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ABSTRACT. In this note some elementry facts on essentially normaloid and
essentially convexoid operators are established. It is shown that (i) a nomaloid
operator need not be essentially normaloid and vice versa, (ii) a paranormal
operator is not essentially convexoid, (iii) the class of essentially normaloid
operators is a closed nowhere dense subset of the algebra of operators, and
(iv) for an essentially convexoid (essentially normaloid, essentially spectraloid)

operator $T$, there exists a compact operator $K$ such that $T+K$ is convexoid
(normaloid, spectraloid).

In what follows, an operator on a complex Hilbert space $H$ will be meant a
bounded linear transformation on $H$. Let $B(H),$ $K(H)$ denote the Btach algebra

of operators on $H$, the two sided ideal of compact operators on $H$ and the Calkin

algebra of $H$. The notation $\pi(T)$ is used for the canonical image of $T$ in the

Calkin algebra. The essential spectrum, the essential numerical range, the essential
spectral radius and the essential unmerical radius of $T$ will be denoted by $\sigma.(T)$ ,

$W.(T),$ $r(T)$ and $|W_{e}(T)|$ respectively.
An operator $T$ is called essentially normaloid if $ r.(T)=\Vert\pi(T)\Vert$ ; essentially $\infty n-$

vexoid if $\infty n\sigma_{e}(T)=W.(T)$ and essentially spectraloid if $r.(T)=|W.(T)|$ .
The auth6r [4] has shown that if $T$ is reduction-spectraloid (reduction-normaloid)

then $T$ is essentially spectraloid (essentially normaloid). In particular, every re-
duction-convexoid operator is essentially $\omega nvexoid$ . However the convexoidity alone

is not sufficient to guarantee the essential $\infty nvexoidity$ (see Luecke [3, $Threm$

$7])$ . Similarly, as we shall show in Theorem 2, the normaloidity does not always

imply the essential normaloidity. First we establish the following $threm$ which

is analogous to Theorem 5 of [3].

Theorem 1. If

$T=\left(\begin{array}{ll}A & C\\‘ & \\0 & B\end{array}\right)$

$*$ $rs$ (1970) subiect classification. Primary 4B20, $47B05$ . $\cdot$



56 S. M. PATEL

on $H\oplus H$, where $C$ is an (essentially) invertible oPerator, then $T$ is not (essentially)
normaloid.

Proof. (I). Since $C$ is invertible, there exists $M>0$ such that $\Vert Cx\Vert\geq M\Vert x\Vert$

and $||C^{*}x\Vert\geq M|x\Vert$ for all $x$ in $H$. For a unit vector $x$ in $H,$ $T\left(\begin{array}{l}0\\x\end{array}\right)=\left(\begin{array}{l}Cx\\Bx\end{array}\right)$ and
hence $\Vert T\Vert\geq||Cx\Vert+\Vert Bx\Vert\geq M^{2}+\Vert Bx\Vert$ . From this we get

(1) $\Vert T||>\Vert B||$ .
Similarly, as $T^{*}\left(\begin{array}{l}x\\0\end{array}\right)=\left(\begin{array}{l}A^{*}x\\C^{*}x\end{array}\right)$ , we obtain

\langle 2) $\Vert T\Vert>\Vert A\Vert$ .
Since $\sigma(T)\subseteq\sigma(A)\cup\sigma(B)$ , we have

\langle 3) $r(T)\leq\max\{r(A), r(B)\}$ .
From (1), (2) and (3), we infer that $ r(T)\leq\max\{r(A), r(B)\}\leq\max\{||A||, \Vert B\Vert\}<\Vert T\Vert$ ,
showing that $T$ is not normaloid.

(II). The proof is analogous to given in Part II of Theorem 5 [3].

Theorem 2. There exists a normaloid operator which is not essentially nor-
$Jn\dot{a}loid$ and vice versa.

