YOKOHAMA MATHEMATICAL JOURNAL VOL. 26, 1978

HOMEOMORPHISMS OF PRISM MANIFOLDS

By

KOUHEI ASANO

(Received December 10, 1976)

1. Introduction

The homeotopy group $\mathcal{H}(X)$ of a space X is the group of all self-homeomorphisms of X modulo the subgroup consisting of those homeomorphisms which are isotopic to the identity. The purpose of this paper is to compute the homeotopy group of a certain family of 3-manifolds, called prism manifolds. In §4, we will completely determine the homeotopy group of prism manifolds (Theorem 4.5). Furthermore, as an application of our theorem, we will determine the homeotopy group of the lens space $L(4n, 2n\pm 1)$ of type $(4n, 2n\pm 1)$. More precisely, we have

Corollary 4.6.
$$\mathscr{H}{L(4n, 2n \pm 1)} \cong \begin{cases} Z_2 & \text{if } n=1 \\ Z_2 \times Z_2 & \text{if } n \neq 1 \end{cases}$$

In §2, we will define a prism manifold. In §3, the incompressible Klein bottles in the prism manifold will be discussed.

Throughout this paper we work in the piecewise linear category. For a subcomplex X of a manifold Y, the regular neighbourhood of X in Y will be denoted by N(X). The boundary and the interior of a manifold Y will be denoted by Bd Y and Int Y, respectively.

A surface F properly embedded in a 3-manifold M is said to be parallel to Bd M if there exists an embedding $f: F \times I \rightarrow M$ such that $f(F \times \{0\}) = F$ and $f\{(Bd F) \times I \cup F \times \{1\}\} \subset Bd M$, where I denotes the unit interval [0, 1].

2. Prism manifolds

Let p; $N \to B$ be an S^1 -bundle over a Möbius band B. Suppose that N is orientable. Then $p^{-1}(a)$, where a is a centerline of B, is a Klein bottle K_0 . Let c_0 be a fiber on K_0 and let c_1 be an oriented simple closed curve on K_0 such that $c_0 \cap c_1$ is a point q and $p(c_1) \sim a$ on B. Then

$$\Pi_1(K_0, q) = \langle c_0, c_1; c_1^2 = (c_1 c_0)^2 \rangle.$$

As N is orientable, it is a regular neighbourhood of K_0 and can be considered as a line bundle over K_0 . The restriction B' of the line bundle N to c_1 is home-

KOUHEI ASANO

omorphic to Möbius band and is a cross-section of the S^1 -bundle $p: N \rightarrow B$. The boundary c of B' and a fiber h on Bd N form a system of generators of $H_1(\text{Bd } N)$. By V we denote a solid torus with a meridian x. Let $k_{\alpha\nu}$ be a homeomorphism from Bd V to Bd N which induces an isomorphism $k_{\alpha\nu}^*: H_1(\text{Bd } V) \rightarrow H_1(\text{Bd } N)$ such that $k_{\alpha\nu}^*(x) = \alpha c + \nu h$, where α and ν are relatively prime integers with $\alpha > 0$.

Let $M_{\alpha\nu}$ denote the 3-manifold obtained by gluing N to V via $k_{\alpha\nu}$. Let b and β be integers such that $b\alpha + \beta = \nu$ and $\alpha > \beta \ge 0$. Then $M_{\alpha\nu}$ is homeomorphic to a Seifert fiber space with the invariants $\{b; (n_2, 1)\}$ or $\{b; (n_2, 1); (\alpha, \beta)\}$. If $(b, \alpha, \beta) \neq (0, 1, 0)$, we call $M_{\alpha\nu}$ a prism manifold. Using Van Kampen Theorem, we can show that

$$\Pi_1(M_{\alpha\nu}, q) = \langle c_0, c_1; c_1^2 = (c_1c_0)^2, c_1^{2\alpha}c_0^{\nu} = 1 \rangle.$$

We denote $\Pi_1(M_{\alpha\nu}, q)$ by $G_{\alpha\nu}$. From now on we will assume that $(\alpha, \nu) \neq (1, 0)$.

