NORMAL APPROXIMATE SPECTRUM OF OPERATORS

By

S. N. RAI

(Received October 3, 1977)

ABSTRACT. Putnam [5] considered λ and T as accessible point of spectrum of T and semi-normal operator $((TT^*-T^*T)=D\geq 0 \text{ or } D\leq 0)$ respectively and proved some inequalities, which I have proved again in more general form for λ as a normal approximate spectrum and T as any bounded linear operator on a Hilbert space.

1. Only bounded linear operators on a Hilbert space are to be considered. A bounded linear operator T is called semi-normal if $TT^*-T^*T=D$, $D\geq 0$ or $D\leq 0$. Clearly any normal operator is also semi-normal. It is easy to see that the converse is also true in case the space is finite dimensional. For if, say, $D\geq 0$, its eigenvalues are non-negative while their sum is the trace of D, which is zero. Hence all eigenvalues are 0 and so D=0: In the infinite dimensional case however it is possible that an operator be semi-normal without being normal. In fact, any isometric but not unitary operator V has this property; for $VV^*-V^*V\leq 0$, $\neq 0$. On I^2 the operator T given by the matrix $T=(a_{i,j})$ with $a_{i+1,i}=1$ and $a_{i,j}=0$ otherwise $(i,j=1,2\cdots)$ is such an operator.

The above statement shows that an operator be semi-normal without being normal, it can also be proved in the case of T being unbounded. First we defined the notions of hyponormality and semi-normality for not necessarily bounded operators.

An operator T is called *hyponormal* if it is closed, densely defined and satisfies the conditions:

$$D_T = D_{T^*}$$
, $\|T^*x\| \le \|Tx\|$ for $x \in D_T$, where D_T is domain of T .

An operator T is called *semi-normal* if it is closed, densely defined and if T or T^* is hyponormal. It is clear that every normal operator is hyponormal and therefore semi-normal. Moreover the above definitions are extensions of the definitions of hyponormality and semi-normality for bounded operators.

Let $H=l^2$ and let T be the infinite matrix

where $a_{i,i+1}=i$ for $i=1,2,\cdots$, and $a_{ij}=0$ for $j\neq i+1$. We will show that T^* is hyponormal, it is clear that T is closed and densely defined. It remains therefore to show that $D_T=D_{T^*}$, $||Tx|| \leq ||T^*x||$ for each x in D_T and that there exists vector in D_T for which $||Tx|| \leq ||T^*x||$.

$$D_T = \{x = (\xi_1, \, \xi_2, \, \cdots); \, \sum_{i=1}^{\infty} (i-1)^2 |\xi_i|^2 < \infty \} .$$

$$D_{T^*} = \{x = (\xi_1, \, \xi_2, \, \cdots); \, \sum_{i=1}^{\infty} i^2 |\xi_i|^2 < \infty \} .$$

For each $x \in D_{T^*}$, $x \neq 0$ we have

$$||Tx||^2 = \sum_{i=2}^{\infty} (i-1)^2 |\xi_i|^2 < \sum_{i=1}^{\infty} i^2 |\xi_i|^2$$
.

Moreover, since $i^2 < 2(i-1)^2$ for $i \ge 2$, the inequality $\sum_{i=2}^{\infty} (i-1)^2 |\xi_i|^2 < \infty$ implies $\sum_{i=1}^{\infty} i^2 |\xi_i|^2 < \infty$. The semi-normality of T is proved.

If θ is real it is clear that $e^{i\theta}T$ is also semi-normal whenever T is, if T=H+iJ is replaced by $e^{i\theta}T=H_{\theta}+iJ_{\theta}$. Then

 $H_{\theta} = \frac{1}{2} (e^{i\theta} T + e^{-i\theta} T^*)$

and

 $J_{\theta}\!=\!\!\left(\!\frac{1}{2i}\right)\!(e^{i\theta}T\!-\!e^{-i\theta}T^*)$.

Let

 $T_{\theta} = e^{i\theta}T$ for real θ .

