L:S't“‘“ r o sin txdF(é:)'dtgr x’dF(x)S't-{-"xsin tldt
0 -0 —o0 )

elzl
0

=r lxl”*"dF(w)S v ’Isin vdv ,

where

el . {<oo, if 0<d<1,
S ~log|x| as |x|—ooo, if =0,
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which implies J;<oco because of the condition (b). This completes the proof of
the lemma, and that of the theorem is thus completed.
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