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Let (X, .7,) and (Y,.7,) be topological vector spaces over the real or complex
field K. Let ¥Z£(X,Y) be the set of all sequentially continuous linear trans-
formations on X into Y. With addition of vectors and scalar multiplication defined
pointwise, %< (X, Y) is a linear subspace of the linear space (X, Y) over K
of all linear transformations on X into Y.

In this paper, we will consider: (1) a number of important vector topologies
on FZ¥(X,Y); (2) bounded subsets of SZF(X, Y); (3) equi-sequentially-con-
tinuous sets of functions; and (4) uniformly equi-sequentially-continuous sets of
functions. Our most important result will be the derivation of a form of the
Banach-Steinhaus theorem valid for S-barrelled topological vector spaces ([9).

Quite obviously, our entire development closely parallels the theory of vector
topologies on spaces €. (X, Y) of continuous linear transformations, the theory
of equicontinuous and uniformly equicontinuous sets of functions, and the deriva-
tion of the Banach-Steinhaus theorem for barrelled topological vector spaces (see
[1J, p. 216 and [6], pp. 79-87). There are, however, many known examples of
linear transformations which are sequentially continuous but not continuous (see
[5], p. 38). In fact, if a topological vector space (X, 7,) over K is not C-sequential
(see [8], p. 275), there exists a locally convex topological vector space (Y, 7,) over K
and a sequentially continuous linear transformation f: X— Y which is not continuous.

1. STopologies on FZ.¥ (X, Y)

In [Theorem 1, we recall the well-known result that a sequentially continuous
linear transformation is bounded on bounded sets. As an immediate consequence
of this fact, we can state on the existence of vector S-topologies
(topologies of uniform convergence on the sets S in &) on the linear space
L (X, Y) of sequentially continuous linear transformations.

* Some of these results are contained in the author’s Ph.D. thesis written at the
University of Virginia under the direction of Professor E.J. McShane.




28 RAY F. SNIPES

Theorem 1. Let (X, 7) and (Y, 7,) be topological vector spaces over the
real or complex field K. Let f: X—Y be a sequentially continuous linear trans-
SJormation on X into Y. Then f is bounded on bounded subsets of X, i.e., if B
is a bounded subset of X, the set f[B] is a bounded subset of Y.

Proof. Assume that B is a bounded subset of X. Let V be a neighborhood
of the zero vector 0 in Y. There exists a balanced neighborhood W of 0 in Y
such that Wc<V. Since f is linear and sequentially continuous, f[W] is a
balanced sequential neighborhood of the zero vector 0 in X. Consequently f'[W]
is a bornivore. Thus f~[W] absorbs B, i.e., there exists a real number 2 where
A2>0 such that AB<f '[W]. Thus, we have fIAB]=if[B]lcs W< V. Clearly, f[B]
is bounded.///

Theorem 2. (Vector &-Topologies on S (X,Y)) Let (X, 7,) and (Y, T)
be topological vector spaces over the real or complex field K. Let SEL(X,Y)
be the linear space over K of all sequentially continuous linear transformations
on X into Y. Let & be an upward direction in X (a non-empty collection of non-
empty subsets of X upwardly divected by set inclusion), composed of 7 ,-bounded
subsets of X. Let 7 be the & -topology on FZ€F(X,Y), i.e., let T be the rela-
tive topology on FSEL(X,Y) induced by the F-topology on the linear space
F(X,Y), over K, of all functions on X into Y. Then (FZL(X,Y), 7)) is a
topological vector space over K. If A is a local base for .7, a local base for 7 is
(NS, MyNFZA(X, Y)Se F and Me -} where N(S, M)——{fe F(X, MHIfIS1s M}.
If (Y, 7, is a locally convex topological vector space over K, the vector topology 7,
being generated by the non-empty family of semi-norms &, then (¥ (X, Y), 7))
is a locally convex topological vector space over K with the vector topology 7
generated by the non-empty family of semi-norms {Ps ,. Se€.* and p € &} where
Ps,,. S (X, Y)>R is defined by the correspondence Ps (f)= sup (Pef ) (@)=
supp(f(w)) for all f in FSEZA(X,Y). If &is filtrant (or dzrected), so is {Ps,p:
S € o and p € &F}.

