
YOKOHAMA MATHEMATICAL
JOURNAL VOL. 26, 1978

UNIQUE CONTINUATION FOR SYMMETRIC HYPERBOLIC
SYSTEMS OF FIRST ORDER WITH DISCONTINUOUS

COEFFICIENTS*

By

HANG-CHIN LAI

(Received July 12, 1977)

ABSTRACT. The weak solutions of the Cauchy problem for symmetric hyper-
bolic systems of discontinuous coefficients with the following fact that the
coefficients and their derivatives in distribution sense are bounded is vanishing
almost everywhere in a strip domain if the weak solution is vanished at some
time in the strip domain. The weak solutions of the same equation are also
uniquely determined by their initial conditions.

\S 1. Introduction.

Gel’fand [3] proposed the study of existence and uniqueness of solutions to
the Cauchy problem for linear hyperbolic equations whose coefficients are possibly
discontinuous. Hurd and Sattinger [4] proved the existence theorem for the case
of first order hyperbolic systems in several space variables and the uniquences
theorem in the case of one space variable, they remarked that the uniqueness
theorem may be extended to the equations in several variables, it requires some
stronger assumption in place of the conditions given in the case of one space
variable. Recently, Hurd [5] proved a theorem about uniqueness for weak solu-
tions of symmetric quasilinear hyperbolic systems of one space variable and the
author [7] proved the uniqueness property by exponential decay of weak solutions
for hyperbolic systems of first order with discontinuous coefficients. In this note
we present some conditions for the uniqueness property of the weak solutions of
hyperbolic systems in several space variables in which the energy inequality men-
tioned in Lai [7] is available, we can also easily apply to show the existence theorem.

\S 2. Notations and preliminaries.

Most of the notations are the same as in Lai [7].

Let $x=(x_{1}, x_{2}, \cdots, x_{n})$ be a point in the n-dimensional Eucliden space $E$
’ and

$t$ a point on the real line $(-\infty, \infty)$ . We denote by $\mathcal{D}$ the half space { $(x, t)$ ;
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$(x, t)\in E^{n}\times[0, \infty)\}$ . The hyperplane $ t=\tau$ is denoted by $H_{\tau}$ .
For two (vector-valued) functions $u=(u_{1}, u_{2}, \cdots, u_{t})$ and $v=(v_{1}, v_{l}, \cdots, v_{i})$ de-

fined in $\mathcal{D}$, we put

$\langle u, v\rangle=\sum_{\ell=1}^{\ell}u_{i}v_{i}$ and $|u|^{2}=\langle u, u\rangle$ .
Let $L^{2}(\mathcal{D})$ be the Hilbert space consisting of all measurable functions $u=$

$(u_{1}, u_{2}, \cdots, u_{\ell})$ for which

$\int\int_{\ovalbox{\tt\small REJECT}}|u|^{2}dxdt<\infty$ ,

and denote

$(u, u)=\Vert u\Vert^{B}=\int\int_{\ovalbox{\tt\small REJECT}}|u|^{2}dxdt$ .
In the following $feLi_{oc}(\Omega)$ for a function or a vector-valued function $f$ defined

on a region $\Omega$ in some Euclidean space means that $f$ or every component of $f$ is
square integrable on every compact subset of $\Omega$ .

Consider a linear operator $L$ of the first order of symmetric hyperbolic systems
defined as follows

(1) $Lu\equiv\frac{\partial u}{\partial t}+\sum_{i=1}^{l}\frac{\partial}{\partial_{X:}}(A^{i}u)+Bu$

where $A^{i}(i=1,2, \cdots, n)$ are $l\times t$ symmetric matrices, $B$ is an $l\times l$ matrix.
We say that a vector valued function $u\in L_{1oc}^{2}(\mathcal{D})$ is a weak solution of the

Cauchy problem

(2) $Lu=0$ , $u(x, 0)=\psi(x)$

for the Cauchy data $\phi(x)\in L_{1oc}^{2}(H_{0})$ if it satisfies (2) and

(3) $\int_{0}\int_{H}.[\langle u,$ $\frac{\partial\varphi}{\partial s}\rangle+\sum_{\ell=1}\langle A^{i}u,$ $\frac{\partial\varphi}{\partial x_{i}}\rangle-\langle Bu, \varphi\rangle]$ dxds

