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Let (X, $F_{l}$) and $(Y, F_{y})$ be topological vector spaces over the real or complex

field $K$. Let $SC\mathcal{L}(X, Y)$ be the set of all sequentially continuous linear trans-
formations on $X$ into Y. With addition of vectors and scalar multiplication defined
pointwise, $SC\mathcal{L}(X, Y)$ is a linear subspace of the linear space $\mathcal{L}(X, Y)$ over $K$

of all linear transformations on $X$ into Y.
In this paper, we will consider: (1) a number of important vector topologies

on $SC\mathcal{L}(X, Y)$ ; (2) bounded subsets of $SC\mathcal{L}(X, Y);(3)$ equi-sequentially-con-
tinuous sets of functions; and (4) uniformly equi-sequentially-continuous sets of
functions. Our most important result will be the derivation of a form of the
Banach-Steinhaus theorem valid for S-barrelled topological vector spaces ([9]).

Quite obviously, our entire development closely parallels the theory of vector
topologies on spaces $C\mathcal{L}(X, Y)$ of continuous linear transformations, the theory
of equicontinuous and uniformly equicontinuous sets of functions, and the deriva-
tion of the Banach-Steinhaus theorem for barrelled topological vector spaces (see

[1], p. 216 and [6], pp. 79-87). There are, however, many known examples of
linear transformations which are sequentially continuous but not continuous (see

[5], p. 38). In fact, if a topological vector space (X, $F_{x}$) over $K$ is not C-sequential
(see [8], p. 275), there exists a locally convex topological vector space $(Y, F_{y})$ over $K$

and a sequentially continuous linear transformation $f:X\rightarrow Y$ which is not continuous.

1. $\mathscr{S}$-Topologies on $\mathscr{S}\mathscr{C}\mathscr{L}(X, Y)$

In Theorem 1, we recall the well-known result that a sequentially continuous
linear transformation is bounded on bounded sets. As an immediate consequence
of this fact, we can state Theorem 2 on the existence of vector S-topologies
(topologies of uniform convergence on the sets $S$ in $\mathscr{S}$ ) on the linear space
$\mathscr{S}\mathscr{C}\mathscr{L}(X, Y)$ of sequentially continuous linear transformations.

* Some of these results are contained in the author’s Ph.D. thesis written at the
University of Virginia under the direction of Professor E. J. McShane.
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Theorem 1. Let (X, $F_{l}$) and $(Y, F_{y})$ be topological vector spaces over the
real or complex field K. Let $f:X\rightarrow Y$ be a sequentially continuous linear trans-
formation on $X$ into Y. Then $f$ is bounded on bounded subsets of $X$, i.e., if $B$

is a bounded subset of $X$, the set $f[B]$ is a bounded subset of Y.

Proof. Assume that $B$ is a bounded subset of $X$. Let $V$ be a neighborhood
of the zero vector $0$ in Y. There exists a balanced neighborhood $W$ of $0$ in $Y$

such that $W\subseteq V$. Since $f$ is linear and sequentially continuous, $f^{-1}[W]$ is a
balanced sequential neighborhood of the zero vector $0$ in $X$. Consequently $f^{-1}[W]$

is a bornivore. Thus $f^{-1}[W]$ absorbs $B$, i.e., there exists a real number $\lambda$ where
$\lambda>0$ such that $\lambda B\subseteq f^{-1}[W]$ . Thus, we have $f[\lambda B]=\lambda f[B]\subseteq W\subseteq V$. Clearly, $f[B]$

is bounded.///

Theorem 2. (Vector S-Topologies on $SC\mathcal{L}(X,$ $Y)$ ) Let (X, $F_{l}$) and (Y. $F_{y}$)

be topological vector spaces over the real or complex field K. Let $SC\mathcal{L}(X, Y)$

be the linear space over $K$ of all sequentially continuous linear transformations
on $X$ into Y. Let $S$ be an upward direction in $X$ (a non-empty collection of non-
empty subsets of $X$ upwardly directed by set inclusion), composed of $\ovalbox{\tt\small REJECT}_{l}^{-}$-bounded
subsets of X. Let $F$ be the $S$-topology on $SC\mathcal{L}(X, Y)$ , i.e., let $\ovalbox{\tt\small REJECT}^{-}be$ the rela-
tive topOlogy on $SC\mathcal{L}(X, Y)$ induced by the S-topology on the linear space
$\ovalbox{\tt\small REJECT}^{-}(X, Y)$ , over $K$, of all functions on $X$ into Y. Then $(SC\mathcal{L}(X, Y),$ $\mathscr{F}$ ) is a
topological vector space over K. $If\vee\ovalbox{\tt\small REJECT}$ is a local base for $\ovalbox{\tt\small REJECT}_{y}^{-}$ , a local base for $\mathscr{F}$ is
{$N(S,$ $M)\cap SC\mathcal{L}(X,$ $Y)|S\in S$and $ M\in\ovalbox{\tt\small REJECT}\swarrow$ } where $N(S, M)=\{f\in\ovalbox{\tt\small REJECT}^{-}(X, Y)|f[S]\subseteq M\}$ .
If $(Y, F_{y})$ is a locally convex topological vector space over $K$, the vector topology $\ovalbox{\tt\small REJECT}_{y}^{-}$

being generated by the non-empty family of semi-norms $\ovalbox{\tt\small REJECT}$, then $(SC\mathcal{L}(X, Y),$ $F$)

is a locally convex topological vector space over $K$ with the vector topology $\ovalbox{\tt\small REJECT}^{-}$

generated by the non-empty family of semi-norms {$P_{S.p}:S\in S$ and $p\in\ovalbox{\tt\small REJECT}$ } where
$P_{S.p}:SC\mathcal{L}(X, Y)\rightarrow R$ is defined by the correspondence $P_{S.p}(f)=\sup_{xes}(p\circ f)(x)=$

$supp(f(x))$ for all $f$ in $SC\mathcal{L}(X, Y)$ . If $\ovalbox{\tt\small REJECT}$ is filtrant (or directed), so is {$P_{S.p}$ :
$x\in S$

$S\in S$ and $p\in\ovalbox{\tt\small REJECT}$ }.

