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1. Introduction

The homeotopy group $\neq\ovalbox{\tt\small REJECT}^{\prime}(X)$ of a space $X$ is the group of all self-homeomor-
phisms of $X$ modulo the subgroup consisting of those homeomorphisms which are
isotopic to the identity. The purpose of this paper is to compute the homeotopy
group of a certain family of 3-manifolds, called prism manifolds. In \S 4, we will
completely determine the homeotopy group of prism manifolds (Theorem 4.5).
Furthermore, as an application of our theorem, we will determine the homeotopy
group of the lens space $L(4n, 2n\pm 1)$ of type $(4n, 2n\pm 1)$ . More precisely, we have

Corollary 4.6. $\ovalbox{\tt\small REJECT}\{L(4n, 2n\pm 1)\}\cong\left\{\begin{array}{ll}Z_{2} & if n=1\\Z_{2}\times Z_{2} & if n\neq 1.\end{array}\right.$

In \S 2, we will define a prism manifold. In \S 3, the incompressible Klein bottles
in the prism manifold will be discussed.

Throughout this paper we work in the piecewise linear category. For a sub-
complex $X$ of a manifold $Y$, the regular neighbourhood of $X$ in $Y$ will be denoted
by $N(X)$ . The boundary and the interior of a manifold $Y$ will be denoted by
Bd $Y$ and Int $Y$, respectively.

A surface $F$ properly embedded in a 3-manifold $M$ is said to be parallel to Bd $M$

if there exists an embedding $f:F\times I\rightarrow M$ such that $f(F\times\{0\})=F$ and $ f\{(BdF)\times I\cup$

$F\times\{1\}\}\subset BdM$, where $I$ denotes the unit interval $[0,1]$ .

2. Prism manifolds

Let $p;N\rightarrow B$ be an $S^{1}$-bundle over a M\"obius band $B$. Suppose that $N$ is
orientable. Then $p^{-1}(a)$ , where $a$ is a centerline of $B$ , is a Klein bottle $K_{0}$ . Let
$c_{0}$ be a fiber on $K_{0}$ and let $c_{1}$ be an oriented simple closed curve on $K_{0}$ such that
$c_{0}\cap c_{1}$ is a point $q$ and $p(c_{1})\sim a$ on $B$ . Then

$\Pi_{1}(K_{0}, q)=\langle c_{0}, c_{1};c_{1}^{2}=(c_{1}c_{0})^{2}\rangle$ .
As $N$ is orientable, it is a regular neighbourhood of $K_{0}$ and can be considered

as a line bundle over $K_{0}$ . The restriction $B^{\prime}$ of the line bundle $N$ to $c_{1}$ is home-
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omorphic to M\"obius band and is a cross-section of the $S^{1}$-bundle $p:N\rightarrow B$. The
boundary $c$ of $B^{\prime}$ and a fiber $h$ on Bd $N$ form a system of generators of $H_{1}(BdN)$ .
By $V$ we denote a solid torus with a meridian $x$ . Let $k_{\alpha\nu}$ be a homeomorphism
from Bd $V$ to Bd $N$ which induces an isomorphism $k_{\alpha\nu}^{*}$ : $H_{1}(BdV)\rightarrow H_{1}(BdN$ such
that $k_{\alpha\nu}^{*}(x)=\alpha c+\nu h$ , where $\alpha$ and $\nu$ are relatively prime integers with $\alpha>0$ .

Let $M_{a\nu}$ denote the 3-manifold obtained by gluing $N$ to $V$ via $k_{\alpha\nu}$ . Let $b$ and
$\beta$ be integers such that $ b\alpha+\beta=\nu$ and $\alpha>\beta\geqq 0$ . Then $M_{\alpha\nu}$ is homeomorphic to a
Seifert fiber space with the invariants $\{b;(n_{2},1)\}$ or $\{b;(n_{2},1);(a, \beta)\}$ . If $(b, \alpha, \beta)\neq$

$(0,1,0)$ , we call $M_{\alpha\nu}$ a prism manifold. Using Van Kampen Theorem, we can
show that

$\Pi_{1}(M_{\alpha\nu}, q)=\langle c_{0}, c_{1};c_{1}^{2}=(c_{1}c_{0})^{2}, c_{1}^{2\alpha}c_{0}^{\nu}=1\rangle$ .
We denote $\Pi_{1}(M_{a\nu}, q)$ by $G_{a\nu}$ . From now on we will assume that $(\alpha, \nu)\neq(1,0)$ .