$+\int_{H_{0}}\langle\phi(x), \varphi(x, 0)\rangle dx-\int\int_{H_{\ell}}\langle u, \varphi\rangle dx=0$

for any $t>0$ and any $\varphi\in C^{1}[0, \infty;H_{0}^{1.2}(E^{n})]$ , where the space $H_{0}^{1,2}(E^{n})$ is the closure
of $C_{0}^{\infty}(E$

“
$)$ by the norm

$\Vert\varphi(\cdot, t)\Vert_{1}=(\int_{E^{\hslash}}\sum_{|\alpha|\leq 1}|D_{l}^{\alpha}\varphi|^{2}dx)^{1/2}$

and the space $C^{1}[0, \infty;H_{0}^{1.2}(E^{*})]$ consists of all functions $\varphi$ with the following
properties:
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(i) $\varphi$ is measurable in $E^{n}$

(ii) for almost all $ te[0, \infty$), the function $\varphi(x, t)$ in $x$ belongs to $H_{0}^{1}(E^{n})$ and

(iii) the norm $\Vert\varphi(\cdot, t)\Vert_{1}$ as a function of $t$ belongs to $C^{1}([0, \infty))$ .
Let $w_{k}(x, s)$ be the mollifier defined as in [7] and put

$f_{k}(x, t)=f*w_{k}(x, t)=\int\int_{\ovalbox{\tt\small REJECT}}f(y, s)w_{k}(x-y, t-s)dyds$ .

Then one sees that $f_{k}(k=1,2, \cdots)$ is infinitely (many times) differentiable in $\mathcal{D}$

and $f_{k}$ tends to $f$ in the $L^{p}$-norm $(p\geq 1)$ on very compact subset of $\mathcal{D}$ as $k$ tends
to infinity. By this way, we put $A_{k}(s, t)=(a_{ij}^{k}(x, t))$ for a matrix $A(x, t)=(a_{ij}(x, t))$

with $a:j\in L_{1oo}^{2}(\mathcal{D})$ and $a_{\ell\dot{g}}^{k}(x, t)=a_{ij}*w_{k}(x, t)$ . Therefore we can obtain the smoothed
sequence of systems

(4) $L_{k}u\equiv\frac{\partial u}{\partial t}+\sum_{\ell=1}^{\sim}\frac{\partial}{\partial x_{i}}(A_{k}^{i}u)+B_{k}u=0$ .

In this note, we shall suppose that the coefficients in the system $Lu=0$ would

statisfy the following conditions:
(i) The coefficients $A^{i},$ $B$ and their first derivatives in the distribution sense

are bounded in $\mathcal{D}$.
(ii) Let $\Delta t=t^{\prime}-t,$ $\Delta x_{i}=x_{i}^{\prime}-x_{i}$ and $\Delta_{i}A^{j}=A^{j}(x_{1}, x_{2}, \cdots, x_{i}^{\prime}, \cdots, x_{*}, t)-A^{j}(x_{1}$ ,

$x,,$ $\cdots,$ $x,,$
$\ell$),

then there exist nonnegative locally integrable functions $\nu(t),$ $\mu:(\ell)(i=1,2, \cdots, n)$

bounded in $[0, \infty$) such that in $\mathcal{D}$

$|\langle B\xi, \xi\rangle|\leq\nu(i)\langle\xi, \xi\rangle$ , $|\langle\frac{\Delta_{i}A^{i}}{\Delta x_{i}}\xi,$ $\xi\rangle|\leq\mu_{i}(t)\langle\xi, \xi\rangle$

$(i=1,2, \cdots, n)$ for any vector $\xi$ .
By the condition (ii) there exists a function $\mu(t)\in L_{1oc}^{1}([0, \infty))$ being bounded

and satisfying

(5) $|\langle(B_{k}+\frac{1}{2}\sum_{\ell=1}^{\sim}\frac{\partial A_{k}^{:}}{\partial x_{i}})\xi,$ $\xi\rangle|\leq\mu(t)\langle\xi, \xi\rangle$

for any $\xi$, where $B_{k},$
$A_{k}^{:}$ are smoothed matrices respectively for the given matrices

$B$ and $A^{:}$ (see $[7j$ Lemma 1]).

