HOMEOMORPHISMS OF PRISM MANIFOLDS

By
Kouhei Asano

(Received December 10, 1976)

1. Introduction

The homeotopy group $\mathscr{\mathscr { C }}(X)$ of a space X is the group of all self-homeomorphisms of X modulo the subgroup consisting of those homeomorphisms which are isotopic to the identity. The purpose of this paper is to compute the homeotopy group of a certain family of 3 -manifolds, called prism manifolds. In $\S 4$, we will completely determine the homeotopy group of prism manifolds Theorem 4.5). Furthermore, as an application of our theorem, we will determine the homeotopy group of the lens space $L(4 n, 2 n \pm 1)$ of type ($4 n, 2 n \pm 1$). More precisely, we have

Corollary 4.6. $\mathscr{C}\{L(4 n, 2 n \pm 1)\} \cong\left\{\begin{array}{lll}Z_{2} & \text { if } & n=1 \\ Z_{2} \times Z_{2} & \text { if } & n \neq 1 .\end{array}\right.$
In §2, we will define a prism manifold. In §3, the incompressible Klein bottles in the prism manifold will be discussed.

Throughout this paper we work in the piecewise linear category. For a subcomplex X of a manifold Y, the regular neighbourhood of X in Y will be denoted by $N(X)$. The boundary and the interior of a manifold Y will be denoted by $\mathrm{Bd} Y$ and Int Y, respectively.

A surface F properly embedded in a 3 -manifold M is said to be parallel to $\operatorname{Bd} M$ if there exists an embedding $f: F \times I \rightarrow M$ such that $f(F \times\{0\})=F$ and $f(\operatorname{Bd} F) \times I \cup$ $F \times\{1\}\} \subset \operatorname{Bd} M$, where I denotes the unit interval $[0,1]$.

2. Prism manifolds

Let $p ; N \rightarrow B$ be an S^{1}-bundle over a Möbius band B. Suppose that N is orientable. Then $p^{-1}(a)$, where a is a centerline of B, is a Klein bottle K_{0}. Let c_{0} be a fiber on K_{0} and let c_{1} be an oriented simple closed curve on K_{0} such that $c_{0} \cap c_{1}$ is a point q and $p\left(c_{1}\right) \sim a$ on B. Then

$$
\Pi_{1}\left(K_{0}, q\right)=\left\langle c_{0}, c_{1} ; c_{1}^{2}=\left(c_{1} c_{0}\right)^{2}\right\rangle .
$$

As N is orientable, it is a regular neighbourhood of K_{0} and can be considered as a line bundle over K_{0}. The restriction B^{\prime} of the line bundle N to c_{1} is home-
omorphic to Möbius band and is a cross-section of the S^{1}-bundle $p: N \rightarrow B$. The boundary c of B^{\prime} and a fiber h on $\operatorname{Bd} N$ form a system of generators of $H_{1}(\operatorname{Bd} N)$. By V we denote a solid torus with a meridian x. Let $k_{\alpha \nu}$ be a homeomorphism from $\mathrm{Bd} V$ to $\mathrm{Bd} N$ which induces an isomorphism $k_{\alpha \nu}^{*}: H_{1}(\operatorname{Bd} V) \rightarrow H_{1}(\operatorname{Bd} N)$ such that $k_{\alpha \nu}^{*}(x)=\alpha c+\nu h$, where α and ν are relatively prime integers with $\alpha>0$.