Proof. Let $H=H_{1}\oplus H_{2}\oplus H_{3}$ , where each $H_{i}$ is infinite dimensional. Let

$A=\left(\begin{array}{ll}0 & I\\0 & 0\end{array}\right)$

be an operator on $H_{1}\oplus H_{2}$ . Let $N=diag\{1,1/2,1/3\cdots\}$ be an operator on $H,$ . If
$T=A\oplus N$, then $r(T)=r(N)=1$ and $||T\Vert=\max\{\Vert A\Vert, \Vert N\Vert\}=1$ ; thus $T$ is normaloid.
Since by $Thoem1$ , A is not essentially normaloid, $T$ is not essentially normaloid.
To show the existenoe of an essentially normaloid but non-normaloid operator,
take any non-normaloid compact operator.

Ando [1] has $\infty nstructed$ a paranormal operator which is not $nvexoid$ . This
raises the following question: Does there exist a paranormal operator which is not
essentially $\infty nvexoid$? Our next result answers this question in negative. As an
immediate consequence of this, we get that the class of essentially hyponormal
ooerators is a prooer subset of the class of essentially paranormal operators (and
hence of essentially normaloid operators).

Theorem 3. There exists a paranormal oPerator which is not essentiallv
convexoid.
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Proof. Let $U$ be the unilateral shift of infinite multiplicity. Let $A=U+1$ .
Then by [1], the operator

$T=\left(\begin{array}{ll}A & (A^{*}A-AA^{*})^{1/2}\\0 & 0\end{array}\right)$

defined on $H\oplus H$ is paranormal. We claim that $T$ is not essentially convexoid.
First observe that Bdry $\sigma.(A)\subseteq\sigma_{e}(T)\subseteq\sigma(A)$ and so con $\sigma_{e}(A)=n\sigma.(T)$ .

Suppose to the contrary that $T$ is essentially convexoid. Then $||(\pi(T)-\lambda)^{-1}||\leq$

$1/d$( $\lambda$ , con $\sigma.(T)$) $=1/d$( $\lambda$ , con $\sigma_{*}(A)$) for all $\lambda\not\in con\sigma_{e}(A)=con\sigma_{*}(T)$ . In particular,
$||(\pi(T)+1)^{-1}||\leq 1/d$( $1$ , con $\sigma_{e}(T)$ ) $=1$ . Let $P=\left(\begin{array}{ll}1 & 0\\0 & 0\end{array}\right)$ be the orthogonal projection on
$H\oplus O$ . Since $B(H)/K(H)$ is a $C^{*}$-algebra, there exists a Hilbert space $H_{0}$ such that
$B(H)/K(H)$ is isometrically isomorphic to a closed, selfadjoint subalgebra of $B(H_{0})$ .
Let $v$ be this isometric isomorphism. Then $v\cdot\pi(P)$ is an orthogonal projection in
$B(H_{0})$ . Let $H_{0}=M\oplus M^{\perp}$ , where $M$ is the range of $v\cdot\pi(P)$ . Relative to this
decomposition of $H_{0}$ ,

$v\cdot\pi(T)=\left(\begin{array}{ll}A_{1} & C_{1}\\0 & 0\end{array}\right)$

Now

$(v\cdot\pi(T)+1)^{-1}=\left(\begin{array}{ll}(A_{1}+1)^{-1} & -(A_{1}+1)^{-1}C_{1}\\0 & 1\end{array}\right)$ .
Therefore

$\Vert(\pi(T)+1)^{-1}\Vert=\Vert(v\cdot\pi(T)+1)^{-1}\Vert>1$ ,

a contradiction. Thus $T$ is not essentially convexoid.

Theorem 4. The class of essentially normaloid operators is a closed nowhere
dense subset of $B(H)$ .