Proof. Use Theorem 1 and a theorem given in the book by H. H. Schaefer
([6], Theorem (3.1), p. $79$) $.///$

Theorem 3. Let (X, $F_{l}$) and $(Y, \ovalbox{\tt\small REJECT}_{y}^{-})$ be topological vector spaces over the
real or complex field K. Let $S$ be an upward direction in $X$, composed of $F_{g^{-}}$

bounded subsets of X. Let $(SC\mathcal{L}(X, Y),$ $\ovalbox{\tt\small REJECT}^{-}$ ) be the topological vector space over
$K$ of all sequentially continuous linear transformations on $X$ into $Y$ with the S-
topology. If $(Y, F)$ is Hausdorff, and $if\cup S$ is sequentially total in $X$, i.e., if
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the linear hull $[\cup S]$ of $\cup S$ is sequentially dense in $X$, then $(SC\mathcal{L}(X, Y),$ $\mathscr{F}$ )

is Hausdorff.
Proof. Let $A=\cup S=\cup\{S:S\in S\}$ . Let $f_{0}\in SC\mathcal{L}(X, Y)$ such that $f_{0}\neq 0$ .

Since $\overline{[A]}^{*}=X$, there exists a point $x_{0}$ in $A$ or $x_{0}$ in $S_{0}$ where $S_{0}\in S$ such that
$f_{0}(x_{0})\neq 0$ . Since $(Y, \mathscr{F}_{y})$ is Hausdorff, there exists a $\mathscr{F}_{y}$-neighborhood $M_{0}$ of $0$ in
$Y$ such that $f_{0}(x_{0})\not\in M_{0}$ . Clearly, $f_{0}\not\in N(S_{0}, M_{0})\cap SC\mathcal{L}(X, Y)$ . Thus the topo-

logical vector space $(SC\mathcal{L}(X, Y),$ $\ovalbox{\tt\small REJECT}^{-}$ ) is Hausdorff.///

We want to list those vector S-topologies on $SC\mathcal{L}(X, Y)$ which are especially

important. But before we can do this, we need several definitions.
Let (X, -S7) be a topological space, and let (X, –) be the sequential closure

space generated by (X, $\ovalbox{\tt\small REJECT}^{-}$ ). See [7], p. 95. Given a set $A\subseteq X$, the sequential

interior of $A$ is the set $A^{\copyright}=X\backslash (\overline{X\backslash A)}$ . Let $B$ be a subset of $X$. Then the set
$B$ is said to be $S$-comPact or —compact if and only if every sequential interior
cover of $B$ has a finite subcover, i.e., if and only if: given any family of subsets
of $X,$ $\{G_{i}:i\in I\}$ , such that $B\subseteq\bigcup_{i\in I}G_{i}^{O8}$ ; there exists a finite set of indices $\{i_{1}, \cdots, i_{n}\}$ ,

where $\{i_{1}, \cdots, i_{n}\}\subseteq I$, such that $B\subseteq\bigcup_{\dot{g}=1}^{n}c_{:_{j}}$ . Every finite subset of $X$ is S-compact.

As another example, every convergent sequence together with its limit is S-
compact, i.e., if $(x.:neN)$ is a sequence in $X$, if $a\in X$, and if $\lim_{\rightarrow+\infty}x_{n}=a$

; then

the set $\{a\}\cup\{x.:neN\}$ is S-compact.
Let (X, $c\ovalbox{\tt\small REJECT}^{-}$ ) be a topological vector space over the real or complex field $K$.

Let $B$ be a subset of $X$. Then the set $B$ is said to be sequentially totally bounded
(S-totally bounded) or sequentially PrecomPact (S-precompact) if and only if: given

any sequential neighborhood $N$ of the zero vector $0$ in $X$, there exists a finite
subset $B_{0}$ of $X$ such that $B\subseteq B_{0}+N$.

The following theorem gives the relationships between finite, S-compact, S-
precompact, compact, precompact, and bounded sets.

Theorem 4. Let (X, J7) be a topological vector space over the real or comPlex
field K. Let $B$ be a subset of X. Then for the set $B$, the following $\dot{t}mplica\ell ions$

hold:

$B$ is finite. $\Rightarrow B$ is S-compact. $\Rightarrow B$ is $S$-precompact.
$\Downarrow$

$\Downarrow$

$B$ is compact. $\Rightarrow B$ is
$ precompact\Downarrow$

.
$B$ is bounded.

Proof. First, we will show that if $B$ is S-compact, then $B$ is $\infty mpact$.
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Assume that $B$ is S-compact. Let $\{G_{i}:i\in I\}$ be an open cover for $B$. Then
$B\subseteq\bigcup_{\ell eI}G_{i}$ . Since $G_{i}=G_{\iota^{8}}^{O}=G_{i}^{0}$ , we have $B\subseteq\bigcup_{ieI}G_{\ell}^{O^{s}}$ . Since $B$ is S-compact, there
exists a finite set of indices $\{i_{1}, \cdots, i_{n}\}\subseteq I$ such that $B\subseteq\bigcup_{j=1}^{n}G_{\ell_{j}}$ . Clearly, $B$ is
compact.

Next, we will prove that if $B$ is $S\cdot compact$ , then $B$ is S-precompact. Assume
that $B$ is S-compact. Let $N$ be a sequential neighborhood of $0$ in $X$. If $x\in X$,
then $x+N$ is a sequential $neighborhd$ of $x$ . Thus, $x\in(x+N)^{\copyright}$ . Consequently,
$B\subseteq\bigcup_{xeB}(x+N)^{\copyright}$ . Since $B$ is S-compact, there exists a finite set of points $\{x_{1}, \cdots, x_{n}\}$

in $B$ so that $B\subseteq\bigcup_{\dot{g}=1}^{\#}(x_{j}+N)$ . Thus $B\subseteq B_{0}+N$ where $B_{0}=\{x_{1}, \cdots, x_{n}\}\subseteq B\subseteq X$.
Clearly, $B$ is S-precompact.