Then

$$H_{\theta} = \frac{1}{2} (T_{\theta} + T_{\theta}^*) .$$

It is seen that H_{θ} is the real or imaginary part of T according as $\theta=0$ or $\theta=-\pi/2$.

If $\lambda \in sp(T)$ then λ is called accessible if there exists a sequence $\{\lambda_n\}$, $\lambda_n \notin sp(T)$, satisfying $\lambda_n \to \lambda$ as $n \to \infty$. A complex number λ is an approximate proper value of T provided that λ and T satisfy

$$||Tx_n - \lambda x_n|| \to 0 \quad (n \to \infty)$$

for a sequence $\{x_n\}$ of unit vectors. Furthermore, if λ and T satisfy (1.1) and

$$||T^*x_n-\bar{\lambda}x_n||\to 0 \quad (n\to\infty) ,$$

then λ is called a normal approximate proper value of T. The normal approximate spectrum denoted by $\Pi_{\pi}(T)$ is defined to be the set of all normal approximate proper values of T.

For a (continuous linear) operator T on a Hilbert space, we use the following notation and terminology: spectrum sp(T), continuous spectrum C(T), approximate point spectrum I(T), point spectrum p(T), spectral radius $r(T)=\sup\{|\lambda|: \lambda \in sp(T)\}$, boundary ∂ , numerical range W(T) is convex, and $\Sigma T \subset Cl$ W(T) ($\Sigma=$ convex hull of the spectrum, Cl=closure), if $\Sigma T=Cl$ W(T) then T is called convexoid operator and we say that an operator T is restriction convexoid if the restriction of T to every invariant subspace has property convexoid.

2. Putnam [5] proved the following theorem:

Theorem A. Let T be bounded and satisfy $TT^*-T^*T=D\geq 0$ and let $\lambda=re^{-i\theta}$ $(r\geq 0)$ be an accessible point of sp(T). Then

$$(\max H_{\theta})^2 \geq \min TT^*$$

and

$$|r - \max H_{\theta}| \leq [(\max H_{\theta})^2 - \min TT^*]^{1/2}$$
.

We prove the Putnam inequalities for bounded linear operator taking λ in the normal approximate spectrum. Actually, we will prove the following.

Theorem 2.1. If T is any operator and

$$\lambda \in \Pi_n(T)$$
, $\lambda = re^{-i\theta}$ $(r \ge 0)$,

then

$$(2.1) \qquad (\max H_{\theta}) \geq r \geq (\min T^*T)^{1/2}$$

and

$$|r-\max H_{\theta}| \leq [(\max H_{\theta})^2 - \min T^*T].$$

Proof. Since $\lambda \in \Pi_n(T)$, there exists a sequence $\{x_n\}$ of unit vectors such that

$$\|(T-\lambda I)x_n\| \to 0$$
 and $\|(T^*-\bar{\lambda}I)x_n\| \to 0$.

We get

$$(T-\lambda I)x_n\to 0$$
 and $(T^*-\bar{\lambda}I)x_n\to 0$.

Therefore

$$((T-\lambda I)x_n, x_n) \rightarrow 0$$
.

Similarly

$$((T^*-\bar{\lambda}I)x_n, x_n)\rightarrow 0$$
.

It follows that

$$(e^{i\theta}Tx_n, x_n)+(e^{-i\theta}T^*x_n, x_n)\rightarrow \lambda e^{i\theta}+\bar{\lambda}e^{-i\theta}$$

or

$$\frac{1}{2}((e^{i\theta}T+e^{-i\theta}T^*)x_n, x_n) \rightarrow \frac{1}{2}(r+r)$$

80

S. N. RAI

or

 $(H_{\theta}x_n, x_n) \rightarrow r$,

and therefore

 $\max H_{\theta} \geq r$.

Since

$$0 = \lim ((T - \lambda I)x_n, Tx_n)$$

$$0 = \lim (T^*Tx_n, x_n) - \lambda(x_n, Tx_n),$$

we get

 $\lim (T^*Tx_n, x_n) = \lambda \bar{\lambda} = r^2$

and

 $\min T^*T \leq r^2.$

Thus

 $\max H_{\theta} \geq r \geq (\min T^*T)^{1/2}$.