Accordingly Lemma 3 and Lemma 4 in Lai [7], and from the Cauchy problem,

we obtain

(6) $\left\{\begin{array}{l}L_{kw}\varphi\equiv\frac{\partial\varphi}{\partial t}+\sum_{=1}^{\hslash}A_{k}^{i}\frac{\partial\varphi}{\partial x_{i}}B_{k}^{*}\varphi=F\\\varphi(x, 0)=\phi(x)\end{array}\right.$



64 HANG-CHIN LAI

for any given $\phi\in C_{0}(E^{n})$ and $F\in C^{\infty}(\mathcal{D})$ with compact support, one can obtain the
energy inequalities

(7) $\int_{g_{\ell}}\langle\varphi, \varphi\rangle dx+\int_{0}^{t}\int_{H}.\langle\varphi, \varphi\rangle dxds\leq e^{2\lambda\ell}(\int_{H_{0}}\langle\psi, \phi\rangle dx+\int_{0}^{t}\int_{H}.\langle F, F\rangle dxds)$

and

(8) $\int_{H}(|\varphi|^{2}+|D^{1}\varphi|^{2})dx+\int_{0}^{\ell}\int_{H}.(|\varphi|^{2}+|D^{1}\varphi|^{g})dxds$

$\leq Ce^{4\lambda t}[\int_{H0}(|\phi|^{2}+|D^{1}\phi|^{2})dx+\int_{0}^{\ell}\int_{H_{l}}(|F|+|D^{1}F|^{2})dxds_{\wedge}]$

for some constant $C$ and sufficient large number $\lambda$ , where

$D^{1}u=\sum_{\ell=1}^{t}\frac{\partial u}{\partial x_{i}}$ and $|D^{1}u|^{2}=\sum_{l=1}^{\hslash}|\frac{\partial u}{\partial x_{i}}|^{2}$ .
Henoe for the solution $\varphi_{k}$ of the Cauchy problem

(9) $\left\{\begin{array}{l}L_{kw}\varphi=F\\\varphi(x, 0)=0\end{array}\right.$

with the given function $F\in C^{\infty}(\mathcal{D})$ having the compact support must have the
properties that the integrals

(10) $\int_{0}^{\ell}\int_{H}.\langle\varphi_{k}, \varphi_{k}\rangle dxds$ and $\int_{0}^{t}\int_{H}.\langle\frac{\partial\varphi_{k}}{\partial x_{i}},$ $\frac{\partial\varphi_{k}}{\partial x_{i}}\rangle dxds$

’
$\cdot v$ .

are uniformly bounded (independent of $k$). The solution $\varphi_{k}$ of the Cauchy problem
(9) sufficiently smooth and has compact support, one can $chse$ such a function as
the test function.

\S 3. The main theorems.

Theorem 1. Let $\Gamma$ be the differential operator defined in (1) and satisfying
the conditions (i) and (ii) in \S 2. Suppose that $u$ is a weak solution of the Cauchy
problem

(11) $\left\{\begin{array}{l}Lu=0\\u(x, 0)=\phi(x)\end{array}\right.$

$\phi(x)\in L_{1oc}^{\mathfrak{g}}(H_{0})$ and that

(12) $u(x, T)=0$

in $\Omega=E^{n}\times[0, T]$ . Then the weak solution $u\in L_{1oc}^{2}(\Omega)$ of (11) vanishes almost every-
where in $\Omega$ .
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Proof. Let $u\in L_{1oc}^{2}(\Omega)$ be a weak solution of (11) satisfying $u(x, T)=0$ for
large $T$ for which a given function $F$ has compact support in $E’\times(0, T)$ .

Let $\varphi_{k}(k=1,2, \cdots)$ be the solution of

$L_{kw}\varphi\equiv\frac{\partial\varphi}{\partial t}+\tilde{\sum_{\ell=1}}A_{k}^{i}\frac{\partial\varphi}{\partial x_{i}}-B_{k}^{*}\varphi=F(x, t)$

(13) $\varphi(x, 0)=0$ ,

$0<i<T$, where $A_{k}^{:}$ and $B_{k}^{*}$ are the $smthed$ matrices associated with the matrices
$A^{:}$ and the transpose matrix $B^{*}$ of $B$ respectively. Evidently, $\varphi_{k}\in C_{0}^{1}((\Omega)$ and so