Let $M_{\alpha \nu}$ denote the 3 -manifold obtained by gluing N to V via $k_{\alpha \nu}$. Let b and β be integers such that $b \alpha+\beta=\nu$ and $\alpha>\beta \geqq 0$. Then $M_{\alpha \nu}$ is homeomorphic to a Seifert fiber space with the invariants $\left\{b ;\left(n_{2}, 1\right)\right\}$ or $\left\{b ;\left(n_{2}, 1\right) ;(\alpha, \beta)\right\}$. If $(b, \alpha, \beta) \neq$ $(0,1,0)$, we call $M_{\alpha \nu}$ a prism manifold. Using Van Kampen Theorem, we can show that

$$
\Pi_{1}\left(M_{\alpha \nu}, q\right)=\left\langle c_{0}, c_{1} ; c_{1}^{2}=\left(c_{1} c_{0}\right)^{2}, c_{1}^{2 \alpha} c_{0}^{\nu}=1\right\rangle .
$$

We denote $\Pi_{1}\left(M_{\alpha \nu}, q\right)$ by $G_{\alpha \nu}$. From now on we will assume that $(\alpha, \nu) \neq(1,0)$.
Lemma 2.1. Each element of $G_{\alpha \nu}$ can be represented uniquely by the word $c_{1}^{\gamma} c_{0}^{\delta}$, where $0 \leqq \gamma<2 \alpha$ and $0 \leqq \delta<|2 \nu|$.

Proof. Applying the first relation in $G_{\alpha \nu}$, each element of $G_{\alpha \nu}$ can be represented by the word $c_{1}^{2} c_{0}^{\mu}$. Since $c_{1}^{-1} c_{0} c_{1}=c_{0}^{-1}$, we have $c_{0}^{-\nu}=c_{1}^{-1} c_{1}^{2 \alpha} c_{1}=c_{1}^{-1} c_{0}^{-\nu} c_{1}=c_{0}^{\nu}$. Thus we can reduce the word $c_{1}^{2} c_{0}^{\mu}$ so that $0 \leqq \lambda<2 \alpha$ and $0 \leqq \mu<|2 \nu|$. It follows from [3] that $G_{\alpha \nu}$ has a finite order $|4 \alpha \nu|$. This implies that $c_{1}^{\tau} c_{0}^{\delta}$ is uniquely represented.

The word $c_{1}^{\gamma} c_{0}^{\delta}, 0 \leqq \gamma<2 \alpha$ and $0 \leqq \delta<|2 \nu|$, is called the normal form of an element of $G_{\alpha \nu}$.

3. Klein bottles in M_{α}

A surface F in the 3 -manifold Q is said to be compressible in Q, if
(1) there exists a disk D in Q such that $D \cap F=\operatorname{Bd} D$ and $\operatorname{Bd} D$ is essential in F, or
(2) there exists a 3-ball E in Q such that $\mathrm{Bd} E=F$. We say that F is incompressible in Q, if F is not compressible in Q. In this section we will show that K_{0} is incompressible in $M_{\alpha \nu}$ and will classify the incompressible Klein bottles in $M_{\alpha \nu}$ up to ambient isotopy.

Let c_{2} be a simple closed curve on K_{0} with $c_{2} \cap c_{0}=c_{1} \cap c_{0}=q$ such that c_{2} represents $c_{1} c_{0}$ in $\Pi_{1}\left(K_{0}, q\right)$. Then any one-sided curves on K_{0} is ambient isotopic to c_{1}, c_{2}, c_{1}^{-1} or c_{2}^{-1}, where c_{i}^{-1} is the same curve as c_{i} with opposite orientation. Furthermore any essential two-sided curve on K_{0} can be deformed so that it coincides with either c_{0} or the boundary of a regular neighbourhood of c_{1} on K_{0}.

The following lemma has been proved by T. M. Price [5] for the case $(\alpha, \nu)=$ (1, 2).