Lemma 2.1. Each element of $G_{\alpha\nu}$ can be represented uniquely by the word
$c_{1}^{\gamma}c_{0}^{\delta}$ , where $ 0\leqq\gamma<2\alpha$ and $0\leqq\delta<|2\nu|$ .

Proof. Applying the first relation in $G_{\alpha\nu}$ , each element of $G_{\alpha}$ . can be re-
presented by the word $c_{1}^{\lambda}c_{0}^{\mu}$ . Since $c_{1}^{-1}c_{0}c_{1}=c_{0}^{-1}$ , we have $c_{0}^{-\nu}=c_{1}^{-1}c_{1}^{2\alpha}c_{1}=c_{1}^{-1}c_{0}^{-\nu}c_{1}=c_{0}^{\nu}$ .
Thus we can reduce the word $c_{1}^{\lambda}c_{0}^{\mu}$ so that $ 0\leqq\lambda<2\alpha$ and $0\leqq\mu<|2\nu|$ . It follows
from [3] that $G_{\alpha\nu}$ has a finite order $|4a\nu|$ . This implies that $c_{1}^{\gamma}c_{0}^{\delta}$ is uniquely
represented.

The word $c_{1}^{\gamma}c_{0}^{\delta},$ $ 0\leqq\gamma<2\alpha$ and $0\leqq\delta<|2\nu|$ , is called the normal form of an ele-
ment of $G_{\alpha\nu}$ .

3. Klein bottles in $M_{\alpha}$

A surface $F$ in the 3-manifold $Q$ is said to be comPressible in $Q$ , if
(1) there exists a disk $D$ in $Q$ such that $D\cap F=BdD$ and Bd $D$ is essential

in $F$, or
(2) there exists a 3-ball $E$ in $Q$ such that Bd $E=F$. We say that $F$ is incom-

pressible in $Q$ , if $F$ is not compressible in $Q$ . In this section we will show that
$K_{0}$ is incompressible in $M_{\alpha\nu}$ and will classify the $in\infty mpreaeible$ Klein bottles in
$M_{\alpha}$ . up to ambient isotopy.

Let $c_{2}$ be a simple closed curve on $K_{0}$ with $c_{2}\cap c_{0}=c_{1}\cap c_{0}=q$ such that $c_{2}$ re-
presents $c_{1}c_{0}$ in $\Pi_{1}(K_{0}, q)$ . Then any one-sided curves on $K_{0}$ is ambient isotopic
to $c_{1},$ $c_{2},$

$c_{1}^{-1}$ or $c_{2}^{-1}$ , where $c_{i}^{-1}$ is the same curve as $c_{i}$ with opposite orientation.
Furthermore any essential $two\cdot sided$ curve on $K_{0}$ can be deformed so that it coin-
cides with either $c$, or the boundary of a regular $neighbourhd$ of $c_{1}$ on $K_{0}$ .
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The following lemma has been proved by T. M. Price [5] for the case $(\alpha, \nu)=$

$(1,2)$ .
Lemma 3.1. $K_{0}$ is incompressible in $M_{\alpha\nu}$ .
Proof. Assume that $K_{0}$ is compressible in $M_{\alpha\nu}$ . Then there exists a disk $D$

in $M_{\alpha\nu}$ such that $D\cap K_{0}=BdD$ and Bd $D$ is essential on $K_{0}$ . As $N$ is a regular

neighbourhood of $K_{0}$ , we can deform $D$ so that $D\cap V$ is a disk. Since the homo-

morphism from $\Pi_{1}(BdV)$ into $\Pi_{1}(N)$ induced by the inclusion is injective, Bd $ V\cap$

$D$ is essential in Bd $V$. Thus $V\cap D$ is a meridian disk of $V$ and $\Pi_{1}(M_{\alpha\nu}, q)\cong$

$\Pi_{1}(K_{0}\cup D, q)$ . As Bd $D$ is a two-sided curve on $K_{0}$ , it can be deformed so that

it coincides with $c_{0}$ or the boundary of a regular neighburhood of $c_{1}$ on $K_{0}$ . Hence
$\Pi_{1}(K_{0}\cup D, q)$ is isomorphic to $\langle c_{0}, c_{1};c_{1}^{2}=(c_{1}c_{0})^{2}=1\rangle\cong Z_{2}*Z_{2}$ or $\langle c_{0},$

$c_{1};c_{1}^{2}=(c_{1}c_{0})^{2}$ ,
$c_{0}=1\rangle\cong Z$, where $*denotes$ the free product of two groups. While $\Pi_{1}(M_{\alpha\nu}, q)$ has a
finite order, both $Z_{2}*Z_{2}$ and $Z$ have an infinite order. Thus we have a contradiction.