The remaining implications obviously hold.///

Now we can list the important vector S-topologies on $SC\mathcal{L}(X, Y)$ . They
are the following:

(1) $F_{\sigma}$ , the topOlogy of pOintwise convergence or the topology of simple
convergence or the weak topotogy, which is the S-topology on $SC\mathcal{L}(X, Y)$ when
$S$ is the collection of all finite (non-empty) subsets of $X$.

(2) $F_{\iota}$ , the topology of $S$-comPact convergence or the topology of uniform
convergence on $S$-comPact subsets of $X$, which is the S-topology on $SC\mathcal{L}(X, Y)$

when $S$ is the collection of all S-compact (non-empty) subsets of $X$.
(3) $\ovalbox{\tt\small REJECT}_{e}^{-}$ , the topology of comPact convergence or the topology of uniform

convergence on comPact subsets of $X$, which is the S-topology on $SC\mathcal{L}(X, Y)$

when $S$ is the collection of all compact (non-empty) subsets of $X$.
(4) $F_{p0}$ , the topology of $S$-Precompact convergence or the toPology of uni-

form convergence on $S$-Precompact subsets of $X$, which is the S-topology on
$SC\mathcal{L}(X, Y)$ when $S$ is the collection of all S-precompact (non-empty) subsets
of $X$.

(5) $\ovalbox{\tt\small REJECT}_{p\iota}^{-}$ , the topology of precompact convergence or the topology of uniform
convergence on Precompact subsets of $X$, which is the S-topology on $SC\mathcal{L}(X, Y)$

when $S$ is the collection of all precompact (non-empty) subsets of $X$.
(6) $\ovalbox{\tt\small REJECT}_{b}^{-}$ , the topology of bounded convergence or the topology of uniform

convergence on bounded subsets of $X$ or the strong topology, which is the S-
topology on $SC\mathcal{L}(X, Y)$ when $S$ is the collection of all bounded (non-empty)

subsets of $X$.
From Theorem 4, it is clear that these six topologies on $SC\mathcal{L}(X, Y)$ are

related in the following manner:
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$\mathscr{F}_{\sigma}\subseteq \mathscr{F}_{\epsilon\iota}\subseteq \mathscr{F}_{po}$

$|\cap$ In
$\mathscr{F}_{0}$ $\subseteq\ovalbox{\tt\small REJECT}_{po}^{-}$ $\subseteq F_{b}$ .

In the next theorem, we give a number of different characterizations of bounded
subsets of $SC\mathcal{L}(X, Y)$ .

Theorem 5. (S-Bounded Subsets of $(SC\mathcal{L}(X,$ $Y),$ $\ovalbox{\tt\small REJECT}^{-})$ ) Let (X, $\mathscr{F}_{x}$) and
$(Y, F_{y})$ be topological vector spaces over the real or complex field K. Let $S$ be an
upward direction in $X$, composed of $\mathscr{F}_{x}\cdot bounded$ subsets of X. Let $(SC\mathcal{L}(X, Y)$ ,
$\ovalbox{\tt\small REJECT}^{-})$ be the topological vector space over $K$ of all sequentially continuous linear

transformations on $X$ into $Y$ with the S-topology. Let $\mathscr{M}$ be a local base for $\ovalbox{\tt\small REJECT}_{y}^{-}$ .
Let $\ovalbox{\tt\small REJECT}\subseteq SC_{\leftarrow\prime}^{(\gamma}(X, Y)$ . Then $\ovalbox{\tt\small REJECT} is$ bounded for the S-topology or $\ovalbox{\tt\small REJECT}$ is a $\mathscr{F}-$

bounded subset of $SC\mathcal{L}(X, Y)$ or $\ovalbox{\tt\small REJECT}$ is S-bounded if and only if any of the

following equivalent assertions hold:
(1) Given any set $M$ in $\ovalbox{\tt\small REJECT}$ and given any set $S$ in $S$, there exists a real

number $\lambda$ where $\lambda>0$ such that: $\lambda\ovalbox{\tt\small REJECT}^{\prime}\subseteq N(S, M)\cap SC\mathcal{L}(X, Y)$ .
(2) Given any set $M$ in $’\ovalbox{\tt\small REJECT}$ and given any set $S$ in $S$, there exists a real

number $\lambda$ where $\lambda>0$ such that: $f\in m\Rightarrow\lambda f[S]\subseteq M$ (or $f[\lambda S]\subseteq M$; or $\lambda S\subseteq f^{-1}[M]$).

(3) Given any set $S$ in $S$, the set $\bigcup_{feR}f[S]$ is $\ovalbox{\tt\small REJECT}_{y}^{-}$-bounded in Y.

(4) Given any set $M$ in X‘ and given any set $S$ in $S$, there exists a real

number $\lambda$ where $\lambda>0$ such that: $S\subseteq\lambda\bigcap_{feX}f^{-1}[M]$ .
(5) Given any set $M$ in $\mathscr{M}$ and given any set $S$ in $S$, the set $\bigcap_{feX}f^{-1}[M]$

absorbs $S$.
Proof. The above statements follow directly from the definition of a bounded

set in a topological vector space. To obtain (5), one first considers the special case
where $\mathscr{M}$ is a local base of balanced neighborhoods of the zero vector $0$ in $Y.///$

Let (X, $\ovalbox{\tt\small REJECT}^{-}$ ) be a topological vector space over $K$. A subset $B$ of $X$ is a se $\cdot$

quential barrel if $B$ is sequentially closed, convex, balanced, and absorbing (see [9]).

