YOKOHAMA MATHEMATICAL JOURNAL VOL. 26, 1978

VECTOR TOPOLOGIES ON SPACES OF SEQUENTIALLY CONTINUOUS LINEAR TRANSFORMATIONS*

By

RAY F. SNIPES

(Received January 4, 1977)

Let (X, \mathscr{T}_x) and (Y, \mathscr{T}_y) be topological vector spaces over the real or complex field K. Let $\mathscr{SCL}(X, Y)$ be the set of all sequentially continuous linear transformations on X into Y. With addition of vectors and scalar multiplication defined pointwise, $\mathscr{SCL}(X, Y)$ is a linear subspace of the linear space $\mathscr{L}(X, Y)$ over K of all linear transformations on X into Y.

In this paper, we will consider: (1) a number of important vector topologies on $\mathscr{SCL}(X, Y)$; (2) bounded subsets of $\mathscr{SCL}(X, Y)$; (3) equi-sequentially-continuous sets of functions; and (4) uniformly equi-sequentially-continuous sets of functions. Our most important result will be the derivation of a form of the Banach-Steinhaus theorem valid for S-barrelled topological vector spaces ([9]).

Quite obviously, our entire development closely parallels the theory of vector topologies on spaces $\mathscr{CL}(X, Y)$ of continuous linear transformations, the theory of equicontinuous and uniformly equicontinuous sets of functions, and the derivation of the Banach-Steinhaus theorem for barrelled topological vector spaces (see [1], p. 216 and [6], pp. 79-87). There are, however, many known examples of linear transformations which are sequentially continuous but not continuous (see [5], p. 38). In fact, if a topological vector space (X, \mathscr{T}_x) over K is not C-sequential (see [8], p. 275), there exists a locally convex topological vector space (Y, \mathscr{T}_y) over K and a sequentially continuous linear transformation $f: X \to Y$ which is not continuous.

1. S-Topologies on SCL(X, Y)

In Theorem 1, we recall the well-known result that a sequentially continuous linear transformation is bounded on bounded sets. As an immediate consequence of this fact, we can state Theorem 2 on the existence of vector \mathscr{S} -topologies (topologies of uniform convergence on the sets S in \mathscr{S}) on the linear space $\mathscr{SCL}(X, Y)$ of sequentially continuous linear transformations.

^{*} Some of these results are contained in the author's Ph.D. thesis written at the University of Virginia under the direction of Professor E.J. McShane.

Theorem 1. Let (X, \mathcal{T}_x) and (Y, \mathcal{T}_y) be topological vector spaces over the real or complex field K. Let $f: X \rightarrow Y$ be a sequentially continuous linear transformation on X into Y. Then f is bounded on bounded subsets of X, i.e., if B is a bounded subset of X, the set f[B] is a bounded subset of Y.

Proof. Assume that B is a bounded subset of X. Let V be a neighborhood of the zero vector 0 in Y. There exists a balanced neighborhood W of 0 in Y such that $W \subseteq V$. Since f is linear and sequentially continuous, $f^{-1}[W]$ is a balanced sequential neighborhood of the zero vector 0 in X. Consequently $f^{-1}[W]$ is a bornivore. Thus $f^{-1}[W]$ absorbs B, i.e., there exists a real number λ where $\lambda > 0$ such that $\lambda B \subseteq f^{-1}[W]$. Thus, we have $f[\lambda B] = \lambda f[B] \subseteq W \subseteq V$. Clearly, f[B]is bounded.///

Theorem 2. (Vector S-Topologies on SCL(X, Y)) Let (X, \mathcal{T}_x) and (Y, \mathcal{T}_y) be topological vector spaces over the real or complex field K. Let SCL(X, Y)be the linear space over K of all sequentially continuous linear transformations on X into Y. Let $\mathcal S$ be an upward direction in X (a non-empty collection of nonempty subsets of X upwardly directed by set inclusion), composed of \mathcal{T}_x -bounded subsets of X. Let \mathcal{T} be the S-topology on SCL(X, Y), i.e., let \mathcal{T} be the relative topology on SCL(X, Y) induced by the S-topology on the linear space $\mathcal{F}(X, Y)$, over K, of all functions on X into Y. Then $(\mathcal{SCL}(X, Y), \mathcal{T})$ is a topological vector space over K. If \mathscr{M} is a local base for \mathscr{T}_{y} , a local base for \mathscr{T} is $\{N(S, M) \cap \mathscr{SCL}(X, Y) | S \in \mathscr{S} \text{ and } M \in \mathscr{M}\} \text{ where } N(S, M) = \{f \in \mathscr{F}(X, Y) | f[S] \subseteq M\}.$ If (Y, \mathscr{T}_{y}) is a locally convex topological vector space over K, the vector topology \mathscr{T}_{y} being generated by the non-empty family of semi-norms \mathcal{P} , then $(\mathcal{SCL}(X, Y), \mathcal{T})$ is a locally convex topological vector space over K with the vector topology ${\mathscr T}$ generated by the non-empty family of semi-norms $\{P_{S,p}: S \in \mathcal{S} \text{ and } p \in \mathcal{P}\}$ where $P_{S,p}: \mathscr{SCL}(X, Y) \rightarrow R$ is defined by the correspondence $P_{S,p}(f) = \sup_{x \in \mathcal{F}} (p \circ f)(x) =$ $\sup_{x} p(f(x))$ for all f in SCL(X, Y). If \mathcal{P} is filtrant (or directed), so is $\{P_{S,p}:$ $\tilde{S} \in \mathscr{S}$ and $p \in \mathscr{P}$.

