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1. Introduction.

Our main $\omega ncern$ is the study of the 3-manifolds obtained by Denh’s surgery
along 2-bridge knots. In this paper, we prove that such 3-manifolds have Heegaard
splittings of genus two and so are decomposed to two lens spaces when they are
not irreducible. Furthermore we shall verify that such 3-manifolds are not 3-
spheres $S^{3}$ even though they are homology 3-spheres. This result is proved by

using Homma’s theorem [11 and Volodin-Kuznetsov-Fomenko [6], which is recently
found;

Homma’s Theorem. Heegaard splittings of genus two for $3$-sPheres $S^{3}$ are
reducible except for the extended canonical one.

We work in piecewise linear category throughout the paper. Furthermore,

unless specified otherwise, by $N(X, Y)$ we shall denote a regular $neighborhd$ of
a subpolyhedron $X$ in a polyhedron $Y$ and by $\dot{X}$ we shall denote the interior of $X$.

Definition. Let $W_{1},$ $W_{2}$ be solid tori of genus two and $M$ a closed orientable
3-manifold and $h:\partial W_{2}\rightarrow\partial W_{1}$ a homeomorphism of tori. Then the triple ( $W_{1},$ $W_{2}$ ;

h) (or $(W_{1},$ $W_{2},$ $F)$ ) is called a Heegaard splitting of genus two for $M$ when $M=$

$W_{1}\bigcup_{h}W_{2}$ and $W_{1}\cap W_{2}=\partial W_{1}=\partial W_{2}=F$, a closed 2-manifold.
Next let $\{D_{i1}, D_{i2}\}$ be a meridian-disk pair of $W_{i}(i=1,2)$ , that is, $D_{ij}(j=1$ ,

2) is a properly embedded 2-disk in $W_{i}$ such that $D_{i1}$ and $D_{i2}$ are disjoint and
$W_{:}-D_{i1}\cup D_{i2}$ is connected. Such a 2-disk $D_{ij}(j=1,2)$ is called a meridian disk
of $W_{i}$ and the circle $uij=\partial D:j(j=1,2)$ a meridian of $W_{i}$ .

Now let $h$ be a attaching homeomorphism from $\partial W_{2}$ onto $\partial W_{1}$ . Then the
manifold $M=W_{1}\bigcup_{h}W_{2}$ is determined up to homeomorphisms by the collection of
circles $v_{1}$ and $v_{2}$ on $\partial W_{1}$ such that $v_{k}=h(u_{2k})(k=1,2)$ . For example, let us illus-
trate the canonical Heegaard splitting of genus two for $S^{3}$ as the one in Fig. 1.

2. Dohn’s surgery along 2-bridge knots.

A 3-manifold $M$ is said to be obtained by a Dehn’s surgery along a 2-bridge
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Fig. 1. The canonical Heegaard splitting for $S^{3}$ .
knot $K$ if followings hold; Let $N(K, S)$ be a regular neighborhood of $K$ in $S$

and then $N(K, S)$ is a solid torus. Furthermore let $E$ be $S-\dot{N}(K_{r}S\}),$ $V$ a solid
torus, $i:\partial N(K, S^{3})\rightarrow\partial E$ be the trivial attaching which induces $S^{3}=E\cup N(K, S)$ ,
and $\Psi:\partial V\rightarrow\partial E$ a $hommorphism$ of tori with the property that $i^{-1}\Psi^{t}$ does not
extend to a homeomorphism from $V$ onto $N(K, S^{s})$ . Now in the disjoint union,

$(S^{3}-\dot{N}(K, S^{3}))+V$

identify points $x\in\partial V$ with points $\Psi(x)\in\partial E$ . Then the resulting manifold $iS\not\in$ the
3-manifold $M$.

Next let $W$ be a standardly embedded solid torus of genus two in $S^{3}$ , that is,
there are two properly embedded 2-disks $D_{1},$ $D_{2}$ in $S-\dot{W}$ such that $D_{1}$ and $D_{2}$

are disjoint and intersect two meridians of $W$ transversely at points $a,$
$b$ respectively.