Lemma 2.1. Each element of $G_{\alpha\nu}$ can be represented uniquely by the word $c_1^{\gamma}c_0^{\delta}$, where $0 \leq \gamma < 2\alpha$ and $0 \leq \delta < |2\nu|$.

Proof. Applying the first relation in $G_{\alpha\nu}$, each element of $G_{\alpha\nu}$ can be represented by the word $c_1^2 c_0^{\mu}$. Since $c_1^{-1} c_0 c_1 = c_0^{-1}$, we have $c_0^{-\nu} = c_1^{-1} c_1^{2\alpha} c_1 = c_1^{-1} c_0^{-\nu} c_1 = c_0^{\nu}$. Thus we can reduce the word $c_1^2 c_0^{\mu}$ so that $0 \le \lambda < 2\alpha$ and $0 \le \mu < |2\nu|$. It follows from [3] that $G_{\alpha\nu}$ has a finite order $|4\alpha\nu|$. This implies that $c_1^{\tau} c_0^{\delta}$ is uniquely represented.

The word $c_1^r c_0^{\delta}$, $0 \leq \gamma < 2\alpha$ and $0 \leq \delta < |2\nu|$, is called *the normal form* of an element of $G_{\alpha\nu}$.

3. Klein bottles in M_{α}

A surface F in the 3-manifold Q is said to be compressible in Q, if

(1) there exists a disk D in Q such that $D \cap F = Bd D$ and Bd D is essential in F, or

(2) there exists a 3-ball E in Q such that Bd E=F. We say that F is *incompressible* in Q, if F is not compressible in Q. In this section we will show that K_0 is incompressible in $M_{\alpha\nu}$ and will classify the incompressible Klein bottles in $M_{\alpha\nu}$ up to ambient isotopy.

Let c_2 be a simple closed curve on K_0 with $c_2 \cap c_0 = c_1 \cap c_0 = q$ such that c_2 represents c_1c_0 in $\Pi_1(K_0, q)$. Then any one-sided curves on K_0 is ambient isotopic to c_1, c_2, c_1^{-1} or c_2^{-1} , where c_i^{-1} is the same curve as c_i with opposite orientation. Furthermore any essential two-sided curve on K_0 can be deformed so that it coincides with either c_0 or the boundary of a regular neighbourhood of c_1 on K_0 .

The following lemma has been proved by T. M. Price [5] for the case $(\alpha, \nu) =$ (1, 2).

Lemma 3.1. K_0 is incompressible in $M_{\alpha\nu}$.

Proof. Assume that K_0 is compressible in $M_{\alpha\nu}$. Then there exists a disk Din $M_{\alpha\nu}$ such that $D \cap K_0 = \operatorname{Bd} D$ and $\operatorname{Bd} D$ is essential on K_0 . As N is a regular neighbourhood of K_0 , we can deform D so that $D \cap V$ is a disk. Since the homomorphism from $\Pi_1(\operatorname{Bd} V)$ into $\Pi_1(N)$ induced by the inclusion is injective, $\operatorname{Bd} V \cap$ D is essential in $\operatorname{Bd} V$. Thus $V \cap D$ is a meridian disk of V and $\Pi_1(M_{\alpha\nu}, q) \cong$ $\Pi_1(K_0 \cup D, q)$. As $\operatorname{Bd} D$ is a two-sided curve on K_0 , it can be deformed so that it coincides with c_0 or the boundary of a regular neighburhood of c_1 on K_0 . Hence $\Pi_1(K_0 \cup D, q)$ is isomorphic to $\langle c_0, c_1; c_1^2 = (c_1 c_0)^2 = 1 \rangle \cong Z_2 * Z_2$ or $\langle c_0, c_1; c_1^2 = (c_1 c_0)^2$, $c_0 = 1 \rangle \cong Z$, where * denotes the free product of two groups. While $\Pi_1(M_{\alpha\nu}, q)$ has a finite order, both $Z_2 * Z_2$ and Z have an infinite order. Thus we have a contradiction.

