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1. Introduction. In [2] and [3] Homma developed some techniques for modify-
ing piecewise linear (P.L.) mappings from one combinatorial manifold into another.
In [1] a counter-example to Theorem 2 of 2] is descrlbed The principal result
of the present paper is a weaker version of Theorem 2 of 2]

For the Basic definitions of P.L. topology the reader is referred to Hudson (4]
Some other definitions follow. - »

E™ denotes n-dimensional Euclidean space. If a, b€ E", [a, b] denotes the closed
line in E" between a and b. »

If K is a complex and L is a subcomplex of K, then Stx(L)=U{AeK: AN
|L|#¢}, where |L|=U {x: xe AeL}. A<B for two simplices A and B means A
is a face of B. : ’

If P is a polyhedron, @ a subpolyhedron of P, and T a triangulation of P in
which @ is triangulated, then T|Q={AeT: AcQ)}. .

All manifolds in this paper are compact combinatorial manifolds. If M is a
manifold, the interior of M is denoted Int (M) or Int M.

Let M be an m-manifold, L a triangulation of M. For each vertex v‘eL
St.(v;) is a combinatorial me-ball; let 6;: St.(v;)—B™ be a P.L. homeomorphism from
Str(v;) onto the standard m-simplex. If K is a complex and g: | K|—Int (M), where
g is a P.L. mapping, then g'is semi-simplicial iff for each A€ K, there exists a
vertex v; of L such that g(Stx(A))cInt (St (v;)) and 6;9|Stx(A) is a linear mapping
of Stx(A) into Int (B™).

Let g: K—E™ be a semi-simplicial mapping of a complex K into E", i.e., for
AecK, g|A is linear. g is in general position if for any collection of vertices
{wo, + -+, wy}, r<m, of K, {g(w,), - - -, g(w,)} spans an r-dimensional hyperplane in E...
If gis in general position and A,, A; € K, then dim g(Int (A4,) NInt (43))<dim A1+
dim A.—

Let {vo, cee, 0, ¢+, 0,}JCE". Let the hyperplane spanned by {v,, - -, v,} be olf' di-
mension p, pSr. Let {w,, ---, w,} be p+1 linearly independent points in {v,, - - -, v,}.
Then {v,, +++, v,, ++ -, v;} is in general position with respect to (g.p.w.r.t.) {v,, -+, v,},
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if {wo, <+, Wy, Vs11, * <+, v¢} is in general position in E". ‘“With respect to’’ is ab-
breviated by ‘““‘w.r.t.”’

If D is a hyperplane in E", {v;, ---,v,}CE", and {w,, ---, w,} is any linearly
independent set of points spanning D, then {v,, ---, v;, D} is in g.p.w.r.t. D, if
{vy, «++, vs, wy, +-+, w,} is in general position in E".

If {wy, +- -, w,} < E", its convex closure is denoted by <w,, +--, w,>. If A, ---, A,
are convex subsets of E”, the convex closure of {wy, ++-, w,UA;U---UA, is de-
noted by {wi, «++, w,, A, +++, A:).

If P, Q are polyhedra and f: P—Q is a P.L. mapping, then a point 2 € P such
that f'f(x)#x is a singular point of f; the closure of the set of singular points
of f is the singular set of f and is denoted S;.

Let K, L be triangulations of P, @ such that f: K—L is simplicial. Let L,
be the barycentric subdivision of L and K, a subdivision of K such that K is
isomorphic to K;, and f: K;—L, is simplicial. The mapping cylinder of f, C;, is
formed as follows. For b a vertex in K, let B(b) be the simplex of K such that
b e Int (B(b)); similarly if a is a vertex in L,, let A(a) be the simplex of L; such
that @ elInt(A(g)). The vertices of C, are those of L, plus those of K;. <b,,
by, ++, bsy @iy, -+, a;) is a simplex of C; iff B(by)>B(by)> -+ > B(b;) and f(B(b;))>
A(@i41)> -+ > A(a;). By an obvious identification L, K;CC, so that @, Pc|Cyl.
Define the onto simplicial mapping py: C,—L, by p,(b)=f(b) for b a vertex of K,
and ps(a)=a for a a vertex of L,.

Given any triangulation T of |C,|, there exists a refinement 7° of T such
that p,: T'—T'||L]| is simplicial. T" is called a cylindrical subdivision of T; p,(|C;|)
is the base of C;. For zethe base of Cy, call p;'(x) the fibre over z. If Ae T,
then p7'(x)N A is the fibre over = in A.