Proof. Use Theorem 1 and a theorem given in the book by H. H. Schaefer ([6], Theorem (3.1), p. 79).///

Theorem 3. Let (X, \mathcal{T}_x) and (Y, \mathcal{T}_y) be topological vector spaces over the real or complex field K. Let \mathcal{S} be an upward direction in X, composed of \mathcal{T}_x -bounded subsets of X. Let $(\mathcal{SCL}(X, Y), \mathcal{T})$ be the topological vector space over K of all sequentially continuous linear transformations on X into Y with the \mathcal{S} -topology. If (Y, \mathcal{T}_y) is Hausdorff, and if $\bigcup \mathcal{S}$ is sequentially total in X, i.e., if

the linear hull $[\bigcup \mathcal{S}]$ of $\bigcup \mathcal{S}$ is sequentially dense in X, then $(\mathcal{SCL}(X, Y), \mathcal{T})$ is Hausdorff.

Proof. Let $A = \bigcup \mathcal{S} = \bigcup \{S: S \in \mathcal{S}\}$. Let $f_0 \in \mathcal{SCL}(X, Y)$ such that $f_0 \neq 0$. Since $[\overline{A}]^s = X$, there exists a point x_0 in A or x_0 in S_0 where $S_0 \in \mathcal{S}$ such that $f_0(x_0) \neq 0$. Since (Y, \mathcal{T}_y) is Hausdorff, there exists a \mathcal{T}_y -neighborhood M_0 of 0 in Y such that $f_0(x_0) \notin M_0$. Clearly, $f_0 \notin N(S_0, M_0) \cap \mathcal{SCL}(X, Y)$. Thus the topological vector space $(\mathcal{SCL}(X, Y), \mathcal{T})$ is Hausdorff.///

We want to list those vector \mathscr{S} -topologies on $\mathscr{SCL}(X, Y)$ which are especially important. But before we can do this, we need several definitions.

Let (X, \mathscr{T}) be a topological space, and let $(X, \overline{\cdot}^{*})$ be the sequential closure space generated by (X, \mathscr{T}) . See [7], p. 95. Given a set $A \subseteq X$, the sequential interior of A is the set $A^{\textcircled{B}} = X \setminus (\overline{X \setminus A})^{*}$. Let B be a subset of X. Then the set B is said to be S-compact or $\overline{\cdot^{*}}$ -compact if and only if every sequential interior cover of B has a finite subcover, i.e., if and only if: given any family of subsets of X, $\{G_i: i \in I\}$, such that $B \subseteq \bigcup_{i \in I} G_{i}^{\textcircled{B}}$; there exists a finite set of indices $\{i_1, \dots, i_n\}$, where $\{i_1, \dots, i_n\} \subseteq I$, such that $B \subseteq \bigcup_{j=1}^{n} G_{i_j}$. Every finite subset of X is S-compact. As another example, every convergent sequence together with its limit is Scompact, i.e., if $(x_n: n \in N)$ is a sequence in X, if $a \in X$, and if $\lim_{n \to +\infty} x_n = a$; then the set $\{a\} \cup \{x_n: n \in N\}$ is S-compact.

Let (X, \mathscr{T}) be a topological vector space over the real or complex field K. Let B be a subset of X. Then the set B is said to be sequentially totally bounded (S-totally bounded) or sequentially precompact (S-precompact) if and only if: given any sequential neighborhood N of the zero vector 0 in X, there exists a finite subset B_0 of X such that $B \subseteq B_0 + N$.

The following theorem gives the relationships between finite, S-compact, S-precompact, compact, precompact, and bounded sets.

Theorem 4. Let (X, \mathcal{T}) be a topological vector space over the real or complex field K. Let B be a subset of X. Then for the set B, the following implications hold:

 $\begin{array}{cccc} B \ is \ finite. \Rightarrow B \ is \ S\text{-compact.} \Rightarrow B \ is \ S\text{-precompact.} \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$

Proof. First, we will show that if B is S-compact, then B is compact.

Assume that B is S-compact. Let $\{G_i: i \in I\}$ be an open cover for B. Then $B \subseteq \bigcup_{i \in I} G_i$. Since $G_i = G_i^{\textcircled{0}} = G_i^{\textcircled{0}}$, we have $B \subseteq \bigcup_{i \in I} G_i^{\textcircled{0}}$. Since B is S-compact, there exists a finite set of indices $\{i_1, \dots, i_n\} \subseteq I$ such that $B \subseteq \bigcup_{j=1}^n G_{ij}$. Clearly, B is compact.