Lemma 3.1. K_{0} is incompressible in $M_{\alpha \nu}$.
Proof. Assume that K_{0} is compressible in $M_{\alpha \nu}$. Then there exists a disk D in $M_{\alpha \nu}$ such that $D \cap K_{0}=\operatorname{Bd} D$ and $\operatorname{Bd} D$ is essential on K_{0}. As N is a regular neighbourhood of K_{0}, we can deform D so that $D \cap V$ is a disk. Since the homomorphism from $\Pi_{1}(\operatorname{Bd} V)$ into $\Pi_{1}(N)$ induced by the inclusion is injective, $\mathrm{Bd} V \cap$ D is essential in $\operatorname{Bd} V$. Thus $V \cap D$ is a meridian disk of V and $\Pi_{1}\left(M_{\alpha \nu}, q\right) \cong$ $\Pi_{1}\left(K_{0} \cup D, q\right)$. As $\operatorname{Bd} D$ is a two-sided curve on K_{0}, it can be deformed so that it coincides with c_{0} or the boundary of a regular neighburhood of c_{1} on K_{0}. Hence $\Pi_{1}\left(K_{0} \cup D, q\right)$ is isomorphic to $\left\langle c_{0}, c_{1} ; c_{1}^{2}=\left(c_{1} c_{0}\right)^{2}=1\right\rangle \cong Z_{2} * Z_{2}$ or $\left\langle c_{0}, c_{1} ; c_{1}^{2}=\left(c_{1} c_{0}\right)^{2}\right.$, $\left.c_{0}=1\right\rangle \cong Z$, where $*$ denotes the free product of two groups. While $\Pi_{1}\left(M_{\alpha \nu}, q\right)$ has a finite order, both $Z_{2} * Z_{2}$ and Z have an infinite order. Thus we have a contradiction.

Conversely the 3 -manifold which is obtained by gluing the twisted line bundle over K_{0} and a solid torus is a prism manifold, if K_{0} is incompressible in the 3manifold.

Lemma 3.2. Any incompressible Klein bottle K in N is ambient isotopic to K_{0}.
Proof. If we regard N as a line bundle over K_{0}, the restriction of the line bundle to c_{0} is an annlus A, which is incompressible and is not parallel to $\operatorname{Bd} N$. Then we can deform K so that $K \cap A$ consists of essential two-sided curves on K. We may assume that A and $K \cap A$ are vertical with respect to the S^{1}-bundle $p: N \rightarrow B$, i.e. $p^{-1} p(A)=A$ and $p^{-1} p(K \cap A)=K \cap A$. Clearly $K \cap(N-\operatorname{Int} N(A))$ consists of annuli. Thus by an ambient isotopy of N we can deform K so that it is vertical with respect to p. Since the intersection of K and the cross-section B^{\prime} of $p: N \rightarrow B$ is a centerline of B^{\prime}, we can deform A so that $K \cap B^{\prime}=K_{0} \cap B^{\prime}$. Then $K \cap\left\{N-\right.$ Int $\left.N\left(B^{\prime}\right)\right\}$ and $K_{0} \cap\left\{N-\operatorname{Int} N\left(B^{\prime}\right)\right\}$ are Möbius bands in the solid torus N-Int $N\left(B^{\prime}\right)$. Therefore K is ambient isotopic to K_{0}.

Lemma 3.3. Suppose that $M_{\alpha \nu}$ is a prism manifold with $|\nu| \neq 2$. Then any self-homeomorphism g of $M_{\alpha \nu}$ is isotopic to a self-homeomorphism g_{0} such that $g_{0}\left(K_{0}\right)=K_{0}$.

Proof. Deform $g\left(K_{0}\right)$ slightly so that it is in a general position with respect to K_{0}. Since K_{0} is incompressible in $M_{\alpha \nu}$ and $M_{\alpha \nu}$ is irreducible, we can remove all inessential curves in $g\left(K_{0}\right) \cap K_{0}$. By using the uniqueness of a regular neighbourhood of K_{0}, we can deform $g\left(K_{0}\right)$ so that $g\left(K_{0}\right) \cap V$ consists of a finite number
of annuli and at most one Möbius band.
Suppose that $g\left(K_{0}\right) \cap V$ contains no Möbius band. Let c^{\prime} be a simple closed curve in $g\left(K_{0}\right) \cap \mathrm{Bd} V$. As $g\left(K_{0}\right)$ is incompressible in $M_{\alpha \nu}, c^{\prime}$ is not a meridian of V. Hence each component of $g\left(K_{0}\right) \cap V$ is parallel to $\mathrm{Bd} V$. Thus we can remove all intersection curves in $g\left(K_{0}\right) \cap \mathrm{Bd} V$.

