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ABSTRACT. In this note some elementry facts on essentially normaloid and
essentially convexoid operators are established. It is shown that (i) a normaloid
operator need not be essentially normaloid and vice versa, (ii) a paranormal
operator is not essentially convexoid, (iii) the class of essentially normaloid
operators is a closed nowhere dense subset of the algebra of operators, and
(iv) for an essentially convexoid (essentially normaloid, essentially spectraloid)
operator T, there exists a compact operator K such that T+XK is convexoid
(normaloid, spectraloid).

In what follows, an operator on a complex Hilbert spade H will be meant a
bounded linear transformation on H. Let B(H), K(H) denote the Banach algebra
of operators on H, the two sided ideal of compact operators on H and the Calkin
algebra of H. The notation z(T) is used for the canonical image of T in the
Calkin algebra. The essential spectrum, the essential numerical range, the essential
spectral radius and the essential unmerical radius of T will be denoted by o(T),
Wo(T), r«(T) and |W,(T)| respectively.

An operator T is called essentially normaloid if 7{(T)=|l=(T)||; essentially con-
vexoid if con o,(T)=WJ(T) and essentially spectraloid if r(T)=|W(T).

The author [4] has shown that if T is reduction-spectraloid (reduction-niormaloid)
then T is essentially spectraloid (essentially normaloid). In particular, every re-
duction-convexoid operator is essentially convexoid. However the convexoidity alone
is not sufficient to guarantee the essential convexoidity (see Luecke [3, Theorem
7). Similarly, as we shall show in the normaloidity does not always
imply the essential normaloidity. First we establish the following theorem which
is analogous to of [3].

Theorem 1. If
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on HPH, where C is an (essentially) invertible operator, then T is not (essentially)
normaloid.

Proof. (I). Since C is invertible, there exists M>0 such that |Cx]| = M| x|
and ||C*z||>M]|z|| for all z in H. For a unit vector z in H, T(g) (g:) and
hence | T|*>||Cx|*+ | Bx|*> M®+||Bx|®>. From this we get

(1) IT)>|Bl .
. o *( T\ __ A*x .
Similarly, as T ( 0)—-( C*x)’ we obtain
2) ITI>1Al .
Since o(T)<a(A)Uo(B), we have
(3) r(T)<max {r(A), r(B)} .

From (1), (2) and (3), we infer that »(T')<max {r(4), r(B)}<max {|| A, |Bl}< I T},
showing that T is not normaloid.
(II). The proof is analogous to given in Part II of 31

Theorem 2. There exists a normalozd operator which is not essentzally nor-
maloid and vice versa.

Proof. Let H=Hl(-BH2@H3, where each H; is infinite dimensional. Let |

4=(s o)

be an operator on H,®H,. Let N=diagil,1/2,1/3.- *} be an operator on H,. If
T=A®N, then 1(T)=r(N)=1 and ||T||=max {|A|, [N}}=1; thus T is normaloid.
Since by Theorem 1, A is not essentially normaloid, T is not essentially normaloid.
To ‘show the existence of an essentially normaloid but non-normaloid operator,
take any non-normaloid compact operator.

Ando [1] has constructed a paranormal operator which is not convexoid. This
raises the following question: Does there exist a paranormal operator which is not
essentially convexoid? Our next result answers this question in negative. As an
immediate consequence of this, we get that the class of essentially hyponormal
operators is a proper subset of the class of essentially paranormal operators (and
hence of essentially normaloid operators).

Theorem 3. There exists a paranormal operator which is not essentially
convexoid. ' ‘
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Proof. Let U be the unilateral shift of infinite multiplicity. Let A=U+1.
Then by [1], the operator
: , : T=<A (A*A—AA*)1/2>

0 0

defined on H®H is paranormal. We claim that T is not essentially convexoid.
First observe that Bdry ¢,(A)ce,(T)<a,(A) and so con a,(A)=con o,(T).

Suppose to the contrary that T is essentially convexoid. Then ||(z(T)—2)7Y <
1/d(2, con 0,(T))=1/d(2, con a,(A)) for all A¢cono,(A)=cona,(T). In particular,

I(T)+D)™ Y <1/d(l, con o(T))=1. Let P=(1 ©
t =0 o

H®0. Since B(H)/K(H) is a C*-algebra, there exists a Hilbert space H, such that
B(H)/K(H) is isometrically isomorphic to a closed, selfadjoint subalgebra of B(H,).
Let v be this isometric isomorphism. Then v-x(P) is an orthogonal projection in
B(H,). Let H,=M@®M*, where M is the range of v-n(P). Relative to this
decomposition of H,,

> be the orthogonal projection on

. A, G
v-n(T)—( 0o 0 )
Now 4
. o (44D —(A+DTC
(0-2(T)+1) —( ' IRRGST
Therefore

I@(T)+ )7 | =|w-=(T)+D)7*|>1,
a contradiction. Thus T is not essentially convexoid.