Next, we will prove that if B is S-compact, then B is S-precompact. Assume that B is S-compact. Let N be a sequential neighborhood of 0 in X. If $x \in X$, then x+N is a sequential neighborhood of x. Thus, $x \in (x+N)^{\textcircled{0}}$. Consequently, $B \subseteq \bigcup_{x \in B} (x+N)^{\textcircled{0}}$. Since B is S-compact, there exists a finite set of points $\{x_1, \dots, x_n\}$ in B so that $B \subseteq \bigcup_{j=1}^{n} (x_j+N)$. Thus $B \subseteq B_0 + N$ where $B_0 = \{x_1, \dots, x_n\} \subseteq B \subseteq X$. Clearly, B is S-precompact.

The remaining implications obviously hold.///

Now we can list the important vector S-topologies on $\mathcal{SCL}(X, Y)$. They are the following:

(1) \mathscr{T}_{o} , the topology of pointwise convergence or the topology of simple convergence or the weak topology, which is the \mathscr{S} -topology on $\mathscr{SCL}(X, Y)$ when \mathscr{S} is the collection of all finite (non-empty) subsets of X.

(2) \mathscr{T}_{sc} , the topology of S-compact convergence or the topology of uniform convergence on S-compact subsets of X, which is the S-topology on $\mathscr{SCL}(X, Y)$ when \mathscr{S} is the collection of all S-compact (non-empty) subsets of X.

(3) \mathscr{T}_{o} , the topology of compact convergence or the topology of uniform convergence on compact subsets of X, which is the \mathscr{S} -topology on $\mathscr{SCL}(X, Y)$ when \mathscr{S} is the collection of all compact (non-empty) subsets of X.

(4) \mathscr{T}_{opc} , the topology of S-precompact convergence or the topology of uniform convergence on S-precompact subsets of X, which is the S-topology on $\mathscr{SCL}(X, Y)$ when S is the collection of all S-precompact (non-empty) subsets of X.

(5) \mathscr{T}_{pc} , the topology of precompact convergence or the topology of uniform convergence on precompact subsets of X, which is the \mathscr{S} -topology on $\mathscr{SCL}(X, Y)$ when \mathscr{S} is the collection of all precompact (non-empty) subsets of X.

(6) \mathscr{T}_b , the topology of bounded convergence or the topology of uniform convergence on bounded subsets of X or the strong topology, which is the \mathscr{S} -topology on $\mathscr{SCL}(X, Y)$ when \mathscr{S} is the collection of all bounded (non-empty) subsets of X.

From Theorem 4, it is clear that these six topologies on $\mathscr{SCL}(X, Y)$ are related in the following manner:

30

$$\begin{aligned} \mathcal{T}_{o} \subseteq \mathcal{T}_{so} \subseteq \mathcal{T}_{spc} \\ & \text{In} & \text{In} \\ & \mathcal{T}_{o} \subseteq \mathcal{T}_{po} \subseteq \mathcal{T}_{b} . \end{aligned}$$

In the next theorem, we give a number of different characterizations of bounded subsets of $\mathscr{SCL}(X, Y)$.

Theorem 5. (S-Bounded Subsets of (SCL(X, Y), T)) Let (X, \mathcal{T}_x) and (Y, \mathcal{T}_y) be topological vector spaces over the real or complex field K. Let S be an upward direction in X, composed of \mathcal{T}_x -bounded subsets of X. Let (SCL(X, Y), T) be the topological vector space over K of all sequentially continuous linear transformations on X into Y with the S-topology. Let \mathcal{M} be a local base for \mathcal{T}_y . Let $\mathcal{K} \subseteq SCL(X, Y)$. Then \mathcal{K} is bounded for the S-topology or \mathcal{K} is a \mathcal{T} bounded subset of SCL(X, Y) or \mathcal{K} is S-bounded if and only if any of the following equivalent assertions hold:

(1) Given any set M in \mathscr{M} and given any set S in \mathscr{S} , there exists a real number λ where $\lambda > 0$ such that: $\lambda \mathscr{K} \subseteq N(S, M) \cap \mathscr{SCL}(X, Y)$.

(2) Given any set M in \mathscr{M} and given any set S in \mathscr{S} , there exists a real number λ where $\lambda > 0$ such that: $f \in \mathscr{K} \rightarrow \lambda f[S] \subseteq M$ (or $f[\lambda S] \subseteq M$; or $\lambda S \subseteq f^{-1}[M]$).

(3) Given any set S in S, the set $\bigcup_{f \in \mathcal{X}} f[S]$ is \mathcal{T}_{v} -bounded in Y.

(4) Given any set M in \mathscr{M} and given any set S in \mathscr{S} , there exists a real number λ where $\lambda > 0$ such that: $S \subseteq \lambda \bigcap_{i=1}^{\infty} f^{-1}[M]$.

(5) Given any set M in \mathcal{M} and given any set S in \mathcal{S} , the set $\bigcap_{f \in \mathcal{F}} f^{-1}[M]$ absorbs S.

Proof. The above statements follow directly from the definition of a bounded set in a topological vector space. To obtain (5), one first considers the special case where \mathcal{M} is a local base of balanced neighborhoods of the zero vector 0 in Y.///

Let (X, \mathcal{T}) be a topological vector space over K. A subset B of X is a sequential barrel if B is sequentially closed, convex, balanced, and absorbing (see [9]).