If there is a Möbius band in $g\left(K_{0}\right) \cap V$, a closed curve $c^{\prime \prime}$ in $g\left(K_{0}\right) \cap \mathrm{Bd} V$ is homologous to $\operatorname{Bd} B^{\prime}$ in $\operatorname{Bd} V$. Hence the intersection number of $c^{\prime \prime}$ with x is $\pm \nu$. But $|\nu| \neq 2$. Hence $g\left(K_{0}\right) \cap V$ contains no Möbius band. Thus, using Lemma 3.2, we complete the proof.

Regarding N as a line bundle over K_{0}, let B_{i} be the restricted bundle over c_{i}, for $i=1,2$. Then B_{i} is a Möbius band and the intersection number of $\mathrm{Bd} B$ with x is $\pm \nu$. Assume that $|\nu|=2$. Then there exists a Möbius band B_{i}^{\prime} in V such that $\operatorname{Bd} B_{i}^{\prime}=\operatorname{Bd} B_{i}$, for $i=1,2$, and $B_{1}^{\prime} \cap B_{2}^{\prime}=c_{3}$, where c_{3} is a centerline of V. Let K_{i} denote a Klein bottle $B_{i} \cap B_{i}^{\prime}, i=1,2$. Since $M_{\alpha \nu}$ is irreducible and $\Pi_{1}\left(M_{\alpha \nu}\right)$ is finite, K_{i} is incompressible in $M_{\alpha \nu}$.

Lemma 3.4. Let $M_{\alpha \nu}$ be a prism manifold with $|\nu|=2$. Then any incompressible Klein bottle K in $M_{\alpha \nu}$ is ambient isotopic to $K_{i}, i=0,1$ or 2.

Proof. Suppose that $K \cap K_{0}$ contains either two one-sided curves or no one sided curve on K_{0}. Then $K \cap V$ consists of annuli. Hence the same argument as in the proof of Lemma 3.3 implies that K is ambient isotopic to K_{0}.

Now we suppose that there is a Möbius band in $K \cap V$. We can deform K so that $K \cap K_{0}$ contains c_{1} or c_{2}. Since the Möbius band in $K \cap V$ intersects with B_{i}^{\prime} in a centerline of B_{i}^{\prime} and a finite nnmber of two-sided curves on $B_{i}^{\prime}, K \cap K_{i}$ contains two one sided curves on K_{i}. Since $M_{\alpha \nu}-\operatorname{Int} N\left(K_{i}\right)$ is a solid torus and $K \cap\left\{M_{\alpha \nu}-\right.$ Int $\left.N\left(K_{i}\right)\right\}$ consists of annuli, we can deform K so that K coincides with K_{i}.

Now we construct a self-homeomorphism f_{i} of $M_{\alpha \nu}$ such that $f_{i}\left(K_{0}\right)=K_{i}, i=$ 1,2. Define a homeomorphism f_{i}^{\prime} of $K_{0} \cup K_{i}$ onto itself so that $f_{i}^{\prime}\left(c_{1}\right)=c_{i}$ and $f_{i}^{\prime}\left(c_{2}\right)=c_{3}$, for $i=1,2$. Then f_{i}^{\prime} can be extended to an orientation preserving homemorphism f_{i} of $N\left(K_{0} \cup K_{i}\right)$. If we consider $M_{\alpha \nu}$ as a Seifert fiber space $\{ \pm(\alpha-3) / 2$; $\left.\left(o_{1}, 0\right) ;(2,1),(2,1),(2,1)\right\}$ with the exceptional fibers c_{1}, c_{2} and $c_{3}, M_{\alpha \nu}-\operatorname{Int} N\left(K_{0} \cup\right.$ K_{i}) is a regular neighbourhood of a normal fiber of the Seifert fiber space and f_{i} is a fiber preserving homeomorphism. Thus we can extend f_{i} to a self-homeomorphism of $M_{\alpha \nu}$.