Proof. Use and a theorem given in the book by H.H. Schaefer
6], Theorem (3.1), p. 79).///

Theorem 3. Let (X, 7,) and (Y, 7,) be topological vector spaces over the
real or complex field K. Let ¥ be an upward direction in X, composed of 7 ,-
bounded subsets of X. Let (¥YZL(X,Y),9") be the topological vector space over
K of all sequentially continuous linear transformations on X into Y with the -
topology. If (Y, 7,) is Hausdorff, and if U & is sequentially total in X, i.e., if
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the linear hull [U ) of U S is sequentially dense in X, then (¥ (X, Y),7)
ts Hausdorff.

Proof. Let A=U =U(S: Se5}. Let foe FZ<L(X,Y) such that f,+0.
Since [A]’=X, there exists a point «, in A or z, in S, where S, €5 such that
fo(o)#0. Since (Y, .7,) is Hausdorff, there exists a -7,-neighborhood M, of 0 in
Y such that fy(zo) € M,. Clearly, f, ¢ NSy, Mo)NFSZZ(X,Y). Thus the topo-
logical vector space (¥ #(X, Y),7") is Hausdorff.///

We want to list those vector .~*-topologies on &% (X, Y) which are especially
important. But before we can do this, we need several definitions.

Let (X,.77) be a topological space, and let (X, - ") be the sequential closure
space generated by (X, .77). See [7], p. 95. Given a set AcX, the sequential
interior of A is the set A®=X\(X\A)’. Let B be a subset of X. Then the set
B is said to be S-compact or = *-compact if and only if every sequential interior
cover of B has a finite subcover, i.e., if and only if: given any family of subsets
of X, {G::iel}, such that BcU G®: there exists a finite set of indices {7, - -, a},
where {4, ---, #,} <1, such thatzeég Jl:‘JlG,-J.. Every finite subset of X is S-compact.

As another example, every convergent sequence together with its limit is S-
compact, i.e., if (x.: #€N) is a sequence in X, if ¢€ X, and if lim x,=a; then
the set {a}U{x,: € N} is S-compact. e

Let (X, .27) be a topological vector space over the real or complex field K.
Let B be a subset of X. Then the set B is said to be sequentially totally bounded
(S-totally bounded) or sequentially precompact (S-precompact) if and only if: given
any sequential neighborhood N of the zero vector 0 in X, there exists a finite
subset B, of X such that Bc B,+N.

The following theorem gives the relationships between finite, S-compact, S-

precompact, compact, precompact, and bounded sets.

Theorem 4. Let (X, 97) be a topological vector space over the real or complex
field K. Let B be a subset of X. Then for the set B, the following implications
hold:

B is finite. = B is S-compact. — B is S-precompact.

l I
B is compact. = B is precompact.
l
B is bounded.

Proof. First, we will show that if B is S-compact, then B is compact.
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Assume that B is S-compact. Let {G;:iel} be an open cover for B. Then
B;ilEJIG.-. Since G;=GP=G), we have BCiLeJIG Since B is S-compact, there
exists a finite set of indices {7, ---,#,J<7I such that BCU G;;. Clearly, B is
compact. '
Next, we will prove that if B is S-compact, then B is S-precompact. Assume
that B is S-compact. Let N be a sequential neighborhood of 0 in X. If z€ X,
then z+N is a sequential neighborhood of x. Thus, %€ (z+N)®. Consequently,
Bgc U (x+N)®, Slnce B is S-compact, there exists a finite set of points {z;, - - -, a}
in B so that BCU(w,+N) Thus B<By+N where By={x,, +:-, .} B< X.
Clearly, B is S- precompact :

The remaining implications obviously hold.///

Now we can list the important vector “topologies on FZ£(X, Y). They
are the following:

(1) ., the topology of pointwise convergence or the topology of simple
convergence or the weak topology, which is the “-topology on FZ.#(X, Y) when
& is the collection of all finite (non-empty) subsets of X.

(2) T, the fopology of S-compact convergence or the topology of wuniform
convergence on S-compact subsets of X, which is the “-topology on %< (X, Y)
when & is the collection of all S-compact (non-empty) subsets of X.

‘(3) ., the topology of compact convergence or the topology of wuniform
convergence on compact subsets of X, which is the -topology on .SZL(X, Y)
when & is the collection of all compact (non-empty) subsets of X,

(4) T upe, the topology of S-precompact convergence or the topology of wuni-
form convergence on S-precompact subsets of X, which is the -topology on
FEL(X,Y) when & is the collection of all S-precompact (non-empty) subsets
of X.

(5) T, the topology of precompact convergence or the topology of uniform
convergence on precompact subsets of X, which is the S-topology on S Z<£(X, Y)
when & is the collection of all precompact (non-empty) subsets of X.