Proof. First we note that $\Vert\pi(T)\Vert=\Vert v\cdot\pi(T)\Vert$ and $\sigma_{e}(T)=\sigma(v\cdot\pi(T))$ , where $v$

is the isometric (algebra) embedding of the Calkin algebra in $B(H_{0}),$ $H_{0}$ being a
Hilbert space. Therefore $T$ is essentially normaloid if and only if $v\cdot\pi(T)$ is nor-
maloid. From this we conclude that the class of essentially normaloid operators
is closed. To complete the proof, it now suffices to show that for an essentially
normaloid operator $T$, there exists a sequence $\{T_{n}\}$ of non-essentially normaloid
operators converging to $T$.

Since $\pi(T)$ is normaloid, there exists a $mplex$ number $\lambda$ in $\sigma.(T)$ such that
$|\lambda|=\Vert\pi(T)\Vert$ . Let $\{x_{n}\}$ be a sequence of orthonormal vectors in $H$ for which $\Vert(T-$

$\lambda)x,\Vert+\Vert(T-\lambda)^{*}x_{n}\Vert\rightarrow 0$ . By Stampfli’s corollary to $Threm2[5],$ $T$ is unitarily
equivalent, via unitary operator $U$, to $T\oplus\lambda+K$ on $H\oplus H_{1}$ , where $H_{1}$ is a seoerable
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Hilbert space and $K$ is a compact operator on $H\oplus H_{1}$ . Let $B=\left(\begin{array}{ll}0 & 1\\0 & 0\end{array}\right)$ be an operator

on $H_{1}$ and let $S_{\#}=T\oplus(\lambda-B/n)+K$ be an operator on $H\oplus H_{1}$ . We claim that $S$,
is not essentially normaloid. To this end, observe that $\Vert\pi(\lambda-B/n)\Vert>|\lambda|=\Vert\pi(T)||=$

$r_{e}(\lambda-B/n)$ . Therefore

(1) $\Vert\pi(S_{n})||=maT\{\Vert\pi(T)\Vert, \Vert\pi(\lambda-B/n)\Vert\}=\Vert\pi(\lambda-B/n)\Vert$

Also
$r.(S_{l})=\max\{r.(T), r.(\lambda I-B/n)\}$

$=\max\{\Vert\pi(T)\Vert, r.(\lambda-B/n)\}$

$=r_{e}(\lambda-B/n)$ .
Thus

(2) $ r.(S_{*})<\Vert\pi(\lambda-B/n)\Vert$ .
From (1) and (2), we conclude that $S$, is not essentially normaloid. Also

$\Vert T-US_{*}U^{*}\Vert=\Vert S-S_{\sim}\Vert=1/n\Vert B\Vert=1/n\rightarrow 0$ as $ n\rightarrow\infty$ . Thus $\{T,\}=[US,U^{*}$ } is the
desired sequence of operators.

Our final result establishes a conjecture due to Lueck [3, Conjecture 2].

Theorem 5. (i) If $T$ is an essentially convexoid operator, then there exists a
comPact operator $K$ such that $T+K$ is convexoid.

(ii) If $T$ is essentially normaloid (essentially spectraloid), then there exists a
comPact operator $K$ such that $T+K$ is normaloid (spectraloid).

Proof. (i) To prove the result, we note that for any operator $T$, there exists
a compact operator $K$ such that

(1) $ 11T+K+\lambda\Vert=\Vert\pi(T+\lambda)\Vert$

for all complex numbers [2]. Moreover

(2) $W.(T)=\bigcap_{\lambda eC}\{\mu:|\mu-\lambda|\leq||\pi(T-\lambda)\Vert\}$

Combining (1) and (2), we get

$W.(T)=\bigcap_{\lambda eG}\{\mu:|\mu-\lambda|\leq\Vert T+K-\lambda||\}$

$=\overline{W(T+K)}$ .
Therefore if $T$ is essentially convexoid, then con $\sigma(T+K)\supseteq con\sigma.(T)=W.(T)=$

$\overline{W(T+K)}$ , which shows that $T+K$ is convexoid. Parts (i) and (ii) are now obvious.
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