4. Homeotopy groups

In this section we calculate the homeotopy group $\mathscr{C}\left(M_{\alpha \nu}\right)$ of $M_{\alpha \nu}$. First we have
Lemma 4.1. $M_{\alpha \nu}$ does not admit an orientation reversing homeomorphism.
Proof. Suppose that there exists an orientation reversing homeomorphism r of $M_{\alpha \nu}$. We may assume that $r\left(K_{0}\right)=K_{0}, r\left(c_{0}\right)=c_{0}, r(q)=q$ and $r(N)=N$. Let r_{*} denote the isomorphism from $H_{1}(\mathrm{Bd} V)$ onto itself induced by the restriction of r to $\mathrm{Bd} V$. Since $r\left(c_{0}\right)$ represents c_{0}^{t} and $r\left(c_{1}\right)$ represents c_{1}^{6} or $\left(c_{1} c_{0}\right)^{\varepsilon}$ in $\Pi_{1}\left(K_{0}, q\right)$, $\varepsilon=1$ or $-1, r_{*}(c)=\varepsilon c$ and $r_{*}(h)=-\varepsilon h$, where c is the boundary of the cross-section B_{i}^{\prime} of N and h is a fiber on $\operatorname{Bd} N$. Hence $r_{*}(x)=\varepsilon \alpha c-\varepsilon \nu h$. Since $r(x)$ is a meridian of V and $\varepsilon \alpha c-\varepsilon \nu h \nsim 0$ in V, we have a contradiction.

Every homeomorphism of K_{0} isotopic to a fiber preserving homeomorphism and can be extended to an orientation preserving homeomorphism of N. Furthermore we can extend the homeomorphism to an homeomorphism of $M_{\alpha \nu}$. Thus there is a natural homomorphism $\Phi: \mathscr{H}\left(K_{0}\right) \rightarrow \mathscr{H}\left(M_{\alpha \nu}\right)$. Note that $\mathscr{H}\left(K_{0}\right) \cong Z_{2} \times Z_{2}$. For $|\nu| \neq 2$, by Lemma 3.3, Φ is onto.

Lemma 4.2. For $\alpha \neq 1, \operatorname{Ker} \Phi$ is trival.
Proof. Let $\mathscr{A}\left(G_{\alpha \nu}\right)$ denote the group of outerautomorphisms of $G_{\alpha \nu}$. Then there exists a homomorphism $\Psi: \mathscr{C}\left(M_{\alpha \nu}\right) \rightarrow \mathscr{A}\left(G_{\alpha \nu}\right)$. We shall show that Ker $\Psi \Phi$ is trivial It is sufficient to prove that the conjugacy classes of c_{1}, c_{2}, c_{1}^{-1} and c_{2}^{-1} are mutually disjoint in $G_{\alpha \nu}$. The normal forms of c_{1}, c_{2}, c_{1}^{-1} and c_{2}^{-1} are $c_{1}, c_{1} c_{0}$, $c_{1}^{2 \alpha-1} c_{0}^{|\nu|}$ and $c_{1}^{2 \alpha-1} c_{0}^{|\nu|+1}$, respectively. Let $c_{1}^{2} c_{0}^{\mu}$ be the normal form of an arbitrary element of $G_{\alpha \nu}$. Then

$$
\begin{array}{ll}
\left(c_{1}^{\lambda} c_{0}^{\mu}\right)^{-1} c_{1}\left(c_{1}^{\lambda} c_{0}^{\mu}\right)=c_{1} c_{0}^{2 \mu} & \text { or } \\
\left(c_{1} c_{0}^{2|\nu|-2 \mu}\right. \\
\left(c_{1}^{\lambda} c_{0}^{\mu}\right)^{-1} c_{1} c_{0}\left(c_{1}^{\lambda} c_{0}^{\mu}\right)=c_{1} c_{0}^{2 \mu+1} & \text { or } \quad c_{1} c_{0}^{2 \mu-1}
\end{array}
$$