(6) 7%, the topology of bounded convergence or the topology of unmiform
convergence on bounded subsets of X or the strong topology, which is the -
topology on FZ<(X, Y) when & is the collection of all bounded (non-empty)
subsets of X.

From [Theorem 4, it is clear that these six topologies on &£ (X, Y) are

related in the following manner:
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In the next theorem, we give a number of different characterizations of bounded
subsets of ¥ (X, Y).

Theorem 5. (&-Bounded Subsets of (¥ZL(X,Y), 7)) Let (X,7,) and
(Y, 7, be topological vector spaces over the real or complex field K. Let &~ be an
upward direction in X, composed of 7 ,-bounded subsets of X. Let (FZL(X, Y),
) be the topological vector space over K of all sequentially continuous linear
transformations on X into Y with the -topology. Let A be a local base for T ye
Lot #cZL(X,Y). Then % is bounded for the &-topology or % is a 7 -
bounded subset of SZL(X,Y) or ¥ is F-bounded if and only if any of the
Sfollowing equivalent assertions hold:

(1) Given any set M in # and given any set S in 7, there exists a real
number 2 where 2>0 such that: A< NS, M) NS (X, Y).

(2) Given any set M in # and given any set S in <, there exists a real
number A where 2>0 such that: fe F=if[SISM (or flAS1=M; or AScf'[M)).

(3) Given any set S in 7, the set fyxf [S] is 7 ,-bounded in Y.

(4) Given any set M in A and given any set S in &, there exists a real
number 2 where 2>0 such that: Sc Zf D%f “[M]}.

(5) Given any set M in A4 and given any set S in &, the setfgrf“[M]
absorbs S.

Proof. The above statements follow directly from the definition of a bounded
set in a topological vector space. To obtain (5), one first considers the special case
where - # is a local base of balanced neighborhoods of the zero vector 0 in Y.///

Let (X, 97) be a topological vector space over K. A subset B of X is a se-
quential barrel if B is sequentially closed, convex, balanced, and absorbing (see E))B

Theorem 6. Let (X, .7.) be a topological vector space over the field of real
or complex numbers K, and let (Y, 7,) be a locally convex topological vector space
over K. Let (¥ZL(X,Y), 7,) be the locally convex topological vector space over
K of all sequentially continuous linear transformations on X into Y with the
topology of pointwise convergence 7,. Let X< FEA(X,Y). Then Z is 7,
bounded if and only if given any closed, convex, balanced neighborhood V of the
zero vector 0 in Y; the setfenxf"[V] is a sequential barrel in X.




32

Proof. This result follows directly from (5) of [Theorem 5.///

2. Equi-Sequentially-Continuous Sets of Functions

Let (X, 7,) be a topological space. Let (Y, 7,) be a topological vector space,
over the real or complex field K, with associated uniform structure 2 and with
local base .#. Let & (X,Y) be the linear space, over K, of all functions on X
into Y. Let =5 (X,Y), and let ,€X. To say that % is equi-sequentially-
continuous at the point x, means that either of the following equivalent statements

holds:
(1)

N(x,) of the point %, in X such that: fe % and & € Mx,) = (%), fix,)) € V.

(2)

the point %, in X such that: fe % and x € N(&,) = f(x)—f(x,) € M.
To say that %" is equi-sequentially-continuous means that & is equi-sequentially-
continuous at every point of X.

Let (X, 7%) and (Y, .7,) be topological vector spaces over the real or complex
field K. Let .7, be a local base of .77,-sequential neighborhoods of the zero vector
0 in X; and let .# be a local base of .77,-neighborhoods of the zero vector 0 in
Y. Let #(X, Y) be the linear space, over K, of all functions on X into Y. Let
FZeF(X,Y). To say that 7" is uniformly equi-sequentially-continuous means that

given any set M in .#, there exists a set N in .#7 such that:

As a consequence of these definitions, we obtain the following theorem.

Theorem 7. Let (X, 7,) and (Y, 7,) be topological vector spaces over the
real or complex field K. Let (X, Y) be the linear space, over K, of all linear
transformations on X into Y. Let X< (X,Y). Then the following statements
are equivalent:

(1)
(2)
(3)
(4)
(5)

N of 0 in X such that: ,U fIN]1c M.

(6)

neighborhood of 0 in X.

