DEHN'S SURGERY ALONG 2-BRIDGE KNOTS

By
Mitsuyuki Ochial

(Received September 21, 1977)

1. Introduction.

Our main concern is the study of the 3-manifolds obtained by Denh's surgery along 2 -bridge knots. In this paper, we prove that such 3 -manifolds have Heegaard splittings of genus two and so are decomposed to two lens spaces when they are not irreducible. Furthermore we shall verify that such 3 -manifolds are not 3spheres S^{3} even though they are homology 3 -spheres. This result is proved by using Homma's theorem [1] and Volodin-Kuznetsov-Fomenko [6], which is recently found;

Homma's Theorem. Heegaard splittings of genus two for 3 -spheres S^{3} are reducible except for the extended canonical one.

We work in piecewise linear category throughout the paper. Furthermore, unless specified otherwise, by $N(X, Y)$ we shall denote a regular neighborhood of a subpolyhedron X in a polyhedron Y and by \dot{X} we shall denote the interior of X.

Definition. Let W_{1}, W_{2} be solid tori of genus two and M a closed orientable 3 -manifold and $h: \partial W_{2} \rightarrow \partial W_{1}$ a homeomorphism of tori. Then the triple (W_{1}, W_{2}; h) (or ($\left.W_{1}, W_{2}, F\right)$) is called a Heegaard splitting of genus two for M when $M=$ $W_{1} \cup W_{2}$ and $W_{1} \cap W_{2}=\partial W_{1}=\partial W_{2}=F$, a closed 2-manifold.
${ }^{n}$ Next let $\left\{D_{i 1}, D_{i 2}\right\}$ be a meridian-disk pair of $W_{i}(i=1,2)$, that is, $D_{i j}(j=1$, 2) is a properly embedded 2-disk in W_{i} such that $D_{i 1}$ and $D_{i 2}$ are disjoint and $W_{i}-D_{i 1} \cup D_{i 2}$ is connected. Such a 2 -disk $D_{i j}(j=1,2)$ is called a meridian disk of W_{i} and the circle $u_{i j}=\partial D_{i j}(j=1,2)$ a meridian of W_{i}.

Now let h be a attaching homeomorphism from ∂W_{2} onto ∂W_{1}. Then the manifold $M=W_{1} \cup_{h} W_{2}$ is determined up to homeomorphisms by the collection of circles v_{1} and v_{2} on ∂W_{1} such that $v_{k}=h\left(u_{2 k}\right)(k=1,2)$. For example, let us illustrate the canonical Heegaard splitting of genus two for S^{3} as the one in Fig. 1.

2. Dehn's surgery along 2-bridge knots.

A 3 -manifold M is said to be obtained by a Dehn's surgery along a 2-bridge

Fig. 1. The canonical Heegaard splitting for \boldsymbol{S}^{3}.
knot K if followings hold; Let $N\left(K, S^{3}\right)$ be a regular neighborhood of K in S^{3} and then $N\left(K, S^{3}\right)$ is a solid torus. Furthermore let E be $S^{3}-\dot{N}\left(K, S^{3}\right), V$ a solid torus, $i: \partial N\left(K, S^{3}\right) \rightarrow \partial E$ be the trivial attaching which induces $S^{3}=E \cup N\left(K, S^{3}\right)$, and $\Psi: \partial V \rightarrow \partial E$ a homeomorphism of tori with the property that $i^{-1} \Psi^{i}$ does not extend to a homeomorphism from V onto $N\left(K, S^{3}\right)$. Now in the disjoint union,

$$
\left(S^{3}-\stackrel{\circ}{N}\left(K, S^{3}\right)\right)+V
$$

identify points $x \in \partial V$ with points $\Psi(x) \in \partial E$. Then the resulting manifold is the 3-manifold M.

Next let W be a standardly embedded solid torus of genus two in S^{3}, that is, there are two properly embedded 2-disks D_{1}, D_{2} in $S^{3}-\dot{W}$ such that D_{1} and D_{2} are disjoint and intersect two meridians of W transversely at points a, b respectively. Let $u_{1}=\partial D_{1}$ and $u_{2}=\partial D_{2}$. Then we have;

Lemma 1. Let K be an arbitrary 2 -bridge knot in S^{3}. Then K is embedded in ∂W such that K transversely intersects circles u_{1}, u_{2} and $K \cap u_{1}=a, K \cap u_{2}=b$.