Let IT be a P.L. mapping of @ polyhedron F onto a polyhedron G such that
for each £e€G, II"'(z) is collapsible. The triple {F, G, IT} is called a semi-forest.
If for each € G, diameter IT"'(x)<e, then {F,G, II} is called an e-semi-forest.
These notions are due to Homma [3].

2. General Positioning in a Mapping Cylinder. Consider the P.L. mapping
f: M—Int(N) of a combinatorial closed m-manifold into the interior of a combi-
natorial z#-manifold, where m <3n/4—5/4, and n>4. Assume M has a triangulation
L and N has a triangulation K, and that f is in general position and is semi-
simplicial with respect to these two triangulations. Let P=S,, the singular set
of f, and @=f(P). Let |C;| be the mapping cylinder associated with f|P: P—Q.

The mapping g. There exists a semi-simplicial mapping g: C,—M, where C,
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is a cylindrical triangulation, satisfying:

(i) if A, BeCy with g(A)Ng(B)+¢$, then there exists a vertex veL with
g(A)Ug(B)cInt (StL());

(ii) g s in general position;

(iii) g(x)=w, for each x ¢ P.

It is easy to show that:
Lemma 1. dim C,<n/2—2a+1, where a>5/4.
Corollary 1.1. dim S,<n/4—3a+2, where a>5/4.

Lemma 2. Let AUB be a complex consisting of two principal simplices A
and B. Let A, be a l-dimensional face of A, with dim(A,NB)<0. Let ¢:
|AUB|—E™ be a mapping which is linear on A and B, and is in general position,
where dim A<m, dim B<m—1. Then given ¢>0, there exists a simplicial mapping
¢': AUB—E™, in general position, where d($, $')<e, such that, if z,yeE™ and
the line segment between x and vy, [x,y], is parallel to ¢'(A,), then not both
and y lie in ¢'(B).

The proof is straightforward.
By g can be approximated by a semi-simplicial mapping g’: C,—M,
satisfying (i), (ii), (iii), and (iv’), where

(iv') if A,BeCy, where B is a 1-dimensional simplex, py(B)=point, and
dim (AN B) <0, then any line parallel to g'(B) intersects g'(A) in at most one point.

Note that in order to construct g’, dim C, must be <m—1; this follows from
Lemma 1.
Assume g satisfies (iv’).

Lemma 3. g: |C/|—M has the following two properties, the sum of which are
called (iv).

(ive) For any A,BeCy, if p/(ANB) is a homeomorphism and if there is
x e A such that gx)e(g(A)Ng(B)—g(ANB) then there is no ye A, y#x, with
9(y) e (@(A)Ng(B)—g(ANB) and ps(@)=p(¥).

(ive) For any A, BeCy, if there exists a 1-dimensional face X of ANB with
p/(X)=point, and if z,ye A—(ANnB); &',y € B—(ANB); with g(x)=g(x’), 9(y)=
9W), and p(x)=ps(y) then ps(x")=py").

Proof. (iv.) follows from (iv). To prove (ivs) note that if A€ C,and A;< A4,
dim (4,)=1, with p,(A,)=point in base of C;, then for any line segment ec A4,
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where e is parallel to A,, p,(e)=point in base of Cs. Now [z, y] is parallel to X
in 4, so [g(z), g(y)] is parallel to g(X). Since [g(x), g(W)I=Ig(x"), 9¥")], [9(z"), g(¥")]
is also parallel to g(X), hence [/, y] is parallel to X. Therefore py(z")=p(y).
Thus if A, BeCy, and a fibre, g(e), in g(A) meets g(B), then g(e)Ng(B) is
contained in a fibre in g(B) and consists of a point or a closed interval.
If HCE™, then denote the hyperplane spanned by H, by D(H).

Lemma 4. Let G: |[K|~E™ be a semi-simplicial mapping, in general posttion,
Jrom a complex K into E™, where m=3n/A—a; dim K<n/2—2a+1, where a>5/4.
Then G can be approximated by a semi-simplicial mapping G': |K|—E™, which is
in general position and is at most 2-to-1.

Proof. It is well known that the vertices of the image can be moved slightly
and the resulting map will still be in g.eneral' position. Let A, B, Ce K. dim ((G(A) n
G(B)—G(ANnB))<n/4—3a+1. Thus dim D(G(A)nG(B))sn/4—3a+1. There are
2 cases. ‘ ' SRR
(I) Cn(AuB)=¢. Then the image of C can be adjusted Wlthout movmg
the vertices of AUB. dim D(G(A)NG(B))+dim C—m< —1. , s :

(II) CN(AUB)#¢. It can be assumed that all the vertices of C are in AUB
Let C4=CnA, C3=CnB. Assume dim C4>dim Cp, then dim Cp<(n/2— 2a+1)/2
Thus G|(AUC5) is a homeomorphism since dim A+dim Cz—m< —1. _

Therefore G’ can be constructed. Now assume g satisfies (i), (n), (iii), (iv),
and is 2-to-1.