Theorem 8. Let (X, .7,) be a topological vector space over the real or complex
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Given any entourage V in 77, there exists a sequential neighborhood

Given any set M in -, there exists a sequential neighborhood N(z,) of

fe and %, %€ X and x,—x:€ N= f(z,)—flxz) e M .

" is equi-sequentially-continuous.

Z " is equi-sequentially-continuous at the zero vector 0 in X.

Z is equi-sequentially-continuous at some point x, in X.

Zis uniformly equi-sequentially-continuous.

Gtven any neighborhood M of 0 in Y, there exists a sequential neighborhood

Given any neighborhood M of O in Y, the set n f'l[M] is a sequenttal
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field K, and let (Y,.7,) be a Hausdorff topological vector space over K. Let
(F(X,Y), 7, be the Hausdorff topological vector space, over K, of all functions
on X into Y with the topology of pointwise convergence. Let £ (X,Y) be the
linear space, over K, of all linear transformations on X into Y. Let X< X (X,Y).
Then, if % is equi-sequentially-continuous; 72~ », the pointwise closure of ¢ in
F(X,Y), is an equi-sequentially-continuous subset of <L (X, Y).

Proof. Since X< £(X,Y), we have F7rc F(X, Y)” *=L(X, Y) using the
fact that <2(X, Y) is a 7 ,-closed subset of #(X, Y). We must show that if 7~
is equi-sequentially-continuous, then % 7 is equi-sequentially-continuous. Assume
that ¥ is equi-sequentially-continuous. Let M be a .77,-neighborhood of O in Y.
There exists a balanced .7,-neighborhood W of 0 in Y such that W+ WcM.
Since ¥  is equi-sequentially-continuous, there exists a .77,-sequential neighborhood

N of 0 in X such that U fINIlsW. We must show that U f[N]CM Let
fe 7 ?, and let x, ¢ N Con81der the set N({z,}, W) which 1s a .7' p-neighborhood
of the zero vector 0 in &#(X, Y). Then f+N({x,}, W) is a 7 ,-neighborhood of f.
There exists a function g in % such that g € f+N({z,}, W) hence g(x,)—Lfzo) € W.
Since W is balanced, f{x,)—g(x,) € W hence f(xo) € g(x0)+ Ws W+ Wc M. Clearly,

U fINlesM. This proves that Z~ 7 is equi-sequentially-continuous.///

fexr 7o

Theorem 9. Let (X, 9,) and (Y,.7,) be topological vector spaces over the
real or complex field K. Let FZL(X,Y) be the linear space, over K, of all
sequentially continuous linear transformations on X into Y. Let X <cFZLX(X,Y),
such that 22 is equi-sequentially-continuous. If 7, is the topology of pointwise
convergence on S EL(X,Y), T4 is the topology of S-compact convergence on
FEAX,Y), and T, is the topology of S-precompact convergence on S (X, Y),
then the corresponding relative topologies on 22 are the same, i.e., T | X =T | %=
T apal T

Proof. Clearly, 7, |%<c.7,,| %<7, %. We must prove that 7,,|Z¢c
T, %. Let # be a local base for .7,. Then a local base for 7,,| % is
{N(B, M) n%¢"|Bc X, B is S-precompact, and Me_#}. A local base for 7, %" is
{N{21, *++) Ta)}, MYNZ |21, + -+ 2} EX, {21, +++, %a} is finite, and M e .#}. Consider
the set M(B, M)N 22 where B is an S-precompact subset of X and where M e
Let We _# such that W+ W< M. Since ¥ is equi-sequentially-continuous, there
" exists a 7 ,~sequential neighborhood N of 0 in X such thatfyxf [Nl W. Since B
is S-precompact, there exists a finite set {2, « - -, s} © X such that B<{x;, « - -, Za}+N.
We claim that N({zy, «--, 2.}, W)NZ<NB, M)N%. Indeed, if we have fe
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N({xlv R xﬂ}: W)n‘%; then fe‘% and f[B]gf[{xlr ) wu}—l_N]:f[{xh ) x’n}]+
fIN]=s W+ W< M hence fe N(B, M)n22. This proves that 7,,,|\ %<7, %.///

Theorem 10. Let (X, 7,) and (Y, j';) be topological vector spaces over the
real or complex field K. Let & be an upward direction in X, composed of T
bounded subsets of X. Let (2L (X,Y), T ) be the topological vector space over
K of all sequentially continuous linear transformations on X into Y with the -
topology. Let ZcFZA(X,Y). If 7 is equi-sequentially-continuous, then 7% is
T -bounded, i.e., 2¢ is bounded for the -topology.