Theorem 6. Let (X, \mathcal{T}_x) be a topological vector space over the field of real or complex numbers K, and let (Y, \mathcal{T}_y) be a locally convex topological vector space over K. Let $(\mathscr{SCL}(X, Y), \mathscr{T}_o)$ be the locally convex topological vector space over K of all sequentially continuous linear transformations on X into Y with the topology of pointwise convergence \mathcal{T}_o . Let $\mathscr{K} \subseteq \mathscr{SCL}(X, Y)$. Then \mathscr{K} is \mathcal{T}_o bounded if and only if given any closed, convex, balanced neighborhood V of the zero vector 0 in Y; the set $\bigcap_{f \in \mathscr{K}} f^{-1}[V]$ is a sequential barrel in X.

Proof. This result follows directly from (5) of Theorem 5.///

2. Equi-Sequentially-Continuous Sets of Functions

Let (X, \mathscr{T}_x) be a topological space. Let (Y, \mathscr{T}_y) be a topological vector space, over the real or complex field K, with associated uniform structure \mathscr{V} and with local base \mathscr{M} . Let $\mathscr{F}(X, Y)$ be the linear space, over K, of all functions on Xinto Y. Let $\mathscr{K} \subseteq \mathscr{F}(X, Y)$, and let $x_0 \in X$. To say that \mathscr{K} is *equi-sequentially*continuous at the point x_0 means that either of the following equivalent statements holds:

(1) Given any entourage V in \mathscr{V} , there exists a sequential neighborhood $N(x_0)$ of the point x_0 in X such that: $f \in \mathscr{K}$ and $x \in N(x_0) \Rightarrow (f(x), f(x_0)) \in V$.

(2) Given any set M in \mathcal{M} , there exists a sequential neighborhood $N(x_0)$ of the point x_0 in X such that: $f \in \mathcal{K}$ and $x \in N(x_0) \Rightarrow f(x) - f(x_0) \in M$.

To say that \mathscr{K} is equi-sequentially-continuous means that \mathscr{K} is equi-sequentiallycontinuous at every point of X.

Let (X, \mathscr{T}_x) and (Y, \mathscr{T}_y) be topological vector spaces over the real or complex field K. Let \mathscr{N}_s be a local base of \mathscr{T}_x -sequential neighborhoods of the zero vector 0 in X; and let \mathscr{M} be a local base of \mathscr{T}_y -neighborhoods of the zero vector 0 in Y. Let $\mathscr{F}(X, Y)$ be the linear space, over K, of all functions on X into Y. Let $\mathscr{K} \subseteq \mathscr{F}(X, Y)$. To say that \mathscr{K} is uniformly equi-sequentially-continuous means that given any set M in \mathscr{M} , there exists a set N in \mathscr{N}_s such that:

 $f \in \mathscr{K}$ and $x_1, x_2 \in X$ and $x_1 - x_2 \in N \Longrightarrow f(x_1) - f(x_2) \in M$.

As a consequence of these definitions, we obtain the following theorem.

Theorem 7. Let (X, \mathcal{T}_x) and (Y, \mathcal{T}_y) be topological vector spaces over the real or complex field K. Let $\mathcal{L}(X, Y)$ be the linear space, over K, of all linear transformations on X into Y. Let $\mathcal{K} \subseteq \mathcal{L}(X, Y)$. Then the following statements are equivalent:

(1) \mathcal{K} is equi-sequentially-continuous.

(2) \mathcal{K} is equi-sequentially-continuous at the zero vector 0 in X.

(3) \mathcal{K} is equi-sequentially-continuous at some point x_0 in X.

(4) *X* is uniformly equi-sequentially-continuous.

(5) Given any neighborhood M of 0 in Y, there exists a sequential neighborhood N of 0 in X such that: $\bigcup f[N] \subseteq M$.

(6) Given any neighborhood M of 0 in Y, the set $\bigcap_{f \in \mathcal{X}} f^{-1}[M]$ is a sequential neighborhood of 0 in X.

Theorem 8. Let (X, \mathcal{T}_s) be a topological vector space over the real or complex

field K, and let (Y, \mathcal{T}_{y}) be a Hausdorff topological vector space over K. Let $(\mathcal{F}(X, Y), \mathcal{T}_{p})$ be the Hausdorff topological vector space, over K, of all functions on X into Y with the topology of pointwise convergence. Let $\mathcal{L}(X, Y)$ be the linear space, over K, of all linear transformations on X into Y. Let $\mathcal{K} \subseteq \mathcal{L}(X, Y)$. Then, if \mathcal{K} is equi-sequentially-continuous; $\mathcal{\overline{K}}^{\mathcal{T}p}$, the pointwise closure of \mathcal{K} in $\mathcal{F}(X, Y)$, is an equi-sequentially-continuous subset of $\mathcal{L}(X, Y)$.