Theorem 6. Let (X, $F_{l}$) be a topological vector space over the field of real
or complex numbers $K$, and let $(Y, \mathscr{F}_{y})$ be a locally convex topological vector space
over K. Let $(SC\mathcal{L}(X, Y),$ $\mathscr{F}_{\sigma}$ ) be the locally convex topological vector space over
$K$ of all sequentially continuous linear transformations on $X$ into $Y$ with the

topology of pointwise convergence $F_{\sigma}$ . Let $\ovalbox{\tt\small REJECT}^{\prime}\subseteq SC\mathcal{L}(X, Y)$ . Then $\ovalbox{\tt\small REJECT}^{\prime}$ is $F_{\sigma}-$

bounded if and only if given any closed, convex, balanced neighborhood $V$ of the

zero vector $0$ in $Y$; the set $\bigcap_{feR}f^{-1}[V]$ is a sequential barrel in $X$.
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Proof. This result follows directly from (5) of Theorem 5.///

2. $Rui- Sequentially\cdot Contlnuous$ Sets of Functions

Let (X, Yr) be a topological space. Let $(Y, F_{y})$ be a topological vector space,
over the real or complex field $K$, with associated uniform structure $\ovalbox{\tt\small REJECT}^{\prime}$ and with
local base X Let $\ovalbox{\tt\small REJECT}^{-}(X, Y)$ be the linear space, over $K$, of all functions on $X$

into Y. Let $\ovalbox{\tt\small REJECT}^{\prime}\subseteq\ovalbox{\tt\small REJECT}^{-}(X, Y)$ , and let $x_{0}\in X$. To say that $\ovalbox{\tt\small REJECT}^{\prime}$ is equi-sequentially-
continuous at the point $x_{0}$ means that either of the following equivalent statements
holds:

(1) Given any entourage $V$ in $\ovalbox{\tt\small REJECT}^{\prime}$, there exists a sequential neighborhood
$N(x_{0})$ of the point $x_{0}$ in $X$ such that: $f\in\ovalbox{\tt\small REJECT}^{\prime}$ and $x\in N(x_{0})\Rightarrow(f(x),f(x_{0}))\in V$.

(2) Given any set $M$ in X there exists a sequential neighborhood $N(x_{0})$ of
the point $x_{0}$ in $X$ such that: $f\in\ovalbox{\tt\small REJECT}^{-}$ and $x\in N(x_{0})\Rightarrow f(x)-flx_{0})\in M$.
To say that $\ovalbox{\tt\small REJECT}^{\prime}$ is equi-sequentially-continuous means that $\ovalbox{\tt\small REJECT}^{\nearrow}$ is equi-sequentially-
continuous at every point of $X$.

Let (X, $F_{l}$) and $(Y, \mathscr{F}_{y})$ be topological vector spaces over the real or complex
field $K$. Let $-r$. be a local base of $F_{l}$-sequential $neighborhds$ of the zero vector
$0$ in $X$; and let $\vee$’ be a local base of $F_{\nu}$-neighborhoods of the zero vector $0$ in
Y. Let $F(X, Y)$ be the linear space, over $K$, of all functions on $X$ into Y. Let

$\ovalbox{\tt\small REJECT}^{\prime}\subseteq F(X, Y)$ . To say that $\ovalbox{\tt\small REJECT}^{\nearrow}$ is uniformly equi-sequentially-continuous means that
given any set $M$ in $\mathscr{M}_{1}$ there exists a set $N$ in $r$. such that:

$f\in\ovalbox{\tt\small REJECT} andx_{1},$ $x_{2}\in X$ and $x_{1}-x_{2}\in N\Rightarrow f(x_{1})-f(x_{2})\in M$ .
As a consequence of these definitions, we obtain the following theorem.

Theorem 7. Let (X, $F_{x}$) and $(Y, F_{y})$ be topological vector spaces over the
real or complex field K. Let $\mathcal{L}(X, Y)$ be the linear space, over $K$, of all linear
transformations on $X$ into Y. Let $\ovalbox{\tt\small REJECT}^{\prime}\subseteq \mathcal{L}(X, Y)$ . Then the following statements
are equivalent:

(1) 21’ is equi-sequentially-continuous.
(2) $\ovalbox{\tt\small REJECT}^{\prime}$ is equi-sequentially-continuous at the zero vector $0$ in $X$.
(3) $\ovalbox{\tt\small REJECT}^{\prime}$ is equi-sequentially-continuous at some point $x_{0}$ in $X$.
(4) $\ovalbox{\tt\small REJECT}^{\prime}$ is uniformly equi-sequentially-continuous.
(5) Given any neighborhood $M$ of $0$ in $Y$, there exists a sequential neighborhood

$N$ of $0$ in $X$ such that: $\cup f[N]\subseteq M$.
$fe\ovalbox{\tt\small REJECT}^{\prime}$

(6) Given any neighborhood $M$ of $0$ in $Y$, the set $\bigcap_{fe\ovalbox{\tt\small REJECT}^{\prime}}f^{-1}[M]$ is a sequential
neighborhood of $0$ in $X$.

Theorem 8. Let (X, $F_{*}$) be a topological vector space over the real or complex
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fieu $K$, and let $(Y, \ovalbox{\tt\small REJECT}_{y}^{-})$ be a Hausdorff topological vector sPace over K. Let
$(\ovalbox{\tt\small REJECT}^{-}(X, Y),$ $F_{p}$) be the Hausdorff toPological vector $sPace$, over $K$, of all functions
on $X$ into $Y$ with the topology of pointwise convergence. Let $\mathcal{L}(X, Y)$ be the
linear sPace, over $K$, of all linear transformations on $X$ into Y. Let JYs $\mathcal{L}(X, Y)$ .
Then, if $\ovalbox{\tt\small REJECT}^{\prime}$ is $equi- sequentially\cdot continuous;\ovalbox{\tt\small REJECT}^{-}\mathcal{J}p$ the pOintwise closure of $\ovalbox{\tt\small REJECT}^{\prime}$ in
$\mathscr{F}(X_{1}Y)$ , is an equi-sequentially-continuous subset of $\mathcal{L}(X, Y)$ .