Notation for the General Positioning in C,. Let S, be the singular set of
g:|ICs[—M. Let C; be a complex identical to Cy; let id: |Cs—|C,| be the identity
map. Let z'=id'(x), for x € C;; and A'=id '(A), for Ac|Cy|. Let R, be a poly-
hedron homeomorphic to S,; let »: R,—S, be the homeomorphism. Let ¢: R,—S,
be the homeomorphism satisfying ¢(r '(x))=2’. For « ¢ base of C+(Cy), denote the
fibre over x by F.(F;). ‘ -

Let H={ANS,;: AeCy}. Let T, be a triangulation of S, which defines H, is
extendible to a subdivision of C;, and such that g|T, is simplicial into some tri-
angulation of M. Let T and RT, be the corresponding triangulations of S, and R,.

Because g is at most 2-to-1 and g|T, is simplicial into some tr1angulat10n of M
for AeT,, either no other points of S, are mapped by g into g(Int A), or there
exists a unique A’ e T, such that g(A)—g(A) , ‘

Let T, be the barycentric subdivision of T, and Tg the bachentrlc subdivision
of Ty. Let Ty, T; and RT,, RT: be the corresponding subdivisions of S, and R,.

For K a complex, denote by K * the i-th skeleton of K. a
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Let Q,={xe|C/: g 'g@)+2}, L,=S,—Q,- Let p=Max {i: L,NInt (A)+ D,
AeCh, g=Max {i: Q,NInt (A)+®, AeCj}.

Lemma 5. g>p.

Proof. If AeC,; and Int ANL,+¢, then there exists 4, A;eC; with Ac
A;NA, and g(A)Ng(A)—9g(AiN Az)#¢ iff dim A,+dim A,—m—dim (A;NA)=1.
In this case A;N A:CL,, and dim (4,N 4z)<dim A;+dim Az—m-—152(n/2—2a+1.)—
(3n/4—a)—1=n/4—3a+1, or p<n/4—3a+1.

If A,eC; and A;NQ,#¢, then there exists A, € C; such that dim A,+dim A,—
m>0, or dim A;>m—dim A;. Now dim A;>m— (n/2—2a+1)=(3n/4—a)—(n/2—
2a+1)=n/4+a—1, or q=n/4+a—1. Thus g—p=#n/4+a—1)—(n/4—3a+1)=4a—
2>0 since a>5/4. '

Notation. Let Si=S,N|CY|.

Lemma 6. Let A be a simplex, G: A—E’™ a linear homeomorphism, A <A.
Let K, be the barycentric subdivision of A. Let G': |Ky|—E" such that

(i) BeK, implies G'|B is linear

(i) G'|A’=G|A’.
Let A>Ay>A>--->A,>A" with v; the barycenter of A;. The G is a linear
homemorphism on {vo, V1, + -+, Vap*A'.

The proof is straightforward.

Lemma 7. Let AeC: BeT, or T such that BNInt(A)+¢. Then there
exists A <Ay 1<++-<A,=A such that BnInt A;+¢; and if A'< A with A'+A;
for j=1, -+, t, then BnInt A'=¢. :

The proof follows from the way in which a baryceritric subdivision divides a

complex.

Corollary 7.1. Let AcCh, BeT, or Ty such that Bnlnt A=g. Let j<i,
then B meets at most one j-dimensional face of A.

Let Ac|C;|. The shadow of A in |C;| is the set {x€|Cl: Dr(x) e pr(A)), and
is denoted by Shad (4). If AcC}%, Shad (A) is similarly defined in C;.

For each vertex v;€ T,, where v; € Int (A;), A;eCy, there exists a closed ball
U; centered at v;, U;cInt (A;), and this collection of U;’s satisfies: if F: S:—|CH
such that F(v;)e U;, and F is the linear extension of this vertex map, then there
exists an ambient isotopy H: |C7|—|Cy|, such that Hy(x)=F(x) for all zeS;, and
Hy(x)=2% for all z€|C}. Furthermore H(A)=A for all ¢€[0,1]and AeC;. The
notation for v; and U; will be used in the following. -
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Proposition 8. There exists ¢': R,—~|Cy|, a P.L. homeomorphism of R, into
|Cy|, ambient isotopic to ¢ in C; by an isotopy which moves no boint more than ¢,
Jor any given ¢>0, and satisfying:

(1) ¢'|Ri=¢|R} for 0<i<q—1.