Proof. Since $\mathscr{K} \subseteq \mathscr{L}(X, Y)$, we have $\overline{\mathscr{K}}^{\mathscr{F}_p} \subseteq \overline{\mathscr{L}}(X, Y)^{\mathscr{F}_p} = \mathscr{L}(X, Y)$ using the fact that $\mathscr{L}(X, Y)$ is a \mathscr{T}_p -closed subset of $\mathscr{F}(X, Y)$. We must show that if \mathscr{K} is equi-sequentially-continuous, then $\overline{\mathscr{K}}^{\mathscr{F}_p}$ is equi-sequentially-continuous. Assume that \mathscr{K} is equi-sequentially-continuous. Let M be a \mathscr{T}_p -neighborhood of 0 in Y. There exists a balanced \mathscr{T}_p -neighborhood W of 0 in Y such that $W + W \subseteq M$. Since \mathscr{K} is equi-sequentially-continuous, there exists a \mathscr{T}_x -sequential neighborhood N of 0 in X such that $\bigcup_{f \in \mathscr{K}} f[N] \subseteq W$. We must show that $\bigcup_{f \in \mathscr{K}} f[N] \subseteq M$. Let $f \in \overline{\mathscr{K}}^{\mathscr{F}_p}$, and let $x_0 \in N$. Consider the set $N(\{x_0\}, W)$ which is a \mathscr{T}_p -neighborhood of the zero vector 0 in $\mathscr{F}(X, Y)$. Then $f + N(\{x_0\}, W)$ is a \mathscr{T}_p -neighborhood of f. There exists a function g in \mathscr{K} such that $g \in f + N(\{x_0\}, W)$ hence $g(x_0) - f(x_0) \in W$. Since W is balanced, $f(x_0) - g(x_0) \in W$ hence $f(x_0) \in g(x_0) + W \subseteq W + W \subseteq M$. Clearly, $\bigcup_{f \in \mathscr{K}} f[N] \subseteq M$. This proves that $\overline{\mathscr{K}}^{\mathscr{F}_p}$ is equi-sequentially-continuous.///

Theorem 9. Let (X, \mathcal{T}_x) and (Y, \mathcal{T}_y) be topological vector spaces over the real or complex field K. Let $\mathscr{SCL}(X, Y)$ be the linear space, over K, of all sequentially continuous linear transformations on X into Y. Let $\mathscr{K} \subseteq \mathscr{SCL}(X, Y)$, such that \mathscr{K} is equi-sequentially-continuous. If \mathcal{T}_o is the topology of pointwise convergence on $\mathscr{SCL}(X, Y)$, \mathcal{T}_{so} is the topology of S-compact convergence on $\mathscr{SCL}(X, Y)$, then the corresponding relative topologies on \mathscr{K} are the same, i.e., $\mathcal{T}_o | \mathscr{K} = \mathcal{T}_{so} | \mathscr{K} = \mathcal{T}_{spc} | \mathscr{K}$.

Proof. Clearly, $\mathcal{T}_{\sigma}|\mathcal{K}\subseteq \mathcal{T}_{so}|\mathcal{K}\subseteq \mathcal{T}_{spc}|\mathcal{K}$. We must prove that $\mathcal{T}_{spc}|\mathcal{K}\subseteq \mathcal{T}_{spc}|\mathcal{K}\subseteq \mathcal{T}_{spc}|\mathcal{K}$. Let \mathscr{M} be a local base for \mathcal{T}_{y} . Then a local base for $\mathcal{T}_{spc}|\mathcal{K}$ is $\{N(B, M) \cap \mathcal{K} | B \subseteq X, B \text{ is } S\text{-precompact, and } M \in \mathscr{M}\}$. A local base for $\mathcal{T}_{\sigma}|\mathcal{K}$ is $\{N(\{x_1, \dots, x_n\}, M) \cap \mathcal{K} | \{x_1, \dots, x_n\} \subseteq X, \{x_1, \dots, x_n\} \text{ is finite, and } M \in \mathscr{M}\}$. Consider the set $N(B, M) \cap \mathcal{K}$ where B is an S-precompact subset of X and where $M \in \mathscr{M}$. Let $W \in \mathscr{M}$ such that $W + W \subseteq M$. Since \mathscr{K} is equi-sequentially-continuous, there exists a \mathcal{T}_x -sequential neighborhood N of 0 in X such that $B \subseteq \{x_1, \dots, x_n\} + N$. We claim that $N(\{x_1, \dots, x_n\}, W) \cap \mathcal{K} \subseteq N(B, M) \cap \mathscr{K}$. Indeed, if we have $f \in \mathbb{K}$.

 $N(\{x_1, \dots, x_n\}, W) \cap \mathcal{K}, \text{ then } f \in \mathcal{K} \text{ and } f[B] \subseteq f[\{x_1, \dots, x_n\} + N] = f[\{x_1, \dots, x_n\}] + f[N] \subseteq W + W \subseteq M \text{ hence } f \in N(B, M) \cap \mathcal{K}. \text{ This proves that } \mathcal{T}_{spo}|\mathcal{K} \subseteq \mathcal{T}_{o}|\mathcal{K}.///$

Theorem 10. Let (X, \mathcal{T}_x) and (Y, \mathcal{T}_y) be topological vector spaces over the real or complex field K. Let \mathscr{S} be an upward direction in X, composed of \mathcal{T}_x -bounded subsets of X. Let $(\mathscr{SCL}(X, Y), \mathscr{T})$ be the topological vector space over K of all sequentially continuous linear transformations on X into Y with the \mathscr{S} -topology. Let $\mathscr{K}\subseteq \mathscr{SCL}(X, Y)$. If \mathscr{K} is equi-sequentially-continuous, then \mathscr{K} is \mathscr{T} -bounded, i.e., \mathscr{K} is bounded for the \mathscr{S} -topology.