Proof. The proof follows directly from the standard definition of 2-bridge knots [4].

Hereafter we may assume that in Lemma 1 the knot K is a Schubert's 2bridge knot. In [4] Schubert described a normal form $K=(\alpha, \beta)$ for each 2-bridge type \bar{K} and used it to classify the types completely. In the normal form, $\alpha=$ $\operatorname{det}(\bar{K})$, the determinant of the knot, and β is an integer relatively prime to α satisfying $-\alpha<\beta<\alpha$, and furthermore we may assume that $\alpha \neq 1$ is a positive odd integer because the knot K considered in the paper is exactly knotted and not a link.

Now let K be a 2 -bridge knot and then the knot K is embedded in ∂W by Lemma 1 such that $a=u_{1} \cap K$ and $b=u_{2} \cap K$. Then $a \cup b$ separates K into two components c_{1}, c_{2}. Thus $\partial N\left(u_{1} \cup c_{i} \cup u_{2}, \partial W\right)(i=1,2)$ consists of three circles such
that two of these three are isotopic to u_{1} and u_{2} in ∂W respectively and the last, which is called the knotting circle and denoted by $C(K, i)$, is not isotopic to u_{1} and u_{2} in ∂W. Then we have;

Lemma 2. $C(K, 1)$ is isotopic to $C(K, 2)$ in ∂W.
Proof. Since $N\left(u_{i}, \partial W\right)(i=1,2)$ is an annulus, $\partial W-\dot{N}\left(u_{1}, \partial W\right)-\dot{N}\left(u_{2}, \partial W\right)$ is homeomorphic to a 2 -manifold L_{4} which is obtained by removing the interior of four 2 -disks from a 2 -sphere. Thus $C(K, 1)$ and $C(K, 2)$ lie on L_{4} and separate L_{4} into three components such that two of these three components have three boundary circles and the remainder is an annulus which has $C(K, 1)$ and $C(K, 2)$ as its boundary. Hence $C(K, 1)$ is isotopic to $C(K, 2)$ in ∂W. The proof is complete.

Next M be a 3-mahifold obtained by a Dehn's surgery along the knot K. Then we have;

Theorem 1. The manifold M has a Heegaard splitting of genus two.
Proof. By Lemma 2, the knot K is embedded in ∂W and then W is standardly embedded in S^{3}. Let $C(K, 1)$ and $C(K, 2)$ be the knotting circles of K, and let C_{K} be one of these circles and then the choice is free by Lemma 2. Further let W^{\prime} be a solid torus of genus two and $\left\{D_{1}^{\prime}, D_{2}^{\prime}\right\}$ the meridian disk pair of W^{\prime}. Then we have a Heegaard splitting ($W, W^{\prime} ; h$) for S^{3} such that $h: \partial W^{\prime} \rightarrow \partial W$ is a homeomorphism defined as $h\left(\partial D_{1}^{\prime}\right)=u_{1}$ and $h\left(\partial D_{2}^{\prime}\right)=C_{K} . \quad N\left(D_{i}^{\prime}, W^{\prime}\right)(i=1,2)$ is homoemorphic to $D^{2} \times I$ where D^{2} is a 2 -disk and I is an unit interval, and we may assume that $\partial N\left(D_{i}^{\prime}, W^{\prime}\right) \cap \partial W^{\prime}=N\left(\partial D_{i}^{\prime}, \partial W^{\prime}\right)(i=1,2)$. Identifying points $x \in$ $N\left(\partial D_{1}^{\prime}, \partial W^{\prime}\right)$ with points $h(x) \in N\left(u_{1}, \partial W\right)$ and points $y \in N\left(\partial D_{2}^{\prime}, \partial W^{\prime}\right)$ with points $h(y) \in N\left(C_{K}, \partial W\right)$, the resulting manifold $E^{\prime}=W \cup N\left(D_{1}^{\prime}, W^{\prime}\right) \cup N\left(D_{2}^{\prime}, W^{\prime}\right)$ is a 3manifold in S^{3}. Hence the Heegaard splitting ${ }^{h} W, W^{\prime} ; h$) gives a 3 -sphere S^{3}. Let $E=W \cup_{h} N\left(D_{2}^{\prime}, W^{\prime}\right)$ and $V^{\prime}=S^{3}-\dot{E}$, which is a solid torus in S^{3} and in which u_{1} is a meridian such that u_{1} is transverse to the knot K at only the point a. Then the knot K is isotopic to the center circle of the solid torus V^{\prime} in S^{3} and so we may assume that V^{\prime} is a regular neighborhood of K in S^{3}. Let V be a solid torus, u a meridian of V, and $\Psi: \partial V \rightarrow \partial E$ a Dehn's surgery along K. Then removing the intersections between $\Psi(u)$ and $\partial E \cap N\left(D_{2}^{\prime}, W^{\prime}\right)$ by an isotopy in ∂E, we may assume that the intersections are empty. Thus the Dehn's surgery along K induces a Heedaard splitting $\left(W, W^{\prime} ; h^{\prime}\right)$ for M such that $h^{\prime}\left(\partial D_{1}^{\prime}\right)=\Psi(u)$ and $h^{\prime}\left(\partial D_{2}^{\prime}\right)=C_{K}$. The proof is complete.