Let $u_{1}=\partial D_{1}$ and $u_{2}=\partial D_{2}$ . Then we have;

Lemma 1. Let $K$ be an arbitrary 2-bridge knot in $S^{3}$ . Then $K$ is embedded
in $\partial W$ such that $K$ transversely intersects circles $u_{1},$ $u_{2}$ and $K\cap u_{1}=a,$ $K\cap u_{2}=b$ .

Proof. The $prf$ follows directly from the standard definition of 2-bridge
knots [4].

Hereafter we may assume that in Lemma 1 the knot $K$ is a Schubert’s 2-
bridge knot. In [4] Schubert described a normal form $K=(\alpha, \beta)$ for each 2-bridge
type $\overline{K}$ and used it to classify the types completely. In the normal form, $\alpha=$

det $(\overline{K})$ , the determinant of the knot, and $\beta$ is an integer relatively prime to $\alpha$

satisfying $-\alpha<\beta<\alpha$ , and furthermore we may assume that $\alpha\neq 1$ is a positive odd
integer because the knot $K$ considered in the paper is exactly knotted and not a
link.

Now let $K$ be a 2-bridge knot and then the knot $K$ is embedded in $\partial W$ by
Lemma 1 such that $a=u_{1}\cap K$ and $b=u_{2}\cap K$. Then $a\cup b$ separates $K$ into two
components $c_{1},$ $c_{2}$ . Thus $\partial N(u_{1}\cup c_{i}\cup u_{2}, \partial W)(i=1,2)$ consists of three circles such
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that two of these three are isotopic to $u_{1}$ and $u_{2}$ in $\partial W$ respectively and the last,

which is called the knotting circle and denoted by $C(K, i)$ , is. not isotopic to $u_{1}$

and $u_{2}$ in $\partial W$. Then we have;

Lemma 2. $C(K. 1)$ is isotopic to $C(K, 2)$ in $\partial W$.
Proof. Since $N(u_{i}, \partial W)(i=1,2)$ is an annulus, $\partial W-\dot{N}(u_{1}, \partial W)-\dot{N}(u_{2}, \partial W)$ is

homeomorphic to a $2\cdot manifoldL$ which is obtained by removing the interior of

four 2-disks from a 2-sphere. Thus $C(K, 1)$ and $C(K, 2)$ lie on $L$ and separate

$L_{4}$ into three components such that two of these three components have three

boundary circles and the remainder is an annulus which has $C(K, 1)$ and $C(K, 2)$

as its boundary. Hence $C(K, 1)$ is isotopic to $C(K, 2)$ in $\partial W$. The proof is

complete. $\Phi$

Next $M$ be a 3-mahifold obtained by a Dehn’s surgery along the knot $K$.
Then we have;

Theorem 1. The manifold $M$ has a Heegaard sPlitting of genus two.

Proof. By Lemma 2, the knot $K$ is emkdded in $\partial W$ and then $W$ is standardly

emoedded in $S$ . Let $C(K, 1)$ and $C(K. 2)$ be the knotting circles of $K$, and let

$C_{K}$ be one of these circles and then the choice is free by Lemma 2. Further let
$W^{\prime}$ be a solid torus of genus two and $\{D_{1}^{f}, D_{2}^{\prime}\}$ the meridian disk pair of $W^{\prime}$ .
Then we have a Heegaard splitting $(W, W^{\prime};h)$ for $S$ such that $h:\partial W^{\prime}\rightarrow\partial W$ is

a homeomorphism defined as $h(\partial D_{1}^{\prime})=u_{1}$ and $h(\partial D_{2}^{J})=C_{K}$ . $N(D_{\ell}^{\prime}, W^{\prime})(i=1,2)$ is

homoemorphic to $D^{2}\times I$ where $D^{2}$ is a 2-disk and $I$ is an unit interval, and we
may assume that $\partial N(D_{\ell}^{\prime}, W^{\prime})\cap\partial W^{\prime}=N(\partial D_{\ell}^{\prime}, \partial W^{\prime})(i=1,2)$ . Identifying points $ x\in$