Proof. Let \mathscr{M} be a local base for \mathscr{T}_{v} consisting of balanced neighborhoods of 0 in Y. Assume that \mathscr{K} is equi-sequentially-continuous. Let $M \in \mathscr{M}$. Then $\bigcap_{f \in \mathscr{K}} f^{-1}[M]$ is a balanced sequential neighborhood of 0 in X. Consequently, $\bigcap_{f \in \mathscr{K}} f^{-1}[M]$ is a bornivore, i.e., $\bigcap_{f \in \mathscr{K}} f^{-1}[M]$ absorbs every bounded subset of X. In particular, $\bigcap_{f \in \mathscr{K}} f^{-1}[M]$ absorbs every set S in \mathscr{S} . By (5) of Theorem 5, \mathscr{K} is \mathscr{T} bounded.///

3. Banach-Steinhaus Theorem for S-Barrelled Topological Vector Spaces

A topological vector space (X, \mathcal{T}) over K is S-barrelled if every sequential barrel in X is a sequential neighborhood of the zero vector 0 in X. A number of examples of spaces which are S-barrelled but not barrelled are given in [9].

Perhaps the most important of these examples is the sequence space $l^1 = \{(\alpha_n): \sum_{n=1}^{+\infty} |\alpha_n| < +\infty\}$ with the weak topology $\sigma(l^1, l^\infty)$. Incidently, $(l^1, \sigma(l^1, l^\infty))$ is not *C*-sequential. This example is important because a number of different classical Banach spaces have been found to be isomorphic to l^1 with the norm topology. See [4], p. 41, and [2], p. 182. As an example, (l^1, \mathcal{T}) is isomorphic (see [3], pp. 247-248) to the "natural space" of analytic functions $(H_1(D), \mathcal{T}_a)$. Here $H_1(D)$ is the linear space of analytic functions f(z) on the unit disk $D=\{z: |z|<1\}$ such that

$$\|f\|^1 = \int \int_D |f(x+iy)| dx dy < +\infty$$

and \mathscr{T}_a is the topology generated by the norm $\|\cdot\|^1$. Thus $H_1(D)$ with the weak topology $\sigma(H_1(D), H_1(D)')$ is S-barrelled but not barrelled.

We will now consider equi-sequentially-continuous and bounded sets of sequentially continuous linear transformations on S-barrelled topological vector spaces. Finally, we will derive a form of the Banach-Steinhaus theorem valid for S-barrelled topological vector spaces.

34

Theorem 11. Let (X, \mathscr{T}_x) be an S-barrelled topological vector space over the real or complex field K. Let (Y, \mathscr{T}_y) be a locally convex topological vector space over K. Let $(\mathscr{SCL}(X, Y), \mathscr{T}_o)$ be the locally convex topological vector space, over K, of all sequentially continuous linear transformations on X into Y with the topology of pointwise convergence \mathscr{T}_o . Let $\mathscr{K} \subseteq \mathscr{SCL}(X, Y)$. If \mathscr{K} is \mathscr{T}_o -bounded, i.e., if \mathscr{K} is simply bounded, then \mathscr{K} is equi-sequentially-continuous.

Proof. Let \mathscr{M} be a local base for \mathscr{T}_{v} composed of closed, convex, balanced \mathscr{T}_{v} -neighborhoods of the zero vector 0 in Y. Let $M \in \mathscr{M}$. Then $\bigcap_{f \in \mathscr{K}} f^{-1}[M]$ is convex, balanced, and sequentially closed. Since \mathscr{K} is \mathscr{T}_{σ} -bounded, the set $\bigcap_{f \in \mathscr{K}} f^{-1}[M]$ is absorbing (by (5) of Theorem 5). Thus $\bigcap_{f \in \mathscr{K}} f^{-1}[M]$ is a sequential barrel in X. Since (X, \mathscr{T}_{x}) is S-barrelled, $\bigcap_{f \in \mathscr{K}} f^{-1}[M]$ is a \mathscr{T}_{x} -sequential neighborhood of 0 in X. By Theorem 7, \mathscr{K} is equi-sequentially-continuous.///

As a corollary to Theorem 11, we have the following theorem.

Theorem 12. Let (X, \mathcal{T}_x) be an S-barrelled topological vector space over the real or complex field K. Let (Y, \mathcal{T}_y) be a locally convex topological vector space over K. Let $\mathscr{SCL}(X, Y)$ be the linear space, over K, of all sequentially continuous linear transformations on X into Y. Let \mathcal{T}_o be the (locally convex vector) topology of pointwise convergence on $\mathscr{SCL}(X, Y)$; and let \mathcal{T}_b be the (locally convex vector) topology of bounded convergence on $\mathscr{SCL}(X, Y)$. Let $\mathscr{K}\subseteq \mathscr{SCL}(X, Y)$. Then the following statements are equivalent:

(1) \mathscr{K} is equi-sequentially-continuous.