Since

$$(T-\lambda I)^*(T-\lambda I) = (T^* - \bar{\lambda}I)(T-\lambda I)$$

$$= (T^*T - \bar{\lambda}T - \lambda T^* + \lambda \bar{\lambda})$$

$$= T^*T - 2rH_{\theta} + r^2.$$

one has

$$||(T-\lambda I)x_n|| = (T^*Tx_n, x_n) - 2r(H_\theta x_n, x_n) + r^2$$
.

Hence

$$\min T^*T \leq (T^*Tx_n, x_n) = ||(T-\lambda I)x_n|| + 2r(H_{\theta}x_n, x_n) - r^2.$$

Letting $n \rightarrow \infty$

$$\min T^*T \leq 2r \max H_{\theta} - r^2$$

$$\leq (\max H_{\theta})^2 - (\max H_{\theta} - r)^2$$

or

$$|r-\max H_{\theta}| \leq [(\max H_{\theta})^2 - \min T^*T]^{1/2}$$
.

Theorem 2.2. Let T be a restriction convexoid operator and $\lambda = re^{-i\theta}$, $(r \ge 0) \in sp(T)$ is finite, then (2.1) and (2.2) hold.

Before giving the proof of theorem 2.2 we need the following lemmas:

Lemma A [3, Theorem 1]: If λ belongs to $\partial W(T)$ and $\Pi(T)$ then $\lambda \in \Pi_n(T)$, where $\partial W(T)$ is the frontier of numerical range of T.

Lemma B [4, Theorem 3]: If λ is a normal approximate proper values of A, then there exists a character ϕ on the C*-algebra U generated by A and I which satisfies

$$\phi(A)=\lambda$$
.

Lemma C [1, Lemma 2]: If T is restriction-convexoid and λ is an isolated point of sp(T), then λ is an eigenvalue.

Proof of Theorem 2.2. By lemma $C sp(T) = p(T) \subset W(T)$ since T is convexoid, $Cl\ W(T) = \Sigma(T)$, $\Sigma(T) \subset W(T)$, thus W(T) is closed, $W(T) = \Sigma(T)$ and the extreme points of W(T) belong to sp(T). Therefore, if λ be the extreme point of W(T) then $\lambda \in sp(T) \cap \partial W(T) \subset \Pi_*(T)$ by Hildebrandt's theorem [3] Satz 2. Hence we have

$$\lambda \in \Pi_n(T)$$
.

Now, from Theorem 2.1 we get the result.

Remark. If T is hyponormal and $\lambda = re^{-i\theta}$ $(r \ge 0)$ and sp(T) = C(T), then (2.1) and (2.2) hold for T.

Proof. Since sp(T)=C(T) implies that there exists a sequence of unit vectors, say $\{x_n\}$, such that

$$||Tx_n-\lambda x_n||\to 0 \quad (n\to\infty)$$
.

From hyponormality, we get

$$||T^*x_n-\bar{\lambda}x_n||\to 0 \quad (n\to\infty)$$
.

Now from Theorem 2.1 we get the result.

References

- [1] S. K. Berberian: Some conditions on an operator implying normality. Math. Ann., 184 (1970), 188-192.
- [2] M. Fuji and R. Nakamoto: On normal approximate Spectrum II. Proc. Japan Acad., 48 (1972), 297-301.
- [3] S. Hilderbrandt: Über den numerischen Wertebereich eines operators. Math. Ann., 163 (1966), 230-247.
- [4] Kasahara and Takai: Approximate proper value and Character of C*-algebra. Proc. Japan Acad., 48 (1972), 91-93.
- [5] C.R. Putnam: On semi-normal operators. Pacific J. Math., 7 (1957), 1649-1652.

Mehta Research Institute of Mathematics and Mathematical Physics 26, Dilkusha, New Katra Allahabad, India