Conversely the 3-manifold which is obtained by gluing the twisted line bundle over K_0 and a solid torus is a prism manifold, if K_0 is incompressible in the 3-manifold.

Lemma 3.2. Any incompressible Klein bottle K in N is ambient isotopic to K_0 .

Proof. If we regard N as a line bundle over K_0 , the restriction of the line bundle to c_0 is an annlus A, which is incompressible and is not parallel to Bd N. Then we can deform K so that $K \cap A$ consists of essential two-sided curves on K. We may assume that A and $K \cap A$ are vertical with respect to the S¹-bundle $p: N \rightarrow B$, i.e. $p^{-1}p(A) = A$ and $p^{-1}p(K \cap A) = K \cap A$. Clearly $K \cap (N - \operatorname{Int} N(A))$ consists of annuli. Thus by an ambient isotopy of N we can deform K so that it is vertical with respect to p. Since the intersection of K and the cross-section B' of $p: N \rightarrow B$ is a centerline of B', we can deform A so that $K \cap B' = K_0 \cap B'$. Then $K \cap \{N - \operatorname{Int} N(B')\}$ and $K_0 \cap \{N - \operatorname{Int} N(B')\}$ are Möbius bands in the solid torus $N - \operatorname{Int} N(B')$. Therefore K is ambient isotopic to K_0 .

Lemma 3.3. Suppose that $M_{\alpha\nu}$ is a prism manifold with $|\nu| \neq 2$. Then any self-homeomorphism g of $M_{\alpha\nu}$ is isotopic to a self-homeomorphism g_0 such that $g_0(K_0) = K_0$.

Proof. Deform $g(K_0)$ slightly so that it is in a general position with respect to K_0 . Since K_0 is incompressible in $M_{\alpha\nu}$ and $M_{\alpha\nu}$ is irreducible, we can remove all inessential curves in $g(K_0) \cap K_0$. By using the uniqueness of a regular neighbourhood of K_0 , we can deform $g(K_0)$ so that $g(K_0) \cap V$ consists of a finite number

KOUHEI ASANO

of annuli and at most one Möbius band.

Suppose that $g(K_0) \cap V$ contains no Möbius band. Let c' be a simple closed curve in $g(K_0) \cap Bd V$. As $g(K_0)$ is incompressible in $M_{\alpha\nu}$, c' is not a meridian of V. Hence each component of $g(K_0) \cap V$ is parallel to Bd V. Thus we can remove all intersection curves in $g(K_0) \cap Bd V$.

If there is a Möbius band in $g(K_0) \cap V$, a closed curve c'' in $g(K_0) \cap Bd V$ is homologous to Bd B' in Bd V. Hence the intersection number of c'' with x is $\pm \nu$. But $|\nu| \neq 2$. Hence $g(K_0) \cap V$ contains no Möbius band. Thus, using Lemma 3.2, we complete the proof.

Regarding N as a line bundle over K_0 , let B_i be the restricted bundle over c_i , for i=1, 2. Then B_i is a Möbius band and the intersection number of Bd B with x is $\pm \nu$. Assume that $|\nu|=2$. Then there exists a Möbius band B'_i in V such that Bd $B'_i=$ Bd B_i , for i=1, 2, and $B'_1 \cap B'_2=c_3$, where c_3 is a centerline of V. Let K_i denote a Klein bottle $B_i \cap B'_i$, i=1, 2. Since $M_{\alpha\nu}$ is irreducible and $\Pi_1(M_{\alpha\nu})$ is finite, K_i is incompressible in $M_{\alpha\nu}$.