(2) \mathcal{K} is \mathcal{T}_{σ} -bounded, i.e., \mathcal{K} is simply (weakly) bounded.

(3) \mathcal{K} is \mathcal{T}_b -bounded, i.e., \mathcal{K} is strongly bounded.

Theorem 13. Let (X, \mathscr{T}_x) be a topological vector space over the real or complex field K, and let (Y, \mathscr{T}_y) be a Hausdorff topological vector space over K. Let $(\mathscr{F}(X, Y), \mathscr{T}_p)$ be the Hausdorff topological vector space, over K, of all functions on X into Y with the topology of pointwise convergence. Let $(\mathscr{SCL}(X, Y), \mathscr{T}_{spc})$ be the Hausdorff topological vector space, over K, of all sequentially continuous linear transformations on X into Y with the topology of S-precompact convergence. Let \mathscr{K} be an equi-sequentially-continuous subset of $\mathscr{SCL}(X, Y)$. Let \mathscr{N} be a direction (filter base) in \mathscr{K} , and let f be a function in $\mathscr{F}(X, Y)$. If \mathscr{N} converges to f pointwise, i.e., if $\mathscr{N} \xrightarrow{\mathscr{T}} f$; then $f \in \mathscr{SCL}(X, Y)$ and \mathscr{N} converges to f uniformly on the S-precompact subsets of X, i.e., $\mathscr{N} \xrightarrow{\mathscr{T} spo} f$.

Proof. Since \mathscr{N} is a direction in \mathscr{K} and $\mathscr{N} \xrightarrow{\mathscr{F}_p} f$, we have $f \in \overline{\mathscr{K}}^{\mathscr{F}_p}$. Since

 \mathscr{K} is equi-sequentially-continuous, $\widetilde{\mathscr{K}}^{\mathscr{F}_p}$ is equi-sequentially-continuous and $\widetilde{\mathscr{K}}^{\mathscr{F}_p} \subseteq \mathscr{SCL}(X, Y)$. Thus we have $f \in \mathscr{SCL}(X, Y)$. Since $\mathscr{T}_{\mathfrak{o}} | \widetilde{\mathscr{K}}^{\mathscr{F}_p} = \mathscr{T}_{\mathfrak{o}po} | \widetilde{\mathscr{K}}^{\mathscr{F}_p}$, and since $\mathscr{N} \xrightarrow{\mathscr{F}_p} f$; we have $\mathscr{N} \xrightarrow{\mathscr{F}_p} f$.///

Theorem 14. (Banach-Steinhaus Theorem for S-Barrelled Spaces) Let $(X, \mathcal{F}_{\mathbf{z}})$ be an S-barrelled topological vector space over the real or complex field K. Let $(Y, \mathcal{F}_{\mathbf{y}})$ be a Hausdorff locally convex topological vector space over K. Let $(\mathcal{F}(X, Y), \mathcal{F}_{\mathbf{p}})$ be the Hausdorff locally convex topological vector space, over K, of all functions on X into Y with the topology of pointwise convergence. Let $(\mathcal{FCL}(X, Y), \mathcal{F}_{\mathbf{spc}})$ be the Hausdorff locally convex topological vector space, over K, of all sequentially continuous linear transformations on X into Y with the topology of S-precompact convergence. Let \mathcal{N} be a direction (filter base) in $\mathcal{FCL}(X, Y)$, and let f be a function in $\mathcal{F}(X, Y)$ such that \mathcal{N} converges to f pointwise, i.e., $\mathcal{N} \xrightarrow{\mathcal{F}_{\mathbf{p}}} f$. Suppose that \mathcal{N} has either one of the following two properties:

(1) \mathcal{N} is \mathcal{T}_p -bounded in the sense that there exists a set N in \mathcal{N} such that N is a \mathcal{T}_p -bounded subset of $\mathcal{F}(X, Y)$.

(2) \mathcal{N} is countable.

Then $f \in \mathscr{SCL}(X, Y)$ and \mathscr{N} converges to f uniformly on the S-precompact subsets of X, i.e., $\mathscr{N} \xrightarrow{\mathcal{F} \circ po} f$.

Proof. Assume \mathscr{N} has property (1). Let $\mathscr{K} \in \mathscr{N}$ be such that \mathscr{K} is a \mathscr{T}_{p} -bounded subset of $\mathscr{F}(X, Y)$. Then \mathscr{K} is a \mathscr{T}_{σ} -bounded subset of $\mathscr{SCL}(X, Y)$. Thus \mathscr{K} is equi-sequentially-continuous. Consider the direction $\mathscr{N}_{\mathscr{K}} = \{\mathscr{K} \cap N: N \in \mathscr{N}\}$ in \mathscr{K} . Since $\mathscr{N} \xrightarrow{\mathscr{T}_{p}} f$ and $\mathscr{N}_{\mathscr{K}}$ is a subdirection of \mathscr{N} , we have $\mathscr{N}_{\mathscr{K}} \xrightarrow{\mathscr{T}_{p}} f$. Thus $f \in \mathscr{SCL}(X, Y)$ and $\mathscr{N}_{\mathscr{K}} \xrightarrow{\mathscr{T}_{p}} f$. Since $\mathscr{K} \in \mathscr{N}, \mathscr{N}$ is a subdirection of $\mathscr{N}_{\mathscr{K}}$. Thus $\mathscr{N} \xrightarrow{\mathscr{T}_{p}} f$.