(2) For each vertex vje RT,, ¢'(vj) e U;.

(3) If BeRT:;—RT?, and CeRT;, if vy, ---,v, are the vertices of B in
RT;—RTY such that {vy, ---,v}NC=9¢, if AeCy; such that $(B)C A, and if B’ is
the face of B opposite {vy, -+ -, v.}, then {¢'(vy), -+, ¢'(v:), {(Shad ($(C))N A), $(B'))}
is in g.p.w.r.t. {(Shad (¢(C))N A), $(B")>.

The proof of this follows a lengthy construction.

If B,CeT; and v, -+, v are the vertices of B which are not in C, and v; ¢ SI*
for 1<i<t, then v,, ---, v, are the free vertices of B w.r.t. C.

Construction of the ¢;. For 0<i<q—1, define ¢;: R;—|C}| by ¢;=¢|R:. For
g<i<dim C;, ¢; will be constructed inductively. The final ¢; will be ¢'.

For g<i<dim C,, ¢; will satisfy:

(L) SRy '=i-.

(2;) For each vertex v;e RT3, ¢i(v;) e U;.

(3;) If BeRTi—T5", and CeRT%, if vy, ---,v, are the vertices of B in
RT:—RT: " such that {v, - -+, v, NC=¢, if Ae(C})) such that ¢(B)c A, and if B
is the face of B opposite (vi, ---,v;), then {gi(v)), ---, :i(v:), {(Shad (¢:(C))N A),
$«B')>} is in g.p.w.r.t. <Shad (¢:(C))N A), $(B’)>.

The main construction. For each i, g<i<dim C;, we prove:

Proposition 8,. Given ¢;: Rj—|Cyl, a P.L. homeomorphism, ambient isotopic
to ¢|R in |C;l, and satisfying (1,), (2,), and (35), where 0<j<i—1, and given ¢>0,
such that d(¢;, §|R})<e, then there exists ¢;: Ri—|C,| satisfying (1)), (), (3), and
d(¢:, $IR) <e.

Proof. Let {v:}{ be the vertices of RT:—RT:". Let W,=U,—N(k, ¢) where
N(%, ) is the closure of the ¢-ball centered at ¢(v;) for 1<k<].

Consider the set of ordered pairs of simplices {(Bi, C.), --+, Bz, Cr)}, where
B,e RT;—RT:", C,eRTi, and where B, has free vertices w.r.t. C, which are
contained in RT:—RT3 . For each such pair (B,, C,) 7,: R'—|C}| is constructed
which satisfies:

(1) 7. is simplicial on RT..

(2) For each vertex ve RT,, r,(v)=r,_,(v), except when v is a free vertex
of B, w.r.t. C, in RT:—RT3 . For such a free vertex, vy, 7,(vy) € B,. Define 7,

i—1

to be equal to ¢;—, on R;™', and to be equal to ¢ on the vertices of RTi—RT:™.
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(3) If vy, -+, v, are the free vertices of B, w.r.t. C; in RT:i—RTi{™" and
#(B)CA where Ae(Ch), then {r,(vy), -+, 72y, (Shad (r(Cx)N A), 7(A))} is in
g.p.w.r.t. {(Shad (r,(Cx)) N A), 7.(B")», where B’ is the face of opposite <vs, **+, vs),
and 1<k<s.

Let ¢;=7k.

The construction of 7; follows, the construction of 7;, where 2<j<s is similar.

Let vy, ---, v, be the free vertices of B, w.r.t. C; which are in RT;—RT; .
Let ¢(C)c A where Ae(Ch); thus {$(vy), - -+, s(w)}cInt A. Let B’ be the face
of B, opposite {vy, *+*, v:).

Let P,=<{r,(B’), Shad (#,(C,))N A). P, determines a hyperplane in A, denoted
by D(P,). '

Note dim P,<dim B,+dim (Shad (#o(Cy))NA)+1. In order to show that
dim B;+dim (Shad (7,(C1)) N A)—dim A< —1 note that dim A=n»/2+2a+1—b, where
a>5/4, b>0. dim B;<dim(S,nA)<dim A+dim C;—m<n/4—3a+2—b. Thus
dim (Shad (74(C1)) N A)<n/4—3a+3—b, and dim A,+dim (Shad (r(C1))N A)—dim A<
—4a+4—b<—4a+4<-1.