$N(\partial D_{1}^{\prime}, \partial W^{\prime})$ with points $h(x)\in N(u_{1}, \partial W)$ and points $y\in N(\partial D_{2}^{\prime}, \partial W^{\prime})$ with points
$h(y)\in N(C_{K}, \partial W)$ , the resulting manifold $E^{\prime}=W\cup N(D_{1}^{\prime}, W^{\prime})\cup N(D^{\prime},, W^{\prime})r$ is a 3-

manifold in $S^{3}$ . Hence the Heegaard splitting $(W, W^{\prime};h)h$ gives a 3-sphere $S$ .
Let $E=W\cup N(D_{2}^{r}, W^{\prime})$ and $V^{\prime}=S^{3}-\dot{E}$, which is a solid torus in $S$ and in which
$u_{1}$ is a $me^{h}ridian$ such that $u_{1}$ is transverse to the knot $K$ at only the point $a$ .
Then the knot $K$ is isotopic to the center circle of the solid torus $V^{\prime}$ in $S$ and

so we may assume that $V^{\prime}$ is a regular $neighkrhd$ of $K$ in $S^{s}$ . Let $V$ be a
solid torus, $u$ a meridian of $V$, and $\Psi:\partial V\rightarrow\partial E$ a Dehn’s surgery along $K$. Then

removing the intersections between $\Psi(u)$ and $\partial E\cap N(D_{2}^{\prime}, W^{\prime})$ by an isotopy in $\partial E$,

we may assume that the intersections are empty. Thus the Dehn’s surgery along

$K$ induces a Heedaard splitting $(W, W^{\prime};h^{\prime})$ for $M$ such that $ h^{\prime}(\partial D_{1}^{\prime})=\Psi(u\rangle$ and
$h^{\prime}(\partial D^{\prime},)=C_{K}$. The proof is complete.

Now we may assume that in the above Heegaard splitting $(W, W^{\prime};h^{\prime})\Psi(u)$



72 MITSUYUKI OCHIAI

intersects each of $u_{1}$ and $u_{3}$ transversely at the intersections with the same orien-
tations respectively.

Note that $C_{K}$ gives the knot group $\pi_{1}(K, S^{3})$ , that is,

$\pi_{1}(K, S)=\{s, t;C_{K}(s, t)=1\}$

where $s$ and $t$ are two canonical generators for $\pi_{1}(W)=$ { $s,$ $t$ ; free}.
Corollary 1.1. The manifold $M$ is (1) irreducible (that is, any 2-spheres

embedded in $M$ bound 3-cells in $M$ ) or (2) the connected sum of two lens sPaces.
In particular, if $M$ is a homology $3$-sPhere then $M$ is irreducible.

Proof. Suppose that $M$ is not irreducible. By $Threm1,$ $M$ has a Heegaard
splitting of genus two and let it denote $(W, W^{\prime};F)$ where $F=W\cap W^{\prime}$ . Then by
Haken [2] there is a 2-sphere $S^{2}$ in $M$ such that $S^{2}\cap F$ is a single simple closed
curve $c$ which is not homotopic to zero in $F$, since $M$ is not irreducible. Thus
$M$ has a connected sum decomposition $M_{1}\# M_{2}$ such that each of $M_{1}$ and $M_{2}$ have
a Heegaard splitting of genus one (that is, a lens space), since the circle $c$ is not
homotopic to zero in $F$. The proof is complete.

Note that there happen curious cases, that is, the connected sum of two lens
spaces really obtained by Dehn’s surgery along torus knots, by Moser [3].

3. Reducible Heegaard splittings.

Let $(W_{1}, W_{2};h)$ be a Heegaard splitting of genus two for a 3-manifold $M$ and
$\{D_{i1}, D_{i2}\}$ a meridian disk pair of $W_{:}$ . Furthermore we take an additional 2-disk
$D_{i},$ Properly embedded in $W_{i}$ such that $D_{i}$ , is disjoint from $D_{i1}$ and $D_{i2}$ and that
any pair of three disks, $D_{i1},$ $D_{i2},$ $D_{i3}$ is a meridian disk pair of $W_{:}$ . Let $w_{k}=\partial D_{1k}$