Lemma 3.4. Let $M_{\alpha\nu}$ be a prism manifold with $|\nu|=2$. Then any incompressible Klein bottle K in $M_{\alpha\nu}$ is ambient isotopic to K_i , i=0, 1 or 2.

Proof. Suppose that $K \cap K_0$ contains either two one-sided curves or no one sided curve on K_0 . Then $K \cap V$ consists of annuli. Hence the same argument as in the proof of Lemma 3.3 implies that K is ambient isotopic to K_0 .

Now we suppose that there is a Möbius band in $K \cap V$. We can deform K so that $K \cap K_0$ contains c_1 or c_2 . Since the Möbius band in $K \cap V$ intersects with B'_i in a centerline of B'_i and a finite number of two-sided curves on B'_i , $K \cap K_i$ contains two one sided curves on K_i . Since $M_{\alpha\nu}$ -Int $N(K_i)$ is a solid torus and $K \cap \{M_{\alpha\nu} - \operatorname{Int} N(K_i)\}$ consists of annuli, we can deform K so that K coincides with K_i .

Now we construct a self-homeomorphism f_i of $M_{\alpha\nu}$ such that $f_i(K_0) = K_i$, i = 1, 2. Define a homeomorphism f'_i of $K_0 \cup K_i$ onto itself so that $f'_i(c_1) = c_i$ and $f'_i(c_2) = c_3$, for i=1, 2. Then f'_i can be extended to an orientation preserving home-morphism f_i of $N(K_0 \cup K_i)$. If we consider $M_{\alpha\nu}$ as a Seifert fiber space $\{\pm (\alpha - 3)/2; (o_1, 0); (2, 1), (2, 1), (2, 1)\}$ with the exceptional fibers c_1, c_2 and $c_3, M_{\alpha\nu} - \text{Int } N(K_0 \cup K_i)$ is a regular neighbourhood of a normal fiber of the Seifert fiber space and f_i is a fiber preserving homeomorphism. Thus we can extend f_i to a self-homeomorphism of $M_{\alpha\nu}$.

22

4. Homeotopy groups

In this section we calculate the homeotopy group $\mathcal{H}(M_{\alpha\nu})$ of $M_{\alpha\nu}$. First we have

Lemma 4.1. $M_{\alpha\nu}$ does not admit an orientation reversing homeomorphism.

Proof. Suppose that there exists an orientation reversing homeomorphism r of $M_{\alpha\nu}$. We may assume that $r(K_0) = K_0$, $r(c_0) = c_0$, r(q) = q and r(N) = N. Let r_* denote the isomorphism from $H_1(\text{Bd } V)$ onto itself induced by the restriction of r to Bd V. Since $r(c_0)$ represents c_0^{ϵ} and $r(c_1)$ represents c_1^{ϵ} or $(c_1c_0)^{\epsilon}$ in $\Pi_1(K_0, q)$, $\epsilon = 1$ or -1, $r_*(c) = \epsilon c$ and $r_*(h) = -\epsilon h$, where c is the boundary of the cross-section B'_i of N and h is a fiber on Bd N. Hence $r_*(x) = \epsilon \alpha c - \epsilon \nu h$. Since r(x) is a meridian of V and $\epsilon \alpha c - \epsilon \nu h \not\sim 0$ in V, we have a contradiction.

Every homeomorphism of K_0 isotopic to a fiber preserving homeomorphism and can be extended to an orientation preserving homeomorphism of N. Furthermore we can extend the homeomorphism to an homeomorphism of $M_{\alpha\nu}$. Thus there is a natural homomorphism $\Phi: \mathscr{H}(K_0) \to \mathscr{H}(M_{\alpha\nu})$. Note that $\mathscr{H}(K_0) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. For $|\nu| \neq 2$, by Lemma 3.3, Φ is onto.

Lemma 4.2. For $\alpha \neq 1$, Ker Φ is trival.