Proof. Since $\ovalbox{\tt\small REJECT}\subseteq \mathcal{L}(X, Y)$ , we have $\ovalbox{\tt\small REJECT}^{-}\prime \mathcal{J}^{\cdot}p\subseteq\overline{\mathcal{L}(X,Y)}^{rp}=\mathcal{L}(X, Y)$ using the
fact that $\mathcal{L}(X, Y)$ is a $\mathscr{F}_{p}$-closed subset of $\mathscr{F}(X, Y)$ . We must show that if $\ovalbox{\tt\small REJECT}^{\prime}$

is equi-sequentially-continuous, then $\ovalbox{\tt\small REJECT}^{-}\prime \mathcal{J}^{-}p$ is equi-sequentially-continuous. Assume
that $\ovalbox{\tt\small REJECT}^{\prime}$ is equi-sequentially-continuous. Let $M$ be a $F_{y}$-neighborhood of $0$ in Y.
There exists a balanced $\mathscr{F}_{\nu}$-neighborhood $W$ of $0$ in $Y$ such that $W+W\subseteq M$.
Since J21“ is $equi\cdot sequentially$-continuous, there exists a $F_{l}$-sequential $neighborhd$
$N$ of $0$ in $X$ such that $\bigcup_{f\in X}f[N]\subseteq W$. We must show $that\cup f[N]\subseteq Mfe\overline{X}^{\mathcal{J}p}$ Let

$f\in\ovalbox{\tt\small REJECT}^{-}\wedge \mathcal{J}p$ and let $x_{0}\in N$. Consider the set $N(\{x_{0}\}, W)$ which is a $\ovalbox{\tt\small REJECT}_{p}^{-}$-neighborhood
of the zero vector $0$ in $\mathscr{G}^{-}(X, Y)$ . Then $f+N(\{x_{0}\}, W)$ is a $F_{p}$-neighborhood of $f$.
There exists a function $g$ in $\ovalbox{\tt\small REJECT}$ such that $g\in f+N(\{x_{0}\}, W)$ hence $g(x_{0})-f(x_{0})\in W$.
Since $W$ is balanced, $f(x_{0})-g(x_{0})\in W$ hence $f(x_{0})\in g(x_{0})+W\subseteq W+W\subseteq M$. Clearly,

$fe^{\frac{\cup}{X}Fp}f[N]\subseteq M$. This proves that $\ovalbox{\tt\small REJECT}^{-}\prime r_{p}$ is equi-sequentially-continuous.///

Theorem 9. Let (X, $F_{l}$) and $(Y, F_{y})$ be topological vector sPaces over the
real or $comPlex$ field K. Let $SC\mathcal{L}(X. Y)$ be the linear sPace, over $K$, of all
sequentially confinuous linear transformations on $X$ into Y. Let $\ovalbox{\tt\small REJECT}^{\prime}\subseteq SC\mathcal{L}(X, Y)$ ,

such that $\ovalbox{\tt\small REJECT}^{\prime}$ is equi-sequentially-continuous. If $F_{\sigma}$ is the toPology of Pointwise
convergence on $SC\mathcal{L}(X, Y),$ $F_{0}$ is the topology of S-compact convergence on
$SC\mathcal{L}(X, Y)$ , and $\mathscr{F}_{po}$ is the topology of $S$-Precompact convergence on $SC\mathcal{L}(X, Y)$ ,
then the corresponding relative topOlogies on $\ovalbox{\tt\small REJECT} are$ the same, i.e., $\mathscr{F}_{\sigma}|\ovalbox{\tt\small REJECT}=\mathscr{F}_{0}|\ovalbox{\tt\small REJECT}^{\prime}=$

$\ovalbox{\tt\small REJECT}_{lpo}^{-}|\ovalbox{\tt\small REJECT}^{\prime}$

Proof. Clearly, $F_{\sigma}|\ovalbox{\tt\small REJECT}^{\prime}\subseteq F_{l\delta}|\ovalbox{\tt\small REJECT}^{\prime}\subseteq t\mathscr{F}_{po}|\ovalbox{\tt\small REJECT}^{\prime}$ We must prove that $\mathscr{F}_{po}|\ovalbox{\tt\small REJECT}\subseteq$

$F_{\sigma}|\ovalbox{\tt\small REJECT}^{\prime}$ Let $\vee$ be a local base for $F_{y}$ . Then a local base for $F_{po}|\ovalbox{\tt\small REJECT}^{\prime}$ is
{ $N(B,$ $M)\cap\ovalbox{\tt\small REJECT}^{\prime}|B\subseteq X,$ $B$ is S-precompact, and $M\in \mathscr{M}$ }. A local base for $\ovalbox{\tt\small REJECT}_{\sigma}^{-}|\ovalbox{\tt\small REJECT}^{\nearrow}$ is
{ $N(\{x_{1},$ $\ldots,$

$x_{n}\},$ $M)\cap\ovalbox{\tt\small REJECT}^{\nearrow}|\{x_{1},$
$\cdots,$

$x_{n}\}\subseteq X,$ $\{x_{1},$
$\cdots,$

$x_{n}\}$ is finite, and $M\in \mathscr{M}$ }. Consider
the set $N(B, M)\cap\ovalbox{\tt\small REJECT}^{\prime}$ where $B$ is an S-precompact subset of $X$ and where $M\in\vee’$.
Let $W\in \mathscr{M}$ such that $W+W\subseteq M$. Since JT is equi-sequentially-continuous, there
exists a $\ovalbox{\tt\small REJECT}_{x}^{-}$-sequential neighborhood $N$ of $0$ in $X$ such that $\bigcup_{feX}f[N]\subseteq W$. Since $B$

is S-precompact, there exists a finite set { $x_{1},$ $\cdots,$
$x_{n}I\subseteq X$ such that $B\subseteq\{x_{1}, \cdots, x, \}+N$.