$\langle u, F\rangle dxdt==\int^{\int}T\int_{\int_{0}^{T}-}^{o}H_{l}\langle u,\sum_{i=1}^{\sim}B_{k}^{*}\varphi_{k}\rangle d\int_{0}\langle u,\sum_{\ell=1}\int_{H_{l}}^{\int\int_{0}}\langle u,\sum_{\ell=}^{\sim}\frac{\varphi_{k}x_{\partial\varphi_{k}}:^{-}}{\partial_{X:}}-B^{*}\varphi_{k\rangle}A_{k}^{i}\frac{\partial\varphi_{k}}{A_{k^{\frac{\partial}{A^{:}\partial}}}^{\ell},1\partial x}B_{k}^{*}\varphi_{k}\rangle dxdt+\int_{dxd}\int_{t}\rho\langle u,$

$\frac{\partial\varphi_{k}}{\partial t}\rangle dxdtxdt$

$-\int_{H_{0}}\langle u(x, 0), \varphi_{k}(x, 0)\rangle dx+\int_{H_{T}}\langle u(x, T), \varphi_{k}(x, T)\rangle dx$

sinoe $u\in L_{1oc}^{2}(\Omega)$ is a weak solution of (11). Since $\varphi_{k}(x, 0)=0$ and $u(x, T)=0$ in $\Omega$.
we obtain

(14) $\int\int_{\rho}\langle u, F\rangle dxdt=\int_{0}^{T}\int_{H\ell}\langle u,\sum_{\ell=1}^{n}(A_{k}^{i}-A^{i})\frac{\partial\varphi_{k}}{\partial_{X:}}\rangle dxd\ell+\int_{0}^{T}\int_{H\ell}\langle u, (B^{*}-B_{k}^{*})\varphi_{k}\rangle dxd\ell$ .

As $A_{k}^{:}\rightarrow A^{i}$ and $B_{k}^{*}\rightarrow B^{*}$ in $L^{2}norm$ on any compact set when $ k\rightarrow\infty$ and the
integrals (10) are uniformly bounded (independent of $k$), the limit of identity (14)

tends to zero when $ k\rightarrow\infty$ , i.e.

$\int\int_{\rho}\langle u, F\rangle dxdt=0$ .
Since $F$ is arbitrary function in $C^{\infty}(\mathcal{D})$ with compact support, we obtain

$u\equiv 0$ a.e. in any compact subset of $E^{n}\times[0, T]$ .
This proves the theorem. Q.E.D.

Under the assumptions (i) and (ii) in \S 2, one sees that the conditions I through
out VI of Hurd and Sattinger [4] hold. Hence the existence theorem of weak
solutions of (11) holds and then the weak solution in Theorem 1 is actually existed.
One can show also sxistence theorem by applying the energy inequalities (7) and (8).

Theorem 1 is a uniqueness theorem from backward continuation. The analogue
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uniqueness theorem also can be determined by their initial conditions in several
space variables under the same conditions on the discontinuous coefficients. It is

an essential reason to have that the mean square norms of $\varphi_{k}$ and $\sum_{\ell=1}^{\backslash }\partial\varphi_{k}/\partial x_{i}$ are

uniformly bounded on compact subsets of $\mathcal{D}$. We will show the following theorem.

Theorem 2. SuPpose that the coefficients of (1) satisfies the conditions (i) and
(ii) in \S 2. Then the weak solutions of the Cauchy problem of the symmetric
$hyPerbotic$ systems

(11) $\sim\left\{\begin{array}{l}\frac{\partial u}{\partial t}+\sum_{\ell=1}\frac{\partial}{\partial x_{i}}(A^{h}u)+Bu=0\\u(x, 0)=\phi(x)\end{array}\right.$

$\psi(x)\in L_{1oc}^{2}(H_{0})$ , are uniquely determined by their initial condition.

Proof. Let $u_{1}(x, t)$ and $u_{2}(x, t)$ be two weak solutions of (11) with the same
initial condition $\phi(x)$ . We will show that if the vector function $F(x, t)\in C^{\infty}(\mathcal{D})$

with compact suPport contained in $t>0$ , then

$’\int\int_{\Phi}\langle u_{1}-u_{2}, F\rangle dxdt=0$

and hence proves that $u_{1}=u_{2}$ a.e. in $\mathcal{D}=E^{n}\times[0, \infty$).