Hence, $\alpha=1$ and ν is odd if and only if there exist integers λ and μ such that $\left(c_{1}^{\lambda} c_{0}^{\mu}\right)^{-1} c_{1}\left(c_{1}^{\lambda} c_{0}^{\mu}\right)=c_{1}^{2 \alpha-1} c_{0}^{|\nu|+1}$ and $\left(c_{1}^{\lambda} c_{0}^{\mu}\right)^{-1} c_{1} c_{0}\left(c_{1}^{\lambda} c_{0}^{\mu}\right)=c_{1}^{2 \alpha-1} c_{0}^{\nu \nu \mid}$: Similarly, $\alpha=1$ and ν is even if and only if there exist integers λ^{\prime} and μ^{\prime} such that $\left(c_{1}^{\lambda^{\prime}} c_{0}^{\mu \prime}\right)^{-1} c_{1}\left(c_{1}^{\lambda^{\prime}} c_{0}^{\mu \prime}\right)=c_{1}^{2 \alpha-1} c_{0}^{|\nu|}$, $\left(c_{1}^{\lambda^{\prime}} c_{0}^{\mu^{\prime}}\right)^{-1} c_{1} c_{0}\left(c_{1}^{\lambda^{\prime}} c_{0}^{\mu^{\prime}}\right)=c_{1}^{2 \alpha-1} c_{0}^{|\nu|+1}$. Thus the conjugacy classes of c_{1}, c_{2}, c_{1}^{-1} and c_{2}^{-1} are mutually disjoint except for $\alpha=1$.

For $\alpha=1, M_{\alpha \nu}$ is an S^{1}-bundle over a projective plane. The following proposition will be proved easily.

Proposition 4.3. Let $p: Q \rightarrow T$ be an S^{1}-bundle over a surface T and $\left\{i_{t} ; 0 \leqq t \leqq 1\right\}$ an isotopy of T. Suppose that there exists a homeomorphism F of Q onto itself
such that $p F=i_{0} p$. Then there exists an isotopy $\left\{I_{t} ; 0 \leqq t \leqq 1\right\}$ of Q such that $p I_{t}=$ $i_{t} p$ and $I_{0}=F$.

Since there is an isotopy of a projective plane P^{2} which takes a one-sided curve on P^{2} onto the same curve with opposite orientation, it follows from Proposition 4.3 that for $\alpha=1$ there exists an isotopy of $M_{\alpha \nu}$ which takes $\left\{c_{1}, c_{2}\right\}$ to $\left\{c_{1}^{-1}, c_{2}^{-1}\right\}$. Hence we have

Lemma 4.4. For $\alpha=1, \operatorname{Ker} \Phi \cong Z_{2}$.
Assume that $|\nu|=2$. Let c_{3} be a centerline of V. Then c_{3} represents the conjugacy class of $c_{1}^{2 \alpha^{\prime}} c_{0}^{\nu^{\prime}}$ or $\left(c_{1}^{2 \alpha^{\prime}} c_{0}^{\nu^{\prime}}\right)^{-1}$ in $G_{\alpha \nu}$, where α^{\prime} and ν^{\prime} are integers with $2 \alpha^{\prime}-$ $\alpha \nu^{\prime}=1$. Furthermore, the conjugacy class of $c_{1}^{2 \alpha^{\prime}} c_{0}^{\nu^{\prime}}$ is $\left\{c_{1}{ }^{\alpha^{\prime}} c_{0}^{\nu{ }^{\prime \prime}}, c_{1}^{2 \alpha^{\prime}} c_{0}^{-\nu^{\prime}}\right\}$. Hence the conjugacy classes of c_{i} and $c_{i}^{-1}, i=1,2,3$, are mutually disjoint. Thus there is an epimorphism Ψ^{\prime} from $\mathscr{A}\left(G_{\alpha \nu}\right)$ onto the symmetric group S_{3} of degree 3 which is defined by

$$
\Psi^{\prime}(\phi)=\left(\begin{array}{lll}
1 & 2 & 3 \\
\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right) \quad \text { if } \quad \phi\left(c_{i}\right) \quad \text { is } \quad c_{\gamma_{i}} \text { or } c_{\gamma_{i}}^{-1} \text { in } G_{\alpha \nu}
$$