We claim that $N(\{x_{1}, \ldots, x, \}, W)\cap\ovalbox{\tt\small REJECT}^{\prime}\subseteq N(B, M)n\ovalbox{\tt\small REJECT}$ Indeed, if we have $ f\in$
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$N$( $\{x_{1},$
$\cdots,$

$x_{n}\}$ , W)\cap -% then $ f\in$ J7 and $f[B]\subseteq f[\{x_{1}, \cdots, x_{n}\}+N]=f[\{x_{1}, \cdots, x_{n}\}]+$

$f[N]\subseteq W+W\subseteq M$ hence $f\in N(B, M)\cap\ovalbox{\tt\small REJECT}^{\prime}$ This proves that $F_{po}|\ovalbox{\tt\small REJECT}^{\prime}\subseteq F_{\sigma}|\ovalbox{\tt\small REJECT}^{\prime}///$

Theorem 10. Let (X, $F_{x}$) and $(Y, \ovalbox{\tt\small REJECT}_{y}^{-})$ be topological vector spaces over the
real or complex field K. Let $S$ be an upward direction in $X$, composed of $F_{l}-$

bounded subsets of X. Let $(SC\mathcal{L}(X, Y),$ $F$) be the topological vector space over
$K$ of all sequentially continuous linear transformations on $X$ into $Y$ with the S-

topology. Let $\ovalbox{\tt\small REJECT}\subseteq SC\mathcal{L}(X, Y)$ . If $\ovalbox{\tt\small REJECT} is$ equi-sequentially-continuous, then $\ovalbox{\tt\small REJECT} is$

$\ovalbox{\tt\small REJECT}^{-}$-bounded, i.e., $\ovalbox{\tt\small REJECT} is$ bounded for the S-topology.

Proof. Let $\vee d$ be a local base for $\backslash r_{l}$ consisting of balanced neighborhoods
of $0$ in Y. Assume that JY is equi-sequentially-continuous. Let $M\in \mathscr{M}$. Then

$\cap f^{-1}[M]$ is a balanced sequential neighborhood of $0$ in $X$. Consequently,
feX
$\bigcap_{feX}f^{-1}[M]$ is a bornivore, i.e., $\bigcap_{fex}f^{-1}[M]$ absorbs every bounded subset of $X$. In
particular, $\cap f^{-1}[M]$ absorbs every set $S$ in $S$. By (5) of Theorem 5, $L\ovalbox{\tt\small REJECT}^{\prime}$ is F-

$J\in x$

bounded.///

3. Banach-Steinhaus Theorem for S-Barrelled Topological Vector Spaces

A topological vector space (X, $\ovalbox{\tt\small REJECT}^{-}$ ) over $K$ is S-barrelled if every sequential
barrel in $X$ is a sequential neighborhood of the zero vector $0$ in $X$. A number
of examples of spaces which are S-barrelled but not barrelled are given in [9].

Perhaps the most important of these examples is the sequence space $l^{1}=$

$\{(\alpha_{n}):\sum_{=1}^{+\infty}|\alpha_{*}|<+\infty\}$ with the weak topology $\sigma(l^{1}, l^{\infty})$ . Incidently, $(l^{1}, \sigma(l^{1}, l^{\infty}))$ is not
C-sequential. This example is important because a number of different classical
Banach spaces have been found to be isomorphic to $l^{1}$ with the norm topology.

See [4], p. 41, and [2], p. 182. As an example, $(l^{1}, \ovalbox{\tt\small REJECT}^{-})$ is isomorphic (see [3],

pp. 247-248) to the ”natural space” of analytic functions $(H_{1}(D), \ovalbox{\tt\small REJECT}_{a}^{-})$ . Here $H_{1}(D)$

is the linear space of analytic functions $f(z)$ on the unit disk $D=\{z:|z|<1\}$ such
that

$\Vert f\Vert^{1}=\int\int_{D}|f(x+iy)|dxdy<+\infty$

and $F_{a}$ is the topology generated by the norm $\Vert\cdot\Vert^{1}$ . Thus $H_{1}(D)$ with the weak
topology $\sigma(H_{1}(D), H_{1}(D)^{\prime})$ is S-barrelled but not barrelled.

We will now consider equi-sequentially-continuous and bounded sets of sequen-
tially continuous linear transformations on S-barrelled topological vector spaces.
Finally, we will derive a form of the Banach-Steinhaus theorem valid for S-barrelled
topological vector spaces.



VECTOR TOPOLOGIES 35

Theorem 11. Let (X, Yr) be an S-barrelled topological vector space over the
real or complex field K. Let $(Y, F_{y})$ be a locally convex topol0gical vector space
over K. Let $(SC\mathcal{L}(X, Y),$ $F_{\sigma}$) be the locally convex topological vector space, over
$K$, of all sequentially continuous linear transformations on $X$ into $Y$ with the
topology ofpointwise convergence $F_{\sigma}$ . Let $\ovalbox{\tt\small REJECT}^{\prime}\subseteq SC\mathcal{L}(X, Y)$ . If $\ovalbox{\tt\small REJECT}^{-}is$ $F_{\sigma}$-bounded,
i.e., if JY is simply bounded, then X is equi-sequentially-continuous.

