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ABSTRACT. Putnam considered 1 and T as accessible point of spectrum
of T and semi-normal operator (TT*—T*T)=D>0 or D<0) respectively
and proved some inequalities, which I have proved again in more general
form for 1 as a normal approximate spectrum and T as any bounded linear
operator on a Hilbert space.

1. Only bounded linear operators on a Hilbert space are to be considered.
A bounded linear operator T is called semi-normal if T7*—T*T=D, D>0 or
D<0. Clearly any normal operator is also semi-normal. It is easy to see that
the converse is also true in case the space is finite dimensional. For if, say, D>
0, its eigenvalues are non-negative while their sum is the trace of D, which is
zero. Hence all eigenvalues are 0 and so D=0: In the infinite dimensional case
however it is possible that an operator be semi-normal without being normal. In
fact, any isometric but not unitary operator V has this property; for VV*—V*V<
0, #0. On [*® the operator T given by the matrix T=(a;,;) with a;::,;=1 and
a;,;=0 otherwise (¢, j=1,2--.) is such an operator.

The above statement shows that an operator be semi-normal without being
normal, it can also be proved in the case of T being unbounded. First we defined
the notions of hyponormality and semi-normality for not necessarily bounded
operators. ,

An operator T is called hyponormal if it is closed, densely defined and satisfies
the conditions:

Dy=Drs,
| T*2)| <||Tx| for xe Dy, where Dy is domain of T.

An operator T is called semi-normal if it is closed, densely defined and if T
or T* is hyponormal. It is clear that every normal operator is hyponormal and
therefore semi-normal. Moreover the above definitions are extensions of the defi-
nitions of hyponormality and semi-normality for bounded operators.

Let H=I!* and let T be the infinite matrix

(@ii)e5=1»
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where a; ;.1=1¢ for i=1,2, ---, and a;;=0 for j#i+1. We will show that T* is
hyponormal, it is clear that T is closed and densely deﬁned It remains therefore
to show that Dr=Dz, || Tx| <||T*x| for each z in D, and that there exists vector
in Dy for which || Tx|| <||T*z|.

Dr=({w=(&1, &, )i I (—1’l&d’<o0} .
Dre={z=(&1, &, ++*); é}l e < oo} .
For each % € Dp+; 20 we have
| I Tol= E -1yl < >:z|e,| :
Moreover since *<2(i—1)* for ¢>2, the inequality }"_, (z—l) |$,| <oo implies
Z] i*|&|*<co. The semi-normality of 7 is proved.

If 8 is real it is clear that ¢’ T is also semi-normal whenever 7T i is, if T-H+ iJ
is replaced by ¢’T=H,+i Jo. Then ‘

=§(ei0T+e—i0T*)

and
]o=(1—.>(e"T—e""T*) .
\2i
Let ' _
Ty=eT  for real 6.

Then
o H,=%(T0+T3‘) -
It is seen that H, is the real or imaginary part of T according as 6=0 or
0=—=/2.
If 2e sp(T) then 2 is called accessible if there exists a sequence {1,}, 2, ¢ sp(T),

satisfying 2,—2 as #—co. A complex number 2 is an approximate proper value
of T provided that 2 and T satisfy

(1.1) : | Top—22,]| >0 (5—00)
for a sequence {x,} of unit vectors. Furthermore, if 2 and T satlsfy - and
.2 | NT*2e— 24| —0 (n—»oo),

then 2 is called a normal approximate proper value of 7. The normal approximate
spectrum denoted by I7,(T) is defined to be the set of all normal approximate
proper values of 7.
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For a (continuous linear) operator T on a Hilbert space, we use the following
notation and terminology: spectrum sp(7T’), continuous spectrum C(T'), approximate
point spectrum II(T'), point spectrum p(T), spectral radius 7(T)=sup {|4]: 1€ sp(TH},
boundary 8, numerical range W(T') is convex, and ZTcCl W(T) (£=convex hull
of the spectrum, Cl=closure), if 3T=CI! W(T) then T is called convexoid operator
and we say that an operator T is restriction convexoid if the restriction of T to
every invariant subspace has property convexoid. |

2. Putnam [5] proved the following theorem:

Theorem A. Lot T be bounded and satisfy TT*—T*T=D=>0 and let i=re”"’
(r=0) be an accessible point of sp(T). Then '
(max H,)*>min TT*
and ‘
|r—max Hy| <[(max Hj)’—min TT*]'.