Assume \mathscr{N} has property (2). Then \mathscr{N} is equivalent to a direction \mathscr{M} in $\mathscr{SCL}(X, Y)$ such that $\mathscr{M}=\{M_j: j \in N\}$ with $M_1 \supseteq M_2 \supseteq \cdots \supseteq M_n \supseteq \cdots$. Let $(f_n: n \in N)$ be a sequence in $\mathscr{SCL}(X, Y)$ such that $f_n \in M_n$ for each natural number n in N. Since $\mathscr{N} \longrightarrow f$, we have $\mathscr{M} \longrightarrow f$. Given any point x in $X, \mathscr{M}(x) \longrightarrow f(x)$. (Note: $\mathscr{M}(x) = \{M(x): M \in \mathscr{M}\}$, where $M(x) = \{f(x): f \in M\}$.) Thus, given any point x in X, the sequence $(f_n(x): n \in N)$ is \mathscr{T}_y -convergent to f(x). Given any point x in X, the set $\{f_n(x): n \in N\}$ is \mathscr{T}_y -bounded. Thus the set $\{f_n: n \in N\}$ is a \mathscr{T}_g -convergent to f. Consider the direction $\{\{f_m: m > n\}: n \in N\}$ associated with the sequence $(f_n: n \in N)$. This direction satisfies condition (1). Thus $f \in \mathscr{SCL}(X, Y)$ and the sequence $(f_n: n \in N)$ is \mathscr{T}_{spo} -convergent to f.

36

Suppose \mathscr{N} is not \mathscr{T}_{spc} -convergent to f. Then \mathscr{M} is not \mathscr{T}_{spc} -convergent to f. There exists a \mathscr{T}_{spc} -neighborhood U of f in $\mathscr{SCL}(X, Y)$ such that none of the sets of \mathscr{M} is contained in U. Given any index j in N, there exists a function f_j in $M_j \setminus U$. Clearly, the sequence $(f_n: n \in N)$ so chosen is not \mathscr{T}_{spc} -convergent to f. This is a contradiction! We must have $\mathscr{N} \xrightarrow{\mathscr{T}_{spc}} f.///$

As a corollary to Theorem 14, we have the following theorem.

Theorem 15. (Banach-Steinhaus Theorem for S-Barrelled Spaces) Let (X, \mathcal{T}_x) be an S-barrelled topological vector space over the real or complex field K. Let (Y, \mathcal{T}_y) be a Hausdorff locally convex topological vector space over K. Let $(\mathcal{F}(X, Y), \mathcal{T}_p)$ be the Hausdorff locally convex topological vector space, over K, of all functions on X into Y with the topology of pointwise convergence. Let $(\mathcal{SCL}(X, Y), \mathcal{T}_{spc})$ be the Hausdorff locally convex topological vector space, over K, of all sequentially continuous linear transformations on X into Y with the topology of S-precompact convergence. Let $(f_n: n \in N)$ be a sequence in $\mathcal{SCL}(X, Y)$, and let f be a function in $\mathcal{F}(X, Y)$. If $(f_n: n \in N)$ converges to f pointwise $(\mathcal{T}_p$ convergence), then $f \in \mathcal{SCL}(X, Y)$ and $(f_n: n \in N)$ converges to f uniformly on S-precompact subsets of X (\mathcal{T}_{spc} -convergence).

References

- [1] J. Horváth: Topological Vector Spaces and Distributions. Addison-Wesley, Reading (Mass.), 1966.
- [2] D.R. Lewis and C. Stegall,: Banach spaces whose duals are isomorphic to l₁(Γ).
 J. Functional Analysis, 12 (1973), 177-187.
- [3] J. Lindenstrauss and A. Pelczyński: Contributions to the theory of classical Banach spaces. J. Functional Analysis, 8 (1971), 225-249.
- [4] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces. Lecture Notes in Mathematics, Vol. 338. Springer-Verlag, Berlin, 1973.
- [5] W. Rudin: Functional Analysis. McGraw-Hill, New York, 1973.
- [6] H. H. Schaefer: Topological Vector Spaces. MacMillan, New York, 1966.
- [7] R.F. Snipes: T-sequential topological spaces. Fund. Math., 77 (1972), 95-98.
- [8] R.F. Snipes: C-sequential and S-bornological topological vector spaces. Math. Ann., 202 (1973), 273-283.
- [9] R.F. Snipes: S-barrelled topological vector spaces. Canad. Math. Bull. to appear.

Department of Mathematics Bowling Green State University Bowling Green, Ohio 43403 U.S.A.