Proof. Let $’\ovalbox{\tt\small REJECT}$ be a local base for $\mathscr{F}_{y}$ composed of closed, convex, balanced $\cdot$

$F_{y}$-neighborhoods of the zero vector $0$ in Y. Let $M\in-\ovalbox{\tt\small REJECT}$ Then $\bigcap_{fe\rightarrow}f^{-1}[M]$ is
convex, balanced, and sequentially closed. Since $\ovalbox{\tt\small REJECT}^{\prime}$ is $F_{\sigma}$-bounded, the set
$\bigcap_{f\in X}f^{-1}[M]$ is absorbing (by (5) of Theorem 5). Thus $\bigcap_{feX}J^{\leftrightarrow 1}[M]$ is a sequential
barrel in $X$. Since (X, $Fae$) is S-barrelled, $\bigcap_{feX}f^{-1}[M]$ is a $F_{x}$-sequential neighbor-
hood of $0$ in $X$. By Theorem 7, $\ovalbox{\tt\small REJECT} is$ equi-sequentially-continuous.///

As a corollary to Theorem 11, we have the following theorem.

Theorem 12. Let (X, $F_{l}$) be an S-barrelled topological vector space over the
real or complex field K. Let $(Y, F_{y})$ be a locally convex topological vector space
over K. Let $SC\mathcal{L}(X, Y)$ be the linear space, over $K$, of all sequentially continuous
linear transformations on $X$ into Y. Let $F_{\sigma}$ be the (locally convex vector) topology
ofpointwise convergence on $SC\mathcal{L}(X, Y)$ ; and let $F_{b}$ be the (locally convex vector)

topology of bounded convergence on $SC\mathcal{L}(X, Y)$ . Let $\ovalbox{\tt\small REJECT}^{\wedge}\subseteq SC\mathcal{L}(X, Y)$ . Then
the following statements are equivalent:

(1) $\ovalbox{\tt\small REJECT}^{\prime}$ is equi-sequentially-continuous.
(2) JY is $F_{\sigma}$-bounded, i.e., $\ovalbox{\tt\small REJECT}^{\prime}$ is simply (weakly) bounded.
(3) $\ovalbox{\tt\small REJECT}^{\prime}$ is $F_{b}$-bounded, i.e., $\ovalbox{\tt\small REJECT}^{\prime}$ is strongly bounded.

Theorem 13. Let (X, $F_{x}$) be a topological vector space over the real or complex
field $K$, and let $(Y, F_{y})$ be a Hausdorff topological vector space over K. Let
$(\mathcal{F}(X, Y),$ $\ovalbox{\tt\small REJECT}_{p}^{-}$) be the Hausdorff topological vector space, over $K$, of all functions
on $X$ into $Y$ with the topology of pointwise convergence. Let $(SC\mathcal{L}(X, Y),$ $\mathscr{F}_{p\iota}$)

be the Hausdorff topological vector space, over $K$, of all sequentially continuous
linear transformations on $X$ into $Y$ with the topology of S-precompact convergence.
Let $\ovalbox{\tt\small REJECT}^{\prime}$ be an equi-sequentially-continuous subset of $SC\mathcal{L}(X, Y)$ . Let $\sqrt r$ be a
direction (filter base) in $\ovalbox{\tt\small REJECT}^{\prime}$ and let $f$ be a function in $\pi_{(X.Y)}$ . $If\swarrow r$ cmverges
to $f$pointwise, i.e., $if\swarrow r\rightarrow f;Fp$ then $f\in SC\mathcal{L}(X. Y)$ and .A’converges to $f$ uniformly
on the S-precompact subsets of $X$, i.e., $-r_{\rightarrow f}^{F\cdot po}$.

Proof. Since $\sim\nearrow\nearrow$ is a direction in JT and $\prime r\rightarrow f\mathcal{J}p$ we have $f\in\ovalbox{\tt\small REJECT}^{-\nearrow \mathcal{J}p}$ . Since
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$\ovalbox{\tt\small REJECT}^{\nearrow}is$ equi-sequentially-continuous, $\overline{\ovalbox{\tt\small REJECT}^{\wedge}}r_{p}$ is equi-sequentially-continuous and $\mathscr{F}^{r_{p}}\subseteq$

$SC\mathcal{L}(X, Y)$ . Thus we have $f\in SC\mathcal{L}(X, Y)$ . Since $F_{\sigma}|\overline{m}\mathcal{J}p=F_{lpo}|\ovalbox{\tt\small REJECT}^{-}\prime r_{p}$ and
since $-4^{\prime}\rightarrow f;\mathcal{J}p$ we have $\leftrightarrow r\rightarrow f.///\mathcal{F}\cdot p0$

Theorem 14. ($Banach\cdot Steinhaus$ Theorem for S-Barrelled Spaces) Let (X, $\mathcal{F}_{l}$)

be an S-barrelled topOlogical vector space over the real or complex field K. Let
( $Y$, Yr,) be a Hausdorff locally convex topological vector space over K. Let
$(\mathscr{F}(X, Y),$ $F_{p}$) be the Hausdorff locally convex topological vector space, over $K$,
of all functions on $X$ into $Y$ with the topology of Pointwise convergence. Let
$(SC\mathcal{L}(X, Y),$ $\ovalbox{\tt\small REJECT}_{po}^{-}$) be the Hausdorff locally convex $\ell opolo\dot{g}cal$ vector sPace, over
$K$, of all sequentially continuous linear transformations on $X$ into $Y$ with the
topology of $S$-Precompact convergence. Let $\Lambda^{\prime}$ be a direction (filter base) in
$SC\mathcal{L}(X, Y)$ , and let $f$ be a function in $\mathscr{G}^{-}(X, Y)$ such $ that\sim\rho\nearrow$ converges to $f$

pointwise, i.e., $\swarrow r\rightarrow f\mathcal{J}^{\prime}p$ Suppose that $\wedge^{\prime}$ has either one of the following two
Properties:

(1) $\swarrow r$ is $F_{p}$-bounded in the sense that there exists a set $N$ in $\Lambda^{\prime}$ such that
$N$ is a $\ovalbox{\tt\small REJECT}_{p}^{-}$-bounded subset of $\pi_{(X},$ $Y$).