By the same arguments as in \S 2, we will assume $\cdot$ that $w_{k}$ is the standard
mollifier with support. in $|x|^{2}+t^{2}\leq 1/k^{Z}$ and hence, it can be constructed for each
$k=1,2,$ $\cdots$ , the vector valued functions $\varphi_{k}(x, t)=w_{k}*\varphi(x, t)$ , with $\varphi(x, t)pL_{1oc}^{Z}(\mathcal{D})$ ,

satisfying the linear system

(15)
$\{$

’
$\frac{\partial\varphi_{k}}{\partial t}+\sum_{i=1}^{\prime*}A_{\dot{k}}\frac{\partial\varphi_{k}}{\partial_{X:}}B_{k}^{*}\varphi_{k}=F$

$\varphi_{k}(x, t)=0$

where $T$ can be chosen so that the support of $F$ is assumed to be below $t=T$,
i.e. $suppF\subset E^{n}\times[0, T]$ for large $T$. This is achieved by solving the system

$\frac{\partial\phi_{k}(x,t)}{\partial t}\sum_{\ell=1}^{*}A_{k}^{\ell}(x, T-t)\frac{\partial\phi_{k}}{\partial t}(x, t)+B_{k}^{*}(x, T-t)\phi_{k}(x, t)=-F(x, T-t)$

for the vector $\emptyset_{k}(x, t)$ in $\mathcal{D}$ with initial conditions

$\tilde{\varphi}_{k}(x, 0)=0$

and then putting $\varphi_{k}(x, t)=\Phi(x, T-t)$ . By classical existenoe theory guarantees
that the solution $\tilde{\varphi}_{k}(x, t)$ exists, so does the solution $\varphi_{k}(x, t)$ of (15) and it is dif-
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ferentiable in any order, and has support contained in a compact set which is
independent of $k$ . Henoe $\varphi_{k}(x, t)$ can be as a legitimate test function. By the
definition of weak solution for the Cauchy problem, we obtain

$\int\int_{\ovalbox{\tt\small REJECT}}\langle u_{1}-u_{2},$ $\frac{\partial\varphi_{k}}{\partial t}\rangle dxdt=-\int\int_{\ovalbox{\tt\small REJECT}}\sum_{\ell=1}^{*}\langle A^{i}(u_{1}-u_{2}),$ $\frac{\partial\varphi_{k}}{\partial x}\rangle dxdt+\int\int_{\ovalbox{\tt\small REJECT}}\langle B(u_{1}-u_{2}), \varphi_{k}\rangle dxdt$

$+\int_{H_{T}}\langle u_{1}-u_{2}, \varphi_{k}(x, T)\rangle dx-\int_{H_{0}}\langle\phi(x)-\phi(x), \varphi_{k}\rangle dx$

$=-\int\int_{\ovalbox{\tt\small REJECT}}\langle u_{1}-u_{2},\sum_{i=1}^{n}A^{i}\frac{\partial\varphi_{k}}{\partial x_{i}}\rangle dxdt+\int\int_{\ovalbox{\tt\small REJECT}}\langle u_{1}-u_{2}, B^{*}\varphi_{k}\rangle dxd\ell$ .
Thus

(16) $\int\int_{e}\langle u_{1}-u_{2}, F\rangle dxdt=\int\int_{\ovalbox{\tt\small REJECT}}\langle u_{1}-u_{2},\sum_{\ell=1}^{\sim}(A_{k}^{:}-A^{:})\frac{\partial\varphi_{k}}{\partial x_{i}}+(B^{*}-B_{k}^{*})\varphi_{k}\rangle dxdt$ .

Sinoe for each $k$ , supp $\varphi_{k}$ lies in a fixed compact subset of $\mathcal{D},$ $u_{1}$ and $u_{2}$ are
locally in $L^{g}(\mathcal{D})$ and the coefficients $A_{k}^{\ell}$ and $B_{k}^{*}$ (transpose of $B_{k}$) converge in L-
norm on compact subsets of $\mathcal{D}$ to the coefficients $A^{:}$ and $B^{*}$ respectively, one
sees immediately that the right hand side of (16) approaches zero as $ k\rightarrow\infty$ if we
can show that

$\int\int_{e}\langle\varphi_{k}, \varphi_{k}\rangle dxdt$ and $\int\int_{\mathcal{D}}\sum_{i=1}^{\hslash}\langle\frac{\partial\varphi_{k}}{\partial x_{i}},$ $\frac{\partial\varphi_{k}}{\partial_{X:}}\rangle dxdt$

are uniformly bounded (independent of k) on compact subsets of $\mathcal{D}$. Fortunately,
it follows from the energy inequalities mentioned in Lai [7; Lemmas 3 and 4].

Henoe the proof is completed. Q.E.D.
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