$(k=1,2,3)$ and $z_{\dot{J}}=\partial D_{2j}(j=1,2,3)$ . The orientations of the circles $w_{1},$ $w_{2},$ $w_{3},$ $z_{1}$ ,
$z_{2}$ , Z3 and of $F=W_{1}nW_{2}$ are supposed to be given. Then the collection of the
circles, which is called a net for the Heegaard splitting (compare with Definition
1.2.1 in [6]), gives rise to a partition of $F$ into a set $\Gamma$ of domains. The segments
of the circles of the net that lie between the points where the circles intersect
are called the edges of the net. A domain $ U\in\Gamma$ is said to be distinguished if
among the edges that form its boundary there are two $a_{1},$ $a_{2}$ belonging to a single
circle. The edges $a_{1},$ $a_{g}$ are also said to be distinguished. Furthermore the
Heegaard splitting (with the fixed meridian disk pair $\{D_{i1},$ $D_{i2},$ $D_{i},\}$) is said to
be $W_{1^{-}}reducible$ if it has distinguished edges belonging to $w_{1}$ or $w_{3}$ or $w,$ , also $W_{g^{-}}$

reducible if they belong to $z_{1}$ or $z_{2}$ or $z_{s}$ , and also reducible if it is $W_{1}$-reducible
or $W_{3}$-reducible.
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Next let $K$ be a 2-bridge knot and let $W_{1}$ be standardly embedded in $S$ . Then
$K$ is able to be embedded in $\partial W_{1}$ by Lemma 1 such that $a=u_{1}\cap K$ and $b=u_{2}\cap K$

where $u_{1},$ $u_{2},$ $a$ , and $b$ are defined as in Lemma 1. The intersection between $K$

and $w_{1}\cup w_{2}Uw$, give rise to a partition of the knot $K$ into a set of arcs. Among

the arcs, there are four arcs $c_{11},$ $c_{12},$ $c_{21}$ and $c_{22}$ such that $c_{1i}(i=1,2)$ contains the
point $a$ and $c_{2j}(j=1,2)ntains$ the point $b$ . Then the next lemma follows from

the assumption that the knot $K$ is a Schubert’s 2-bridge knot $\overline{K}=(a, \beta)$ such that
$\alpha>2$ is a positive odd integer.

Lmma 3. $\partial c_{1\ell}-a$ is contained in $w_{2}$ but not $w_{1}\cup w$, and $\partial c_{2j}-b$ is contained
in $w_{1}$ but not $w_{2}\cup w,$ .

Fig. 2. The knotting circle along $K$.
Noting that there is an orientation preserving homeomorphism (involution) $T$:

$W_{1}\rightarrow W_{1}$ such that $T(u_{i})=u_{i},$ $T(w_{j})=w_{j},$ $T(a)=a,$ $T(b)=b$, and $T(C_{K})=C_{K}$ and so
we have Fig. 2 by Lemma 2 and Lemma 3.

Now let $M$ be a 3-manifold obtained by a Dehn’s surgery along the knot $K$

and $\Psi:\partial V\rightarrow\partial E$ the matching homeomorphism. By Theorem 1, the manifold $M$

has a Heegaard splittig $(W, W^{\prime};h^{\prime})$ . Then we have;

Main Theorem. The Heegaard splitting $(W, W^{\prime};h^{\prime})$ for $M$ is not reducible.

Proof. We change the notation as follows; let us denote $(W, W^{\prime};h^{\prime})$ by $(W_{1}$ ,
$W,;h)$ . Furthermore let $\{D:1, D_{i2}\}$ be a meridian disk pair of $W_{:}$ and $D_{i8}$ the
additional 2-disk in $W_{:}$ and let $w_{j}=\partial D_{1j}$ and $z_{j}=\partial D_{gj}(j=1,2,3)$ . Then by $Th\infty-$

rem 1 the Heegaard splitting $(W_{1}, W_{2};h)$ is given by $h(z_{1})=\Psi(z_{1})$ and $h(z_{S})=C_{K}$ .
We may assume that $E=W_{1}\cup N(D_{g}, W_{2})$ and $V=W_{2}-\dot{N}(D_{22}, W_{l})$ and furthermore
$\Psi(z_{j})(j=1,3)$ intersects each of $u_{1}$ and $u$, transversely at the intersections with
the same orientations respectively and is disjoint from $\partial E\cap N(D_{2}, W_{2})$ . Next let
$\Gamma$ be the set of domains associated with $\{D_{i1}, D_{i2}, D_{iS}\}$ given by the Heegaard
splitting and let a domain $ U\in\Gamma$ . Then two cases happen by Lemma 2 and
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Fig. 3.