Conversely the 3-manifold which is obtained by gluing the twisted line bundle
over $K_{0}$ and a solid torus is a prism manifold, if $K_{0}$ is incompressible in the 3-
manifold.

Lemma 3.2. Any incompressible Klein bottle $K$ in $N$ is ambient isotopic to $K_{0}$ .

Proof. If we regard $N$ as a line bundle over $K_{0}$ , the restriction of the line

bundle to $c_{0}$ is an annlus $A$ , which is incompressible and is not parallel to Bd $N$.
Then we can deform $K$ so that $K\cap A$ consists of essential two-sided curves on $K$.
We may assume that $A$ and $K\cap A$ are vertical with respect to the $S^{1}$-bundle
$p:N\rightarrow B$, i.e. $p^{-1}p(A)=A$ and $p^{-1}p(K\cap A)=K\cap A$ . Clearly $ K\cap$ ($N$-Int $N(A)$) con-
sists of annuli. Thus by an ambient isotopy of $N$ we can deform $K$ so that it is
vertical with respect to $p$ . Since the intersection of $K$ and the cross-section $B^{\prime}$

of $p:N\rightarrow B$ is a centerline of $B^{\prime}$ , we can deform $A$ so that $K\cap B^{\prime}=K_{0}\cap B^{\prime}$ . Then
$ K\cap$ {$N$–Int $N(B^{\prime})$ } and $ K_{0}\cap$ { $N$-Int $N(B^{\prime})$ } are M\"obius bands in the solid torus
$N$-Int $N(B^{\prime})$ . Therefore $K$ is ambient isotopic to $K_{0}$ .

Lemma 3.3. SuPpose that $M_{\alpha\nu}$ is a prism manifold with $|v|\neq 2$ . Then any

self-homeomorphism $g$ of $M_{\alpha}$ . is isotopic to a self-homeomorphism $g_{0}$ such that
$g_{0}(K_{0})=K_{0}$ .

Proof. Deform $g(K_{0})$ slightly so that it is in a general position with respect

to $K_{0}$ . Since $K_{0}$ is incompressible in $M_{a\nu}$ and $M_{a\nu}$ is irreducible, we can remove
all inessential curves in $g(K_{0})\cap K_{0}$ . By using the uniqueness of a regular neigh-

bourhood of $K_{0}$ , we can deform $g(K_{0})$ so that $g(K_{0})\cap V$ consists of a finite number
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of annuli and at most one M\"obius band.
Suppose that $g(K_{0})\cap V$ contains no M\"obius band. Let $c^{\prime}$ be a simple closed

curve in $ g(K_{0})\cap$ Bd $V$. As $g(K_{0})$ is incompressible in $M_{\alpha\nu},$
$c^{\prime}$ is not a meridian of

V. Hence each component of $g(K_{0})\cap V$ is parallel to Bd $V$. Thus we can remove
all intersection curves in $g(K_{0})\cap BdV$.

If there is a M\"obius band in $g(K_{0})\cap V$, a closed curve $c^{\prime\prime}$ in $ g(K_{0})\cap$ Bd $V$ is
homologous to Bd $B^{\prime}$ in Bd $V$. Hence the intersection number of $c^{\prime\prime}$ with $x$ is
$\pm v$ . But $|v|\neq 2$ . Hence $g(K_{0})\cap V$ contains no M\"obius band. Thus, using Lemma
3.2, we complete the proof.

Regarding $N$ as a line bundle over $K_{0}$ , let $B_{i}$ be the restricted bundle over
$c_{i}$ , for $i=1,2$ . Then $B_{i}$ is a M\"obius band and the intersection number of Bd $B$ with
$x$ is $\pm v$ . Assume that $|v|=2$ . Then there exists a M\"obius band $B_{i}^{\prime}$ in $V$ such
that Bd $B_{i}^{\prime}=BdB_{i}$ , for $i=1,2$, and B\’i $nB_{2}=c_{3}$ , where $c_{3}$ is a centerline of $V$. Let
$K_{i}$ denote a Klein bottle $B_{i}\cap B_{i}^{\prime},$ $i=1,2$ . Since $M_{\alpha\nu}$ is irreducible and $\Pi_{1}(M_{\alpha\nu})$