Proof. Let $\mathscr{A}(G_{\alpha\nu})$ denote the group of outerautomorphisms of $G_{\alpha\nu}$. Then there exists a homomorphism $\Psi: \mathscr{H}(M_{\alpha\nu}) \to \mathscr{A}(G_{\alpha\nu})$. We shall show that Ker $\Psi \Phi$ is trivial It is sufficient to prove that the conjugacy classes of c_1, c_2, c_1^{-1} and c_2^{-1} are mutually disjoint in $G_{\alpha\nu}$. The normal forms of c_1, c_2, c_1^{-1} and c_2^{-1} are $c_1, c_1c_0, c_1^{2\alpha-1}c_0^{|\nu|+1}$, respectively. Let $c_1^{\lambda}c_0^{\mu}$ be the normal form of an arbitrary element of $G_{\alpha\nu}$. Then

$$(c_1^{\lambda}c_0^{\mu})^{-1}c_1(c_1^{\lambda}c_0^{\mu}) = c_1c_0^{2\mu} \quad \text{or} \quad c_1c_0^{2|\nu|-2\mu} (c_1^{\lambda}c_0^{\mu})^{-1}c_1c_0(c_1^{\lambda}c_0^{\mu}) = c_1c_0^{2\mu+1} \quad \text{or} \quad c_1c_0^{2\mu-1}$$

Hence, $\alpha = 1$ and ν is odd if and only if there exist integers λ and μ such that $(c_1^{\lambda}c_0^{\mu})^{-1}c_1(c_1^{\lambda}c_0^{\mu}) = c_1^{2\alpha-1}c_0^{|\nu|+1}$ and $(c_1^{\lambda}c_0^{\mu})^{-1}c_1c_0(c_1^{\lambda}c_0^{\mu}) = c_1^{2\alpha-1}c_0^{|\nu|}$. Similarly, $\alpha = 1$ and ν is even if and only if there exist integers λ' and μ' such that $(c_1^{\lambda'}c_0^{\mu'})^{-1}c_1(c_1^{\lambda'}c_0^{\mu'}) = c_1^{2\alpha-1}c_0^{|\nu|}$, $(c_1^{\lambda'}c_0^{\mu'})^{-1}c_1c_0(c_1^{\lambda'}c_0^{\mu'}) = c_1^{2\alpha-1}c_0^{|\nu|+1}$. Thus the conjugacy classes of c_1 , c_2 , c_1^{-1} and c_2^{-1} are mutually disjoint except for $\alpha = 1$.

For $\alpha=1$, $M_{\alpha\nu}$ is an S¹-bundle over a projective plane. The following proposition will be proved easily.

Proposition 4.3. Let $p: Q \rightarrow T$ be an S¹-bundle over a surface T and $\{i_t; 0 \le t \le 1\}$ an isotopy of T. Suppose that there exists a homeomorphism F of Q onto itself

KOUHEI ASANO

such that $pF=i_0p$. Then there exists an isotopy $\{I_t; 0 \le t \le 1\}$ of Q such that $pI_t=i_tp$ and $I_0=F$.

Since there is an isotopy of a projective plane P^2 which takes a one-sided curve on P^2 onto the same curve with opposite orientation, it follows from Proposition 4.3 that for $\alpha = 1$ there exists an isotopy of $M_{\alpha\nu}$ which takes $\{c_1, c_2\}$ to $\{c_1^{-1}, c_2^{-1}\}$. Hence we have

Lemma 4.4. For $\alpha = 1$, Ker $\varphi \cong Z_2$.