Now we may assume that in the above Heegaard splitting ($W, W^{\prime} ; h^{\prime}$) $\Psi(u)$
intersects each of u_{1} and u_{s} transversely at the intersections with the same orientations respectively.

Note that C_{K} gives the knot group $\pi_{1}\left(K, S^{3}\right)$, that is,

$$
\pi_{1}\left(K, S^{s}\right)=\left\{s, t ; C_{K}(s, t)=1\right\}
$$

where s and t are two canonical generators for $\pi_{1}(W)=\{s, t$; free $\}$.
Corollary 1.1. The manifold M is (1) irreducible (that is, any 2-spheres embedded in M bound 3 -cells in M) or (2) the connected sum of two lens spaces. In particular, if M is a homology 3-sphere then M is irreducible.

Proof. Suppose that M is not irreducible. By Theorem 1, M has a Heegaard splitting of genus two and let it denote ($W, W^{\prime} ; F$) where $F=W \cap W^{\prime}$. Then by Haken [2] there is a 2 -sphere S^{2} in M such that $S^{2} \cap F$ is a single simple closed curve c which is not homotopic to zero in F, since M is not irreducible. Thus M has a connected sum decomposition $M_{1} \# M_{2}$ such that each of M_{1} and M_{2} have a Heegaard splitting of genus one (that is, a lens space), since the circle c is not homotopic to zero in F. The proof is complete.

Note that there happen curious cases, that is, the connected sum of two lens spaces really obtained by Dehn's surgery along torus knots, by Moser [3].

3. Reducible Heegaard splittings.

Let ($W_{1}, W_{2} ; h$) be a Heegaard splitting of genus two for a 3 -manifold M and $\left\{D_{i 1}, D_{i 2}\right\}$ a meridian disk pair of W_{i}. Furthermore we take an additional 2 -disk $D_{i s}$ properly embedded in W_{i} such that $D_{i s}$ is disjoint from $D_{i 1}$ and $D_{i 2}$ and that any pair of three disks, $D_{i 1}, D_{i 2}, D_{i 3}$ is a meridian disk pair of W_{i}. Let $w_{k}=\partial D_{1 k}$ $(k=1,2,3)$ and $z_{j}=\partial D_{2 j}(j=1,2,3)$. The orientations of the circles $w_{1}, w_{2}, w_{3}, z_{1}$, z_{2}, z_{3} and of $F=W_{1} \cap W_{2}$ are supposed to be given. Then the collection of the circles, which is called a net for the Heegaard splitting (compare with Definition 1.2 .1 in [6]), gives rise to a partition of F into a set Γ of domains. The segments of the circles of the net that lie between the points where the circles intersect are called the edges of the net. A domain $U \in \Gamma$ is said to be distinguished if among the edges that form its boundary there are two a_{1}, a_{2} belonging to a single circle. The edges a_{1}, a_{2} are also said to be distinguished. Furthermore the Heegaard splitting (with the fixed meridian disk pair $\left\{D_{i 1}, D_{i 2}, D_{i 8}\right\}$) is said to be W_{1}-reducible if it has distinguished edges belonging to w_{1} or w_{2} or w_{3}, also $W_{2^{-}}$ reducible if they belong to z_{1} or z_{2} or z_{3}, and also reducible if it is W_{1}-reducible or $W_{\mathbf{2}}$-reducible.