is finite, $K_{i}$ is incompressible in $M_{\alpha\nu}$ .
Lemma 3.4. Let $M_{a\nu}$ be a prism manifold with $|\nu|=2$ . Then any incompress-

ible Klein bottle $K$ in $M_{a\nu}$ is ambient isotopic to $K_{i},$ $i=0,1$ or 2.
Proof. Suppose that $K\cap K_{0}$ contains either two one-sided curves or no one

sided curve on $K_{0}$ . Then $K\cap V$ consists of annuli. Hence the same argument
as in the $prf$ of Lemma 3.3 implies that $K$ is ambient isotopic to $K_{0}$ .

Now we suppose that there is a M\"obius band in $K\cap V$. We can deform $K$

so that $K\cap K_{0}$ contains $c_{1}$ or $c_{2}$ . Since the M\"obius band in $K\cap V$ intersects with
$B_{i}^{\prime}$ in a centerline of $B_{i}^{\prime}$ and a finite nnmber of two-sided curves on $B_{i}^{\prime},$ $K\cap K$:
contains two one sided curves on $K_{i}$ . Since $M_{\alpha}$.-Int $N(K_{1})$ is a solid torus and
$ K\cap$ {$M_{a\nu}$ -Int $N(K_{1})$ } consists of annuli, we can deform $K$ so that $K$ coincides
with $K_{:}$ .

Now we construct a self-homeomorphism $f_{l}$ of $M_{\alpha\nu}$ such that $f_{:}(K_{0})=K:,$ $i=$

$1,2$ . Define a homeomorphism rt of $K_{0}\cup K_{i}$ onto itself so that $f_{i}^{\prime}(c_{1})=c_{i}$ and
$f_{i}^{\prime}(c_{2})=c_{3}$ , for $i=1,2$ . Then $f_{i}^{\prime}$ can be extended to an orientation preserving home-
morphism $f_{1}$ of $N(K_{0}\cup K_{1})$ . If we consider $M_{a\nu}$ as a Seifert fiber space { $\pm(\alpha-3)/2$ ;
$(0_{1},0);(2,1),$ $(2,1),$ $(2,1)$ } with the exceptional fibers $c_{1},$ $c_{2}$ and $c_{3},$

$M_{\alpha}$.-Int $ N(K_{0}\cup$

$K_{1})$ is a regular neighbourhood of a normal fiber of the Seifert fiber space and
$f_{i}$ is a fiber preserving homeomorphism. Thus we can extend $f_{i}$ to a self-home-
omorphism of $M_{a\nu}$ .
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4. Homeotopy groups

In this section we calculate the homeotopy group $\mathscr{G}(M_{\alpha\nu})$ of $M_{\alpha\nu}$ . First we have

Lemma 4.1. $M_{\alpha\nu}$ does not admit an orientation reversing homeomorphism.

Proof. Suppose that there exists an orientation reversing homeomorphism $r$

of $M_{a\nu}$ . We may assume that $r(K_{0})=K_{0},$ $r(c_{0})=c_{0},$ $r(q)=q$ and $r(r=N$. Let $r_{*}$

denote the isomorphism from $H_{1}(BdV)$ onto itself induced by the restriction of $r$

to Bd $V$. Since $r(c_{0})$ represents $c_{\dot{0}}$ and $r(c_{1})$ represents ci or $(c_{1}c_{0})$ in $\Pi_{1}(K_{0}, q)$ ,
$\epsilon=1$ or-l, $r_{*}(c)=\epsilon c$ and $r_{*}(h)=-\epsilon h$ , where $c$ is the boundary of the cross-section
$B_{i}^{\prime}$ of $N$ and $h$ is a fiber on Bd $N$. Hence $r_{*}(x)=\epsilon\alpha c-\text{\’{e}} vh$ . Since $r(x)$ is a meri-

dian of $V$ and $\epsilon ac-\epsilon vh*O$ in $V$, we have a contradiction.
Every homeomorphism of $K_{0}$ isotopic to a fiber preserving homeomorphism

and can be extended to an orientation preserving homeomorphism of $N$. Further-

more we can extend the homeomorphism to an homeomorphism of $M_{a\nu}$ . Thus

there is a natural homomorphism $\Phi;\ovalbox{\tt\small REJECT}^{\prime}(K_{0})\rightarrow\ovalbox{\tt\small REJECT}(M_{\alpha\nu})$ . Note that $\ovalbox{\tt\small REJECT}(K_{0})\cong Z_{2}\times Z_{2}$ .
For $|\nu|\neq 2$, by Lemma 3.3, $\Phi$ is onto.