Proof. Let - # be a local base for .77, consisting of balanced neighborhoods
of 0 in Y. Assume that % is equi-sequentially-continuous. Let Me _#. Then
fDxf “IIM] is a balanced sequential neighborhood of 0 in X. Consequently,
N f'[M] is a bornivore, i.e.,f[]xf “![M] absorbs every bounded subset of X. In

fex

particular, ) f '[M] absorbs every set S in .&*. By (5) of Zis T-

fex

bounded.///

3. Banach-Steinhaus Theorem for S-Barrelled Topological Vector Spaces

A topological vector Space (X, 9") over K is S-barrelled if every sequential
barrel in X is a sequential neighborhood of the zero vector 0 in X. A number
of examples of spaces which are S-barrelled but not barrelled are given in [9].

Perhaps the most important of these examples is the sequence space I'=
{(a,): +Z?Ia,,]< +oo} with the weak topology o(Z*, I). Incidently, (!, o(I, I™)) is not
C-seq::e;ltial. This example is important because a number of different classical
Banach spaces have been found to be isomorphic to /! with the norm topology.
See [4], p. 41, and [2], p. 182. As an example, (/',. ") is isomorphic (see [3],
Pp. 247-248) to the ‘‘natural space” of analytic functions (Hy(D), 7,). Here Hy(D)
is the linear space of analytic functions f(z) on the unit disk D={z: |z|<1} such
that

Nfl|1=“D|f(x+iy)ldazdy< 4o

and 77, is the topology generated by the norm |+||'. Thus H,(D) with the weak
topology o(H(D), Hy(D)') is S-barrelled but not barrelled.

We will now consider equi-sequentially-continuous and bounded sets of sequen-
tially continuous linear transformations on S-barrelled topological vector spaces.
Finally, we will derive a form of the Banach-Steinhaus theorem valid for S-barrelled

topological vector spaces.
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Theorem 11. Let (X, 7,) be an S-barrelled topological vector space over the
real or complex field K. Let (Y,.7,) be a locally convex topological vector space
over K. Let (YZCL(X,Y), 7,) be the locally convex topological vector space, over
K, of all sequentially continuous linear transformations on X into Y with the
topology of pointwise convergence 7,. Let X cFZLA(X,Y). If X is 7 ,-bounded,
i.e., if I is simply bounded, then ¢ is equi-sequentially-continuous.

Proof. Let -# be a local base for .7, compbsed of closed, convex, balanced-

7 ,neighborhoods of the zero vector 0 in Y. Let Me . #. Thenfg]xf “IM] is

convex, balanced, and sequentially closed. Since % is Z,-bounded, the set

n f ~'[M] is absorbing (by (5) of [Theorem 5). Thus ﬂ f'[M] is a sequential

barrel in X. Since (X, .77,) is S-barrelled, ﬂ M) is a ﬁ' .-sequential neighbor-
hood of 0 in X. By [Theorem 7, ¢ is equ1-sequentlally-contlnuous /]

As a corollary to [Theorem 11, we have the following theorem.

Theorem 12. Let (X, .7,) be an S-barrelled topological vector space over the
real or complex field K. Let (Y, 7,) be a locally convex topological vector space
over K. Let SEL(X,Y) be the linear space, over K, of all sequentially continuous
linear transformations on X into Y. Let 7, be the (locally convex vector) topology
of pointwise convergence on S (X, Y); and let 7, be the (locally convex vector)
topology of bounded convergence on SZF(X,Y). Let ZcFZHA(X,Y). Then
the following statements are equivalent:

(1) X is equi-sequentially-continuous.

(2) Zis F,-bounded, i.e., 2 is simply (weakly) bounded.

(3) Fis F,-bounded, i.e., 5¢ is strongly bounded.

Theorem 13. Let (X, 7,) be a topological vector space over the real or complex
field K, and let (Y, 7,) be a Hausdorff topological vector space over K. Let
(37— (X, Y),7,) be the Hausdorff topological vector space, over K, of all functions
on X into Y with the topology of pointwise convergence. Let (FEL(X,Y), T spe)
be the Hausdorff topological vector space, over K, of all sequentially continuous
linear transformations on X into Y with the topology of S-precompact convergence.
Let 2% be an equi-sequentially-continuous subset of FZL(X,Y). Let 4 be a
direction (filter base) in %, and let f be a function in F(X,Y). If A converges
to f pointwise, i.e., if ./Vif then fe ygg(x Y) and ¥ converges to f uniformly

7 spe

on the S-precompact subsets of X, i.e., S —f.