Assume that $|\nu|=2$. Let c_s be a centerline of V. Then c_s represents the conjugacy class of $c_1^{2\alpha'}c_0^{\nu'}$ or $(c_1^{2\alpha'}c_0^{\nu'})^{-1}$ in $G_{\alpha\nu}$, where α' and ν' are integers with $2\alpha' - \alpha\nu'=1$. Furthermore, the conjugacy class of $c_1^{2\alpha'}c_0^{\nu'}$ is $\{c_1^{\alpha'}c_0^{\nu'}, c_1^{2\alpha'}c_0^{-\nu'}\}$. Hence the conjugacy classes of c_i and c_i^{-1} , i=1, 2, 3, are mutually disjoint. Thus there is an epimorphism Ψ' from $\mathscr{N}(G_{\alpha\nu})$ onto the symmetric group S_s of degree 3 which is defined by

$$\Psi'(\phi) = \begin{pmatrix} 1 & 2 & 3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{pmatrix} \quad \text{if } \phi(c_i) \text{ is } c_{\gamma_i} \text{ or } c_{\gamma_i}^{-1} \text{ in } G_{\alpha\nu}.$$

Define a homomorphism Φ' from S_3 into $\mathscr{H}(M_{\alpha\nu})$ by $\Phi'(2,3)=[f_1], \Phi'(1,2,3)=[f_2],$ where $[f_i]$ denotes the isotopy class of f_i , i=1, 2. Then the exact sequence

$$1 \rightarrow \operatorname{Ker} \Psi' \rightarrow \mathscr{H}(M_{\alpha\nu}) \rightarrow S_{\mathfrak{s}} \rightarrow 1$$

splits by Φ' . Clearly Ker Ψ' is a proper subgroup of $\Phi\{\mathscr{H}(K_0)\}$. Hence Ker $\Psi' \cong Z_2$. We summarize our results in the following theorem.

Theorem 4.5.
$$\mathscr{H}(M_{\alpha\nu}) \cong \begin{cases} Z_2 & \alpha = 1, \ |\nu| \neq 2 \\ S_3 & \alpha = 1, \ |\nu| = 2 \\ Z_2 \times Z_2 & \alpha \neq 1, \ |\nu| \neq 2 \\ S_3 \times Z_2 & \alpha \neq 1, \ |\nu| = 2. \end{cases}$$

For the case $\alpha = 1$ and $|\nu| = 2$, $\mathscr{H}(M_{\alpha\nu})$ has been determined by T. M. Price [5]. Let L(2k, p) be a lens space of type (2k, p) and let q be the integer with $pq = \pm 1 \mod 2k$ and 0 < q < k. It follows from [1] that k-q=1, i.e. 2k=4n and $p=2n\pm 1$, if and only if L(2k, p) contains an incompressible Klein bottle K. As Bd N(K) is compressible in $L(4n, 2n\pm 1)$, $L(4n, 2n\pm 1)$ -Int N(K) is a solid torus. Hence $L(4n, 2n\pm 1)$ is a prism manifold. Since $|\nu|=1$ if and only if $G_{\alpha\nu} \cong Z_{4\alpha}$, we have

Corollary 4.6. $\mathscr{H}(L(4n, 2n\pm 1)) \cong \begin{cases} Z_2 & \text{if } n=1\\ Z_2 \times Z_2 & \text{if } n\neq 1 \end{cases}$

Note added in proof. The same result has been obtained independently by J. H. Rubinstein. His paper will appear in Trans. Amer. Math. Soc.

References

- G. E. Bredon and J. W. Woods: Non orientable surfaces in orientable 3-manifolds. Invent. Math., 7 (1968), 83-110.
- [2] W.B.R. Lickorish, Homeomorphisms of non orientable two-manifolds. Proc. Camb. Phil. Soc., 59 (1964), 307-317.
- [3] J. W. Milnor: Groups which act on Sⁿ without fixed points. Amer. J. Math., 79 (1957), 623-630.
- [4] P. Orlik: Seifert Manifolds. Lecture Notes in Math. 291, Springer-Verlag, 1972.
- [5] T. M. Price: Homeomorphisms of quaternion space and projective planes in S⁴. Research report No. 42, Dept. of Math., Univ. of Melbourne, 1974.

Kwansei Gakuin University Nishinomiya, Japan