Lemma 4.2. For $\alpha\neq 1$ , Ker $\Phi$ is trival.

Proof. Let $\ovalbox{\tt\small REJECT}(G_{a\nu})$ denote the group of outerautomorphisms of $G_{\alpha\nu}$ . Then

there exists a homomorphism $\Psi;\mathscr{G}(M_{\alpha\nu})\rightarrow\ovalbox{\tt\small REJECT}(G_{\alpha\nu})$ . We shall show that Ker $\Psi\Phi$

is trivial It is sufficient to prove that the conjugacy classes of $c_{1},$ $c_{2},$
$c_{1}^{-1}$ and $c^{-1}$

are mutually disjoint in $G_{a\nu}$ . The normal forms of $c_{1},$ $c_{2},$
$c_{1}^{-1}$ and $c_{2}^{-1}$ are $c_{1},$ $c_{1}c_{0}$ ,

$c_{1}^{2\alpha-1}c_{0}^{|\nu|}$ and $c_{1}^{2a-1}c_{0}^{|\nu|+1}$ , respectively. Let $c_{1}^{\lambda}c_{0}^{\mu}$ be the normal form of an arbitrary

element of $G_{\alpha\nu}$ . Then

$(c_{1}^{\lambda}c_{0}^{\mu})^{-1}c_{1}(c_{1}^{\lambda}c_{0}^{\mu})=c_{1}c_{0}^{l\mu}$ or $c_{1}c_{0}^{2|\nu|-2\mu}$

$(c_{1}^{\lambda}c_{0}^{\mu})^{-1}c_{1}c_{0}(c_{1}^{\lambda}c_{0}^{\mu})=c_{1}c_{0}^{2\mu+1}$ or $c_{1}c_{0^{\mu-1}}^{2}$

Hence, $\alpha=1$ and $v$ is odd if and only if there exist integers $\lambda$ and $\mu$ such that
$(c_{1}^{\lambda}c_{0}^{\mu})^{-1}c_{1}(c_{1}^{\lambda}c_{0}^{\mu})=c_{1}^{2\alpha-1}c_{0}^{|\nu|+1}$ and $(c_{1}^{\lambda}c_{0}^{\mu})^{-1}c_{1}c_{0}(c_{1}^{\lambda}c_{0}^{\mu})=c_{1}^{2\alpha-1}c_{0}^{|\nu|}$ . Similarly, $\alpha=1$ and $\nu$ is even
if and only if there exist integers $\lambda^{\prime}$ and $\mu^{\prime}$ such that $(c_{1}^{\lambda^{\prime}}c_{0}^{\mu^{\prime}})^{-1}c_{1}(c_{1}^{\lambda^{\prime}}c_{0}^{\mu^{\prime}})=c_{1}^{t\alpha-1}c_{0}^{|\nu|}$ ,
$(c_{1}^{\lambda^{\prime}}c_{0}^{\mu^{\prime}})^{-1}c_{1}c_{0}(c_{1}^{\lambda^{\prime}}c_{0}^{\mu^{\prime}})=c_{1}^{2a-1}c_{0}^{|\nu|+1}$ . Thus the conjugacy classes of $c_{1},$ $c_{l},$

$c_{1}^{-1}$ and $c^{-1}$ are
mutually disjoint except for $\alpha=1$ .

For $\alpha=1,$ $M_{a\nu}$ is an S’-bundle over a projective plane. The following pro-

position will be proved easily.

Proposition 4.3. Let $p:Q\rightarrow T$ b\’e an $S^{1}$-bundle over a surface $T$ and $\{\dot{t} ; 0\leqq t\leqq 1\}$

an isotopy of T. Suppose that there exists a homeomorphism $F$ of $Q$ onto itself
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such that $pF=i_{0}p$ . Then there exists an isotopy $\{I_{\ell j}0\leqq t\leqq 1\}$ of $Q$ such that $pI_{\ell}=$

$i_{\ell}p$ and $I_{0}=F$.
Since there is an isotopy of a projective plane $P^{2}$ which takes a one-sided

curve on $P$ onto the same curve with opposite orientation, it follows from Pro-
position 4.3 that for $\alpha=1$ there exists an isotopy of $M_{\alpha\nu}$ which takes $\{c_{1}, c_{2}\}$ to
$\{c_{1}^{-1}, c^{-1}\}$ . Hence we have