Next let K be a 2-bridge knot and let W_{1} be standardly embedded in S^{3}. Then K is able to be embedded in ∂W_{1} by Lemma 1 such that $a=u_{1} \cap K$ and $b=u_{2} \cap K$ where u_{1}, u_{2}, a, and b are defined as in Lemma 1. The intersection between K and $w_{1} \cup w_{2} \cup w_{3}$ give rise to a partition of the knot K into a set of arcs. Among the arcs, there are four arcs c_{11}, c_{12}, c_{21} and c_{22} such that $c_{1 i}(i=1,2)$ contains the point a and $c_{2 j}(j=1,2)$ contains the point b. Then the next lemma follows from the assumption that the knot K is a Schubert's 2 -bridge knot $\bar{K}=(a, \beta)$ such that $\alpha>2$ is a positive odd integer.

Lmma 3. $\partial c_{1 i}-a$ is contained in w_{2} but not $w_{1} \cup w_{3}$ and $\partial c_{2 j}-b$ is contained in w_{1} but not $w_{2} \cup w_{3}$.

Fig. 2. The knotting circle along K.
Noting that there is an orientation preserving homeomorphism (involution) T : $W_{1} \rightarrow W_{1}$ such that $T\left(u_{i}\right)=u_{i}, T\left(w_{j}\right)=w_{j}, T(a)=a, T(b)=b$, and $T\left(C_{K}\right)=C_{K}$ and so we have Fig. 2 by Lemma 2 and Lemma 3.

Now let M be a 3-manifold obtained by a Dehn's surgery along the knot K and $\Psi: \partial V \rightarrow \partial E$ the matching homeomorphism. By Theorem 1, the manifold M has a Heegaard splittig ($W, W^{\prime} ; h^{\prime}$). Then we have;

Main Theorem. The Heegaard splitting ($W, W^{\prime} ; h^{\prime}$) for M is not reducible.
Proof. We change the notation as follows; let us denote ($W, W^{\prime} ; h^{\prime}$) by (W_{1}, $W_{\mathbf{2}} ; h$. Furthermore let $\left\{D_{i 1}, D_{i 2}\right\}$ be a meridian disk pair of W_{i} and $D_{i s}$ the additional 2 -disk in W_{i} and let $w_{j}=\partial D_{1 j}$ and $z_{j}=\partial D_{2 j}(j=1,2,3)$. Then by Theorem 1 the Heegaard splitting ($W_{1}, W_{2} ; h$) is given by $h\left(z_{1}\right)=\Psi\left(z_{1}\right)$ and $h\left(z_{2}\right)=C_{K}$. We may assume that $E=W_{1} \cup N\left(D_{22}, W_{2}\right)$ and $V=W_{2}-\grave{N}\left(D_{22}, W_{2}\right)$ and furthermore $\Psi\left(z_{j}\right)(j=1,3)$ intersects each of u_{1} and u_{2} transversely at the intersections with the same orientations respectively and is disjoint from $\partial E \cap N\left(D_{22}, W_{2}\right)$. Next let Γ be the set of domains associated with $\left\{D_{i 1}, D_{i 2}, D_{i 3}\right\}$ given by the Heegaard splitting and let a domain $U \in \Gamma$. Then two cases happen by Lemma 2 and

Fig. 3.

Fig. 4.
Lemma 3. Let F_{1}, F_{2} be two 2-manifolds in ∂W_{1} such that $F_{1} \cup F_{2}=\partial W_{1}$ and $F_{1} \cap F_{2}=C_{K} \cup u_{1} \cup u_{2}$.

Case (1). The domain U is contained in one of F_{1} and F_{2}; Then U is a rectangular domain (see Fig. 3 and Fig. 4), or a hexagonal domain (see Fig. 4). The circle u_{1} (and u_{2}) intersects $\Psi\left(z_{1}\right)$ and $\Psi\left(z_{3}\right)$ alternatively and so U has no distinguished edges in z_{1} or z_{2} or z_{3}. By Lemma 3 , it has also no those in w_{1} or w_{2} or w_{3} (see Fig 3 and Fig. 4).