We prove the Putnam inequalities for bounded linear operator taking Ain the
normal approximate spectrum. Actually, we will prove the following.

Theorem 2.1. If T is any operator and

Aell(T), i=re*® (r=0),

then _,

2.1)  (max Hp)=7>(min T*T)"*

and ,
2.2) . Ir—; max H,| <[(max Hy)?—min T’f T).

Proof. Since ¢ IT,(T), there exists a sequence {x,} of unit vectors such that

(T—2Dz,|-0 and  |(T"—2Dwa]—0.

We get
» (T—aDx,—0 and (T*—2Dx.—0.
Therefore . o
(T—2D)2,, 2s)—0 .
Similarly. :

. R (T*—2D)%n, #4)—0 .

It follows that

(€ T, 2)+(€ 0 T* @0, #n)— 26"+ 27
or

L@ T+ T, a4
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or
(Ho%n, Tn)—7 ,
and therefore

max Hy>7r .
Since
O=lim ((T—AI)xs, Tx,)
0=1im (T* T2, Zn)— A(2n, Ts) ,
we get
Hm (T*Tx,, 2.)=A21=7r"
and
min T*T<7r*.
Thus
max Hy>7r>(min T*T)"*.
Since
(T—aADX(T—AI=(T*=2I(T—I)
=(T*T—2AT—AT*+2)
=T*T—2rHy+7*,
one has
(T — 2D =(T* T2n, 2a)—27(Ho%s, Ta)+7" .
Hence

min T*T<(T* Ty, £a)=||(T— A1)z +27(Hytn, 20)—7° .

Letting n—oo
min T*T<2r max Hy,—»*

<(max H,)’—(max Hy—7r)*
or
|[r—max Hy| <[(max H,)*—min T*T]"%.

Theorem 2.2. Let T be a restriction convexoid operator and A=re™*’, (r>0)¢
sp(T') is finite, then (2.1) and (2.2) hold.

Before giving the proof of theorem 2.2 we need the following lemmas:

Lemma A [3, Theorem 1): If 2 belongs to dW(T') and II(T) then AeIl(T),
where OW(T') is the frontier of numerical range of T.

Lemma B [4, Theorem 3]: If 2 is a normal approximate proper values of

A, then there exists a character ¢ on the C*-algebra U generated by A and 1
which satisfies

P(A)=2.

Lemma C [1, Lemma 2]: If T is restriction-convexoid and A is an isolated
point of sp(T), then 2 is an eigenvalue.
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Proof of By lemma C sp(T)=p(T)c W(T) since T is convexoid,
Cl W(T)=2(T), 2(T)c W(T), thus W(T) is closed, W(T)=2(T) and the extreme
points of W(T') belong to sp(T"). Therefore, if 2 be the extreme point of W(T)
then 2e sp(T)NIW(T)cI1,(T) by Hildebrandt’s theorem [3] Satz 2. Hence we have

Aell (T).
Now, from Theorem 2.1 we get the result.

Remark. If T is hyponormal and i=r7e™*® (»>0) and sp(T)=C(T), then
and (2.2) hold for T.

Proof. Since sp(T)=C(T) implies that there exists a sequence of unit vectors,
say {x,}, such that

| T2n—A24]| 20 (—00) .
From hyponormality, we get
| T* y—A2a| >0 (B> 00) .

Now from we get the result.

References

[1] S.K. Berberian: Some conditions on an operator implying normality. Math. Ann.,
184 (1970), 188-192.

'{2] M. Fuji and R. Nakamoto: On normal approzimate Spectrum II. Proc. Japan Acad.,

48 (1972), 297-301.

[31 S. Hilderbrandt: Uber den numerischen Wertebereich eines operators. Math. Ann.,
163 (1966), 230-247.

[4] Kasahara and Takai: Approzimate proper value and Character of C*-algebra. Proc.
Japan Acad., 48 (1972), 91-93.

[5] C.R. Putnam: On semi-normal operators. Pacific J. Math., 7 (1957), 1649-1652.

Mehta Research Institute of Mathematics
and Mathematical Physics

26, Dilkusha, New Katra

Allahabad, India



	1. Only bounded linear ...
	2. Putnam [5] proved the ...
	Theorem A. ...
	Theorem 2.1. ...
	Theorem 2.2. ...

	References