Lemma 4.4. For $\alpha=1$ , Ker $\Phi\cong Z_{2}$ .
Assume that $|\nu|=2$ . Let $c_{s}$ be a centerline of $V$. Then $c_{3}$ represents the con-

jugacy class of $c_{1}^{2a^{\prime}}c_{0}^{\nu^{\prime}}$ or $(c_{1}^{2\alpha^{\prime}}c_{0}^{\nu^{\prime}})^{-1}$ in $G_{\alpha\nu}$ , where $\alpha^{\prime}$ and $v^{J}$ are integers with $2\alpha^{\prime}$

-

$\alpha v^{\prime}=1$ . Furthermore, the conjugacy class of $c_{1}^{2\alpha^{\prime}}c_{0}^{\nu^{\prime}}$ is $\{c_{1}^{a^{\prime}}c_{0}^{\nu^{\prime}}, c_{1}^{2\alpha^{\prime}}c_{0}^{-\nu^{\prime}}\}$ . Hence the
conjugacy classes of $c$: and $c_{i}^{-1},$ $i=1,2,3$ , are mutually disjoint. Thus there is an
epimorphism $\Psi^{\prime}$ from $\ovalbox{\tt\small REJECT}(G_{\alpha\nu})$ onto the symmetric group $S_{s}$ of degree 3 which is
defined by

$\Psi^{\prime}(\phi)=\left(\begin{array}{lll}1 & 2 & 3\\\gamma_{1} & \gamma_{2} & \gamma_{8}\end{array}\right)$ if $\phi(c_{i})$ is $c_{\gamma_{i}}$ or $c_{\gamma_{i}}^{-1}$ in $G_{a\nu}$ .
Define a homomorphism $\Phi^{\prime}$ from $S_{3}$ into $\ovalbox{\tt\small REJECT}(M_{\alpha\nu})$ by $\Phi^{\prime}(2,3)=[f_{1}],$ $\Phi^{\prime}(1,2,3)=[f_{2}]$ ,
where $[f_{i}]$ denotes the isotopy class of $f_{i},$ $i=1,2$ . Then the exact sequence

$1\rightarrow Ker\Psi^{\prime}\rightarrow\ovalbox{\tt\small REJECT}(M_{\alpha\nu})\rightarrow S_{3}\rightarrow 1$

splits by $\Phi^{\prime}$ . Clearly Ker $\Psi^{\prime}$ is a Proper subgroup of $\Phi\{\ovalbox{\tt\small REJECT}(K_{0})\}$ . Hence Ker $\Psi^{\prime}\cong Z_{2}$ .
We summarize our results in the following theorem.

Theorem 4.5. $\ovalbox{\tt\small REJECT}(M_{a\nu})\cong\left\{\begin{array}{ll}Z_{2} & \alpha=1, |v|\neq 2\\S_{s} & \alpha=1, v|=2\\Z_{2}\times Z_{2} & \alpha\neq 1, |v|\neq 2\\S_{3}\times Z_{2} & \alpha\neq 1, |\nu|=2.\end{array}\right.$

For the case $\alpha=1$ and $|v|=2,$ $\ovalbox{\tt\small REJECT}^{p}(M_{a\nu})$ has been determined by T. M. Price [5].
Let $L(2k, p)$ be a lens space of type $(2k, p)$ and let $q$ be the integer with $pq=$

$\pm 1$ mod2k and $0<q<k$ . It follows from [1] that $k-q=1$ , i.e. $2k=4n$ and $P=2n\pm 1$ ,
if and only if $L(2k, p)$ contains an incompressible Klein bottle $K$. As Bd $N(K)$ is
compressible in $L(4n, 2n\pm 1),$ $L(4n, 2n\pm 1)$ -Int $N(K)$ is a solid torus. Hence $L(4n$ ,
$2n\pm 1)$ is a prism manifold. Since $|v|=1$ if and only if $G_{\alpha\nu}\cong Z_{4\alpha}$ , we have

Corollary 4.6. $\ovalbox{\tt\small REJECT}^{\prime}(L(4n, 2n\pm 1))\cong\left\{\begin{array}{ll}Z_{2} & if n=1\\Z_{2}\times Z_{2} & if n\neq 1.\end{array}\right.$
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Note added in proof. The same result has been obtained independently by

J. H. Rubinstein. His paper will appear in Trans. Amer. Math. Soc.
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