Fig. 4.

Lemma 3. Let $F_{1},$ $F_{2}$ be two 2-manifolds in $\partial W_{1}$ such that $F_{1}\cup F_{2}=\partial W_{1^{r}}$ and
$F_{1}\cap F_{l}=C_{K}\cup u_{1}\cup u_{2}$ .

Case (1). The domain $U$ is contained in one of $F_{1}$ and $F_{2}$ ; Then $U$ is a
rectangular domain (see Fig. 3 and Fig. 4), or a hexagonal domain (see Fig. 4).

The circle $u_{1}$ (and $u_{2}$) intersects $\Psi(z_{1})$ and $\Psi(z_{S})$ alternatively and so $U$ has no
distinguished edges in $z_{1}$ or $z_{2}$ or $z_{3}$ . By Lemma 3, it has also no those in $w_{1}$ or
$w_{2}$ or $w$, (see Fig 3 and Fig. 4).

Case (2). The domain $U$ has intersections with both of $F_{1}$ and $F_{2}$ ; , Such
the domain $U$ is contained in one of two “knob” areas $F(u_{1}),$ $F(u_{2})$ . We may
assume that $U$ is contained in $F(u_{2})$ without loss of generality. Let $F(u_{2})=A_{1}\cup A_{2}$

where $A_{1}\cap A_{2}=u_{g}$ and $A_{i}(i=1,2)$ is an annulus. Then $\partial A_{1}=u_{2}\cup S(w_{1})\cup S(C_{K})$

and $\partial A_{2}=u_{2}\cup S^{\prime}(w_{1})\cup S^{\prime}(C_{K})$ where $S(w_{1})$ and $S^{\prime}(w_{1})$ are arcs in $w_{1}$ and $S\langle C_{K}$)

and $S^{\prime}(C_{K})$ are arcs in $C_{K}$ . Let $A_{1}\cap w_{2}=S(w_{g}),$ $A_{1}\cap w,=S(w,),$ $A_{\mathfrak{g}}\cap w_{2}=S^{\prime}(w_{g})$ ,
and $A_{8}\cap w_{3}=S^{\prime}(w,)$ . Now, by Takahashi [5], there is an involution $T$ on $W_{1}$ such
that $T(C_{K})=C_{K},$ $T(\Psi(z_{1}))=\Psi(z_{1}),$ $T(\Psi(z_{3}))=\Psi(z_{s}),$ $T(w_{1})=w_{1},$ $T(w_{2})=w_{2},$ $T(w,)=w_{s}$ ,
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$T(u_{1})=u_{1},$ $T(u_{2})=u_{2},$ $T(a^{\prime})=a^{\prime},$ $T(b^{\prime})=b^{\prime}$ , and $T$ has six fixed points which all

belong to $C_{K}$ or $\Psi(z_{1})$ or $\Psi(z_{3})$ . By Lemma 3, $C_{K}$ can not contain the fixed point
$b^{\prime}$ and so $(\Psi(z_{1})\cup\Psi(z_{3}))\cap(S(w_{3})\cup S^{\prime}(w_{s}))\neq\phi$ . Similarly $(\Psi(z_{1})\cup\Psi(z_{8}))\cup(S(w_{2})\cup S^{\prime}(w_{2}))$

$\neq\phi$ . But we can assume that $\Psi(z_{j})(j=1,3)$ is disjoint from $S(w_{2})$ and $S(w_{s})$ (see

Fig. 4). Hence the domain $U\in A_{1}\cup A_{2}$ is not distinguished since $\partial U$ does not

contain two edges belonging to a single circle in $\{w_{1}, w_{2}, w_{S}, z_{1}, z_{2}, z,\}$ (see Fig 4).

Thus the Heegaard splitting $(W_{1}, W_{2};h)$ is not reducible. The $prf$ is $mplete$ .
By Homma’s Theorem, we have the following corollary;

Corollary 1.1. All 3-manifolds obtained by Dehn’s surgery along non-trivial
2-bridge knots are not 3-spheres.

Note that Main Theorem is proved by the same manner as the above proof,

when the net is defined without the additional 2-disks $D_{13}$ and $D_{2s}$ (see Definition

1.2.1 in [6]).
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