Case (2). The domain U has intersections with both of F_{1} and F_{2}; Such the domain U is contained in one of two "knob" areas $F\left(u_{1}\right), F\left(u_{2}\right)$. We may assume that U is contained in $F\left(u_{2}\right)$ without loss of generality. Let $F\left(u_{2}\right)=A_{1} \cup A_{2}$ where $A_{1} \cap A_{2}=u_{2}$ and $A_{i}(i=1,2)$ is an annulus. Then $\partial A_{1}=u_{2} \cup S\left(w_{1}\right) \cup S\left(C_{K}\right)$ and $\partial A_{2}=u_{2} \cup S^{\prime}\left(w_{1}\right) \cup S^{\prime}\left(C_{K}\right)$ where $S\left(w_{1}\right)$ and $S^{\prime}\left(w_{1}\right)$ are arcs in w_{1} and $S\left(C_{K}\right)$ and $S^{\prime}\left(C_{K}\right)$ are arcs in C_{K}. Let $A_{1} \cap w_{2}=S\left(w_{2}\right), A_{1} \cap w_{3}=S\left(w_{3}\right), A_{2} \cap w_{2}=S^{\prime}\left(w_{2}\right)$; and $A_{2} \cap w_{3}=S^{\prime}\left(w_{3}\right)$. Now, by Takahashi [5], there is an involution T on W_{1} such that $T\left(C_{K}\right)=C_{K}, T\left(\Psi\left(z_{1}\right)\right)=\Psi\left(z_{1}\right), T\left(\Psi\left(z_{3}\right)\right)=\Psi\left(z_{3}\right), T\left(w_{1}\right)=w_{1}, T\left(w_{2}\right)=w_{2}, T\left(w_{3}\right)=w_{3}$,
$T\left(u_{1}\right)=u_{1}, T\left(u_{2}\right)=u_{2}, T\left(a^{\prime}\right)=a^{\prime}, T\left(b^{\prime}\right)=b^{\prime}$, and T has six fixed points which all belong to C_{K} or $\Psi\left(z_{1}\right)$ or $\Psi\left(z_{3}\right)$. By Lemma $3, C_{K}$ can not contain the fixed point b^{\prime} and so $\left(\Psi\left(z_{1}\right) \cup \Psi\left(z_{3}\right)\right) \cap\left(S\left(w_{3}\right) \cup S^{\prime}\left(w_{3}\right)\right) \neq \phi$. Similarly $\left(\Psi\left(z_{1}\right) \cup \Psi\left(z_{3}\right)\right) \cup\left(S\left(w_{2}\right) \cup S^{\prime}\left(w_{2}\right)\right)$ $\neq \phi$. But we can assume that $\Psi\left(z_{j}\right)(j=1,3)$ is disjoint from $S\left(w_{2}\right)$ and $S\left(w_{3}\right)$ (see Fig. 4). Hence the domain $U \in A_{1} \cup A_{2}$ is not distinguished since ∂U does not contain two edges belonging to a single circle in $\left\{w_{1}, w_{2}, w_{3}, z_{1}, z_{2}, z_{3}\right\}$ (see Fig 4). Thus the Heegaard splitting ($W_{1}, W_{2} ; h$) is not reducible. The proof is complete.

By Homma's Theorem, we have the following corollary;
Corollary 1.1. All 3-manifolds obtained by Dehn's surgery along non-trivial 2 -bridge knots are not 3 -spheres.

Note that Main Theorem is proved by the same manner as the above proof, when the net is defined without the additional 2-disks D_{13} and D_{23} (see Definition 1.2.1 in [6]).

References

[1] Tatsuo Homma: Heegaard splittings of genus two for 3-spheres (in Japanese). Reports on a meeting at R.I.M.S. Kyoto Univ., No. 297, 54-68, 1977.
[2] W. Haken: Some results on surfaces in 3-manifolds. Studies in modern topology, MAA Studies in Mathematics Vol. 5, 39-98, 1968.
[3] L. Moser: Elementary surgery along a torus kot. Pacific J. Math., 38 (3) (1971), 737-745.
[4] O. Schubert: Knoten mit zwei Brücken. Math. Z. 65 (1956), 133-170.
[5] M. Takahashi: An alternative proof of Birman-Hilden-Viro's theorem. To appear in Tsukuba Math. Jour.
[6] I. A. Volodin, V. E. Kuznetsov and A. T. Fomenko: The Problem of Discriminating Algorithmically the Standard Three-Dimensional Sphere. Russian Math. Surveys, 29 (5) (1974), 71-172.