Theorem 4. The class of essentially normaloid operators is a closed nowhere
dense subset of B(H).

Proof. First we note that ||n(T)||=|v-=(T)| and o¢(T)=0(v-=(T)), where v
is the isometric (algebra) embedding of the Calkin algebra in B(H,), H, being a
Hilbert space. Therefore T is essentially normaloid if and only if v-#(T) is nor-
maloid. From this we conclude that the class of essentially normaloid operators
is closed. To complete the proof, it now suffices to show that for an essentially
normaloid operator 7, there exists a - sequence {7} of non-essentially normaloid
operators converging to 7. v

Since #(T') is normaloid, there exists a complex number 2 in ¢,(T) such that
[]=[l=(T)|l. Let {x.} be a sequence of orthonormal vectors in H for which ||(T—
Aza)+ [(T—2)*x,| 0. By Stampfli’s corollary to Theorem 2 [5], T is unitarily
equivalent, via unitary operator U, to T@A+K on HPH,, where H, is a separable
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01
00
on H, and let S,=T®(A—B/n)+K be an operator on HPH;. We claim that S,

is not essentially normaloid. To this end, observe that ||z(2—B/»)| > |Al=|l=(T)||=
7,A—B/n). Therefore

(1) | Ie(Sw)|=max {|=(T)|l, |lx(i—B/n)|}=I1=(A—Bfm)|

Hilbert space and Kisa coinpact operator on HPH,. Let B=(

) be an operator

Also
7«(Sw)=max {7,(T), 7,(2[— B/n)}

=r2—Bin) .
Thus

(2) 7s(Sw) <[ #(A—B/n)| .

From (1) and (2), we conclude that S, is not essentially normaloid.\ Also
| T—USU*||=|S—S.]|=1/n|B|=1/n—0 as n—oc. Thus {T,}=[US,U*} is the
desired sequence of operators.

Our final result establishes a conjecture due to Lueck [3, Conjecture 2].

Theorem 5. (i) If T is an essentially convexoid operator, then there exists a
compact operator K such that T+ K is convexoid.

(ii) If T is essentially normaloid (essentially spectraloid), then there exists a
compact operator K such that T+ K is normaloid (spectraloid).

Proof. (i) To prove the 'result, we note that for any operator T, there exists
a compact operator K such that ' '

(1) 1T+ K+2|=|=(T+2)|
for all complex numbers [2]. Moreover
(2) W)= () {: lp—2 < |l=(T—-D)})
Combining (1) and (2), we get
W(D)= 0 {e: le—2<|T+K=1|}
=W(T+K).

Therefore if 7 is essentially convexoid, then cono(T+K)2cono(T)=W(T)=
W(T+K), which shows that 7+ K is convexoid. Parts (i) and (ii) are now obvious.

References

{1] T.Ando: Paranormality does not imply convexoid property. (Private communication).



ESSENTIALLY NORMALOID AND ESSENTIALLY CONVEXOID OPERATORS 59

[2] C.K. Chui, P. W. Smith, J.D. Ward and D.A. Legg: On a question of Olsen con-
cerning compact perturbations of operators. Notices Amer. Math. Soc., 23(1) (1976),
A-164.

[3] G.R.Luecke. Essentially (Gi) operators and essentially convexoid operators on Hilbert
space. Illinois J. Math., 19(3) (1973), 389-399.

[4] S.M. Patel: A mote on speciraloid operators. Glasnik Matematicki, 11(31) (1976),
319-324,

[5] J.G. Stampfli: Compact perturbations, normal eigenvalues, and a problem of Salinas.
J. London Math. Soc., (2) 9 (1974), 165-175.

Faculty of Mathematics
University of Delhi
Delhi-110 007, India

Department of Mathematics
Sardar Patel University
Vallabh Vidyanagar

388 120, Gujarat, India




	Theorem 1. ...
	Theorem 2. ...
	Theorem 3. ...
	Theorem 4. ...
	Theorem 5. ...
	References