Thus D(P,) does not fill up W,, so there exists y.€ Wi—D(P,). Let P,=
{ys, Pod. If t>1, there exists y, € Wo,—D(P,). By induction yi € Wi— D(Py-;) and
P, ={%Ys, Pr-1) can be obtained for 2<k<t.

Now {¥1, **+» ¥s, Po} is in g.p.w.r.t. Po. Let 7i(vi)=y: for 1<k<t, r1(v)=7r,(v)
for each v in RT% where v+#v,, 1<k<t. Extend 7, linearly to all of R:.

The following corollaries now follow.

Corollary 8.1. If g<i<dim C;, and B,CeRT;, ¢'(B)NA+¢ with Ae(Ch;
if v1,++,v; are the free vertices of B w.r.l. C, then xe€lnt(B) implies that
¢'(x) € Shad (¢'(C)).

Corollary 8.2. If Be RT: and Ce RTi—RTi™" where q<i<j<dim Cy; if A€
(C}Y with ¢'(B) € A; if vy, ++ -, v, are the free vertices of B w.r.t. C, then x¢Int(B)
implies that ¢'(x) ¢ Shad (C).

Corollary 8.3. If xelnt(A), y€lInt(B), where B, Ce RT:;—RT{™; and there
exists a free vertex of B w.r.t. C, then there is no zebase of Cy such that ¢'(x)
and ¢'(y) are in F,.

Since ¢’ is ambient isotopic to ¢ in |C}|, there is an ambient isotopy H.: |C¢|—|C7|
such that Hy(z)=2 for all z € |Cy|, Hy(¢'(%))=¢(x) for all € R,, and H,|A isa P.L.
homeomorphism of A onto A for each £€[0,1] and A€ C;.

Define h: |Cf|—|Cy| by h(x)=idH\(z).
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Theorem 9. Let z < base of C} Suppose gh(F,)ngh(IC}l— F)#, then there
exists a unique 2’ €base of Cf, 2 #2, such that gh(F,)ngh(F N#p. Furthermore
gh(F,)Ngh(F,) is connected. :

The proof of Theorem 9 follows from Corollary 8.3.

Let B'=base of C;. For ze B, define B'(z)={z' € B': gh(F,)Ngh(F.)#¢}. B'(2)
contains at most 2 points. Let G'={B’(z): ze B'}. Let G=B'|G/, i.e. G is the
decomposition space formed by identifying z with 2’ in B’ if B'(2)=B'(z'). Let
6: B'—G be defined by 8(z2)=B'(z). A subset U of G is open iff 6 %(U) is open
in B'. G is a polyhedron and 6 is a P.L. map, Let 6,:=Max {diameter gp;'(z):
x € base of Cy}.

Theorem 10. Given >0, there exists a (20,+9) semi-forest I'={F, G, n} and
a P.L. mapping 6 of Q onto G satisfying:

(a) PcFclnt(M) -

(b) 6f=zx|P

(c) dim Sg<dim @

(d) dim ”-I(w)sl\ﬁ?’é{ dim f(y)+1, for any xeG.

Proof. Given ' >0, there exists ¢>0 such that if ¢’ is constructed as in the
proof of so that d(g, ¢')<e, then d(gh(x), gid(x))<d’ for any e |C}l.
Let K’ be a triangulation of |C;| which extends 75. Let K(P)’ denote the
subcomplex of K’ which triangulates id~'g~'(P).
bk can be chosen so that there is an ambient isotopy H;: M—M, such that
Hyx)=x for xzeM, H(gh(x))=gid(x) for ze|K(P)'|, and d(x, H,(x))< /8 for any
tel0,1], xe M. Thus diameter (gh(F,))<d,+3/4 for any zebase of C}; and di-
ameter (H\gh(F,))<6,+06/2. If High(F,)n H\gh(F,)#¢ for z, 2z’ e base of C}, then
diameter (H,gh(F.)U High(F,/))<20,+9.

Let F=H,gh(|C;|). Identify Q with B’, thus : @—G. For z ¢ F, x € High(F,)
for some zeB'. Let n(z)=B'(z)eG. Since % € High(F,)) implies B'(z)=B'(Z), =
is well-defined. '

For ze€G, n (%) can be shown to be collapsible by Theorem 9. It is clear
that dim =~ (a:)<Max dim f(y)+1, for any e G.| ‘ '

To show that dxm Se<dim @, note that #>4 and: dim @=dim S,<#n/2—2a,
where @>5/4. Thus dim Q=»/2—2a—b where b>0. dim Se<dim S,<2(dim C,)—
m=n/4—3a—2b+2. Therefore dim @ —dim Se¢>0, and the theorem follows.
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