Define a homomorphism Φ^{\prime} from S_{3} into $\mathscr{H}\left(M_{\alpha \nu}\right)$ by $\Phi^{\prime}(2,3)=\left[f_{1}\right], \Phi^{\prime}(1,2,3)=\left[f_{2}\right]$, where $\left[f_{i}\right]$ denotes the isotopy class of $f_{i}, i=1,2$. Then the exact sequence

$$
1 \rightarrow \operatorname{Ker} \Psi^{\prime} \rightarrow \mathscr{H}\left(M_{\alpha \nu}\right) \rightarrow S_{3} \rightarrow 1
$$

splits by Φ^{\prime}. Clearly $\operatorname{Ker} \Psi^{\prime}$ is a proper subgroup of $\Phi\left\{\mathscr{C}\left(K_{0}\right)\right\}$. Hence $\operatorname{Ker} \Psi^{\prime} \cong Z_{2}$.
We summarize our results in the following theorem.
Theorem 4.5. $\quad \mathscr{C}\left(M_{\alpha \nu}\right) \cong\left\{\begin{array}{lll}Z_{2} & \alpha=1, & |\nu| \neq 2 \\ S_{3} & \alpha=1, & |\nu|=2 \\ Z_{2} \times Z_{2} & \alpha \neq 1, & |\nu| \neq 2 \\ S_{3} \times Z_{2} & \alpha \neq 1, & |\nu|=2 .\end{array}\right.$
For the case $\alpha=1$ and $|\nu|=2, \mathscr{H}\left(M_{\alpha \nu}\right)$ has been determined by T. M. Price [5]. Let $L(2 k, p)$ be a lens space of type $(2 k, p)$ and let q be the integer with $p q=$ $\pm 1 \bmod 2 k$ and $0<q<k$. It follows from [1] that $k-q=1$, i.e. $2 k=4 n$ and $p=2 n \pm 1$, if and only if $L(2 k, p)$ contains an incompressible Klein bottle K. As $\operatorname{Bd} N(K)$ is compressible in $L(4 n, 2 n \pm 1), L(4 n, 2 n \pm 1)-\operatorname{Int} N(K)$ is a solid torus. Hence $L(4 \mathrm{n}$, $2 n \pm 1)$ is a prism manifold. Since $|\nu|=1$ if and only if $G_{\alpha \nu} \cong Z_{4 \alpha}$, we have

Corollary 4.6. $\mathscr{\mathscr { C }}(L(4 n, 2 n \pm 1)) \cong\left\{\begin{array}{lll}Z_{2} & \text { if } & n=1 \\ Z_{2} \times Z_{2} & \text { if } & n \neq 1 .\end{array}\right.$

Note added in proof. The same result has been obtained independently by J. H. Rubinstein. His paper will appear in Trans. Amer. Math. Soc.

References

[1] G. E. Bredon and J. W. Woods: Non orientable surfaces in orientable s-manifolds. Invent. Math., 7 (1968), 83-110.
[2] W.B. R. Lickorish, Homeomorphisms of non orientable two-manifolds. Proc. Camb. Phil. Soc., 59 (1964), 307-317.
[3] J. W. Milnor: Groups which act on S^{n} without fixed points. Amer. J. Math., 79 (1957), 623-630.
[4] P. Orlik: Seifert Manifolds. Lecture Notes in Math. 291, Springer-Verlag, 1972.
[5] T. M. Price: Homeomorphisms of quaternion space and projective planes in S^{4}. Research report No. 42, Dept. of Math., Univ. of Melbourne, 1974.

Kwansei Gakuin University
Nishinomiya, Japan