JTp _. .
Proof. Since .4 is a direction in % and .#——f, we have fe % ?. Since
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% is equi-sequentially-continuous, %2 * is equi-sequentially-continuous and Z~ rc

.57%.?(}{27 Y). Thus we ha;e [eFZLLA(X,Y). Since T, | F7Tr=7,,| % *, and
14 8po

since 4 ~——f, we have A4~—f.///

Theorem 14. (Banach-Steinhaus Theorem for S-Barrelled Spaces) Let (X, 7,)
be an S-barrelled topological vector space over the real or complex field K, Let
(Y, 7,) be a Hausdorff locally convex topological vector space over K. Let
(F(X,Y), 7,) be the Hausdorff locally convex topological vector space, over K,
of all functions on X into Y with the topology of pointwise convergence. Let
(FEL(X, Y), T spo) be the Hausdorff locally convex topological vector space, over
K, of all sequentially continuous linear transformations on X into Y with the
topology of S-precompact convergence. Let .9~ be a direction (filter base) in
A X,Y), and let f be a function in F(X,Y) such that 4~ converges to f
pointwise, i.e., ./V—*f Suppose that 4~ has either one of the following two
properties:

(1) A" is T y-bounded in the sense that there exists a set N in 4 such that
N is a T ,-bounded subset of ¥ (X, Y).

(2) A is countable.

Then fe L (X, Y) and -V~ converges to f uniformly on the S-precompact subsets

T spc

of X, i.e., S —f.

Proof. Assume .4 has property (1). Let Z"e€.#" be such that % is a F7,-
bounded subset of #(X, Y). Then % is a 7 ,-bounded subset of FZZ(X, Y).
Thus 7" is equi- sequentlally-contlnuous Consider the direction A4 ={ZNN:
Nes” } in 2. Since Jf————»f and 4 x is a subdirection of .4, we have
A x—»f Thus fe Q%Q(X Y)and " X—if Since e .4, 4" is a subdirec-
tion of #,. Thus /-—»f

Assurne 4" has property (2). Then ¥ is equivalent to a direction # in
FEF(X,Y) such that #={M;: je N} with Mi=2M,2...-2M,2---. Let (fa
neN) be a sequenc; in ¥ (X, Y) such that f, € M, for each natural number
n in N. Since M—»f, we have ./l—-»f Given any point 2 in X, ./l(:c)—>f(a:)
(Note: - #(x)={M(x): M e '}, where M(x)={f(x): fe M}.) Thus, given any point
2 in X, the sequence (f,(x): n€ N) is F,-convergent to f(x). Given any point «
in X, the set {fu(x): e N} is F,bounded. Thus the set {f,: e N} is a -
bounded subset of FSZL(X, Y). Also, the sequence (f,: #€ N) is 7 ,-convergent
to f. Consider the direction {{fa.: m>n}: ne N} associated with the sequence
(fu: me N). This direction satisfies condition (1). Thus fe ¥ZX(X, Y) and the
sequence (f,: n€ N) is 7 ,,-convergent to f.
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Suppose #”is not 7 ,,-convergent to f. Then -# is not .7 ,,.-convergent to
f. There exists a 7,,,-neighborhood U of f in S Z<£(X, Y) such that none of
the sets of .# is contained in U. Given any index j in N, there exists a func-
tion f; in M)\U. Clearly, the sequence (f,: # € N) so chosen is not .7,,,-convergent
to f. This is a contradiction! We must have /ﬂf.///

As a corollary to we have the following theorem.

Theorem 15. (Banach-Steinhaus Theorem for S-Barrelled Spaces) Let (X, 7,)
be an S-barrelled topological vector space over the real or complex field K. Let
(Y,.7,) be a Hausdorff locally convex topological vector space over K. Let
(F(X,Y),7,) be the Hausdorff locally convex topological vector space, over K,
of all functions on X into Y with the topology of pointwise convergence. Let
(FELX,Y), T +p) be the Hausdorff locally convex topological vector space, over
K, of all sequentially continuous linear transformations on X into Y with the
topology of S-precompact convergence. Let (f,: n€ N) be a sequence in (X, Y),
and let f be a function in F(X,Y). If (fa:neN) converges to f pointwise (7 ,-
convergence), then fe SEF(X,Y) and (fa: n€ N) converges to f uniformly on
S-precompact subsets of X (7 ,p.-convergence).
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