(2) $\sqrt r$ is countable.
Then $f\in SC\mathcal{L}(X, Y)$ and $A^{\prime}$ converges to $f$ uniformly on the $S$-precompact subsets

$ J^{\cdot}\cdot p\iota$

of $X$, i.e., $\nu t^{\prime}\rightarrow f$.
Proof. Assume $\vee\phi^{\prime}$ has property (1). Let $\ovalbox{\tt\small REJECT}^{-}\in\vee 4^{\prime}$ be such that $\ovalbox{\tt\small REJECT}^{\prime}$ is a $F_{p}-$

bounded subset of $\ovalbox{\tt\small REJECT}^{-}(X, Y)$ . Then J21’ is a $F_{\sigma}$-bounded subset of $SC\mathcal{L}(X, Y)$ .
Thus $\ovalbox{\tt\small REJECT}^{\prime}$ is equi-sequentially-continuous. Consider the direction $4A_{X}^{\prime}=\{\ovalbox{\tt\small REJECT}\cap N$:

$\mathcal{J}^{-}p$

$N\in\circ 4^{\prime}\}$ in $\ovalbox{\tt\small REJECT}^{\prime}$ Since $-4^{\prime}\rightarrow f$ and $\Lambda_{\ovalbox{\tt\small REJECT}^{\prime}}\nearrow$ is a subdirection of $-r$, we have
$\mathcal{J}p$ $F\iota po$

$A_{X}^{\nearrow}\rightarrow f$. Thus $f\in SC\mathcal{L}(X, Y)$ and $\mathfrak{X}\rightarrow$ Since $\ovalbox{\tt\small REJECT}\in-A^{\prime},$
$.\parallel\rightarrow$ is a subdirec-

tion of $\mathscr{M}_{X}$ . Thus $A^{\prime}\rightarrow f\mathcal{J}^{\cdot}\cdot p0$

Assume $\leftrightarrow 4^{\prime}$ has property (2). Then $\parallel^{\sim}$ is equivalent to a direction $X$ in
$SC\mathcal{L}(X, Y)$ such that $\mathscr{M}=\{M_{j}:j\in N\}$ with $ M_{1}\supseteq M_{2}\supseteq\cdots\supseteq M_{*}\supseteq\cdots$ . Let ( $f.$ :
$n\in N)$ be a sequence in $SC\mathcal{L}(X, Y)$ such that $f_{n}\in M_{n}$ for each natural number
$n$ in $N$. Since $\Lambda^{\prime}\rightarrow fFp$ we have $\rightarrow\ovalbox{\tt\small REJECT}_{\rightarrow f}^{\mathcal{F}p}$. Given any point $x$ in $X,$

$-\ovalbox{\tt\small REJECT}(x)\rightarrow f(x)\mathcal{J}y$

(Note: $-\ovalbox{\tt\small REJECT}(x)=\{M(x):M\in \mathscr{M}\}$ , where $M(x)=\{f(x):f\in M\}.$ ) Thus, given any point
$x$ in $X$, the sequence $(f,.(x):n\in N)$ is $\ovalbox{\tt\small REJECT}_{y}^{-}$-convergent to $f(x)$ . Given any point $x$

in $X_{1}$ the set $\{f_{n}(x):n\in N\}$ is $F_{y}$-bounded. Thus the set $\{f_{n}:n\in N\}$ is a Y-

bounded subset of $SC\mathcal{L}(X, Y)$ . Also, the sequence $(f_{n}:n\in N)$ is $\mathscr{F}_{p}$-convergent
to $f$. Consider the direction $\{\{f_{m}:m>n\}:n\in N\}$ associated with the sequence
$(f,.:n\in N)$ . This direction satisfies condition (1). Thus $f\in SC\mathcal{L}(X, Y)$ and the
sequence $(f_{n}:n\in N)$ is $F_{p0}$-convergent to $f$.



VECTOR TOPOLOGIES 37

Suppoee $\mathscr{M}^{\rightarrow}$ is not $\mathscr{F}_{epo}$-convergent to $f$. Then $\rightarrow\ovalbox{\tt\small REJECT}$ is not $\ovalbox{\tt\small REJECT}_{po}^{-}$-convergent to
$f$. There exists a $\ovalbox{\tt\small REJECT}_{p\emptyset}^{-}$-neighborhood $U$ of $f$ in $SC\mathcal{L}(X, Y)$ such that none of
the sets of $X$ is contained in $U$. Given any index $j$ in $N$, there exists a func-
tion $f_{j}$ in $M_{j}\backslash U$. Clearly, the sequence $(f_{n}:n\in N)$ so chosen is not $\mathscr{F}_{po}$-convergent

to $f$. This is a contradiction! We must have $\Lambda^{\prime}\rightarrow f.///\mathcal{J}^{-}\cdot p0$

As a corollary to Theorem 14, we have the following theorem.

Theorem 15. (Banach-Steinhaus Theorem for S-Barrelled Spaces) Let (X, $F_{l}$)

be an S-barrelled topological vector space over the real or complex field K. Let
$(Y, \mathscr{F}_{y})$ be a Hausdorff locally convex topological vector space over K. Let
$(F(X, Y),$ $F_{p}$) be the Hausdorff locally convex topological vector space, over $K$,

of all functions on $X$ into $Y$ with the topology of pointwise convergence. Let
$(SC\mathcal{L}(X, Y),$ $F_{p0}$) be the Hausdorff locally convex topological vector space, over
$K$, of all sequentially continuous linear transformations on $X$ into $Y$ with the
topology of S-precompact convergence. Let $(f_{n}:n\in N)$ be a sequence in $SC\mathcal{L}(X, Y)$ ,

and let $f$ be a function in $F(X, Y)$ . If $(f_{n}:n\in N)$ converges to $f$ pointwise $(F_{p}-$

convergence), then $f\in SC\mathcal{L}(X, Y)$ and $(f_{n}:n\in N)$ converges to $f$ uniformly on
$S$-precompact subsets of $X$ ($F_{po}$-convergence).
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