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Let $X$ be a compact Hausdorff space and let $(R, X)$ be a flow. This means
that we are given a group homomorphism $t\rightarrow T_{t}$ from the real line $R$ into the
group of homeomorphisms of $X$ with the property that the function $(t, P)\rightarrow T_{t}p$

from $R\times X$ to $X$ is continuous. We denote by $C(X)$ the set of all continuous
complex-valued functions on $X$, and by $H^{\infty}(R)$ the set of all continuous functions
on $R$ which admit bounded analytic extensions into the upper half-plane. We
put $\mathfrak{U}_{X}=$ {$f\in C(X);f\circ T(t,$ $x)\in H^{\infty}(R)$ for every $x\in X$}, then $\mathfrak{U}_{X}$ is a uniformly closed
subalgebra of $C(X)$ . But $\mathfrak{U}_{X}$ need not be a function algebra.

In [2], Forelli showed that:
1) If the flow $(R, X)$ is minimal, then $\mathfrak{A}_{X}$ is a maximal pervasive subalgebra

of $C(X)$ .
In [5] and [6], Muhly showed that:
2) If the flow $(R, X)$ is strictely ergodic, then $\mathfrak{U}_{X}$ is a Dirichlet algebra and

its maximal ideal space is completely determined.
In this paper, we defined the normalized flow $(R,\tilde{X})$ of the flow $(R, X)$ so

that $\mathfrak{U}_{\tilde{X}}$ is a function algebra and $\mathfrak{U}_{X}$ is isometric-isomorphic to $\mathfrak{U}_{\tilde{X}}$ . In Sections
1 and 2, we study some properties of $\mathfrak{U}_{X}$ . In Section 3, we give necessary and
sufficient conditions of normalized flows $(R, X)$ for which $\mathfrak{U}_{X}$ is essential, antisym-
metric, analytic, pervasive and maximal, respectively.

\S 1. A normalized flow $(R, X)$ and a maximal ideal space of $\mathfrak{A}_{X}$.
Recdl that if $A$ is a function algebra on a compact Hausdorff space $Y$, then

a probability measure $m$ on $Y$ is called a representing measure for $A$ if $\int_{Y}fgdm=$

$\int_{\iota^{r}}fdm\int l^{r}$ gdm for every $f,$ $g\in A$ . Let X&a compact Hausdorff space and let

$(R, X)$ be a flow. We write $M(X)$ the set of all bounded Baire measures on $X$.
For $\mu\in M(X)$ and $teR$, we put $T_{\ell}\mu(E)=\mu(T_{-\ell}E)$ for every Baire set $E$ of $X$. A
measure $\mu\in M(X)$ is called quasi-invariant if $ T_{\ell}\mu$ is absolutely continuous with
respect to $\mu$ for each $t\in R$, and $\mu\in M(X)$ is called $T_{t}$-invariant if $T_{t}\mu(E)=\mu(E)$



8 KEUI IZUCHI AND YUKO IZUCHI

for every teR and for every Baire set $E$ of $X$. For $\varphi eC(X)$ and $feL^{1}(R)$ , we
put $T_{\ell}\varphi(x)=\varphi(T_{-\ell}x)$ for $xeX$ and $t\in R$, and $\varphi*f=\int_{-\infty}^{\infty}(T_{\ell}\varphi)flt)dt$ . Then we have
$\varphi*feC(X)$ . For $\mu eM(X)$ and $f\in L^{1}(R),$ $\mu*f$ is defined to be the measure such that
$\int\varphi d\mu*f=\int\varphi*\tilde{f}d\mu$ for all $\varphi eC(X)$ , where $\tilde{f}$ is the function whose value at $teR$ is
$fl-t)$ . For $\mu\in M(X)$ and $\varphi\in C(X)$ , we put $J(\varphi)=\{feL^{1}(R);\varphi*f=0\}$ and $J(\mu)=$

$\{feL^{1}(R);\mu*f=0\}$ . Then $J(\varphi)$ and $J(\mu)$ are closed ideals of $L^{1}(R)$ . We denote by
$sp(\varphi)(sp(\mu))$ the intersection of the zero sets of the Fourier transforms of the
functions in $J(\varphi)(J(\mu))$ .

Lemma 1. ([5], p. 114) Let $(R, X)$ be a flow, then $\mathfrak{U}_{X}=\{\varphi\in C(X);sP(\varphi)\subset[0, \infty)\}$ .
Lemma 2. ([5], p. 116) If $\mu$ is a rePresenting measure for $\mathfrak{U}_{X}$ which is not a

point measure, then $\mu$ is quasi-invariant.

Lemma 3. ([8], p. 57) If a real measure $\mu\in M(X)$ satisfies $\int fd\mu=0$ for every
$f\in \mathfrak{U}_{X}(\mu\perp \mathfrak{U}_{X})$ , then $\mu$ is $T_{\ell}$-invariant.

We put $P=$ {$xeX:T_{\ell}x=x$ for every $teR$}, then $P$ is a compact subset of $X$.
At first, we note that $\mathfrak{U}_{X}$ need not separate the points of $X$. And by Lemma 3,
we have that if $f(x)=f(y)$ for every $fe\mathfrak{U}_{X}$ then $x,$ $yeP$.

For a given flow $(R, X)$ , we will construct a new flow $(R,\tilde{X})$ as follows. For
$x,$ $yeX_{1}$ we put $x\sim y$ iff $f\langle x$) $=f(y)$ for every $fe\mathfrak{U}_{X}$. Then $\sim$ is an equivalence
relation on $X$. For $x\in X$, we denote by $\tilde{x}$ the equivalence class of $x$ . With the
quotient topology, $\tilde{X}=X/\sim$ is a compact Hausdorff space and let $\phi:X\rightarrow\tilde{X}$ be the
natural map. For $t\in R$ and $\tilde{x}e\tilde{X}$, we put $T_{\ell}\tilde{x}=T_{\ell X}^{\sim}$ , then $T_{\ell}$ is a homeomorphism
of $\tilde{X}$ to $\tilde{X}$.

Proposition 1. $\{T_{t}\}_{teR}$ induces a flow on $\tilde{X}$.
Proof. It is sufficient to show that $R\times\tilde{X}\ni(t,\tilde{x})\rightarrow T_{\ell}\tilde{x}\in\tilde{X}$ is continuous. Let

$U(T_{t}\tilde{x})$ be an ooen neighborhood of $T_{t}\tilde{x}$ in $\tilde{X}$. We note that it $\phi^{-1}(\tilde{x})=\{x\}$ , then
$\phi^{-1}(\tilde{x})\subset P$. For each $ye\phi^{-1}(\tilde{x})$ , there are a neighborhood $V_{l}(t)$ of $t$ in $R$ and a
neighborhood $V(y)$ of $y$ in $X$ such that $T_{u}ze\phi^{-1}(U(T\tilde{x}))$ for every $u\in V_{y}(t)$ and
$zeV(y)$ . Since $\phi^{-1}(\tilde{x})$ is compact, there are $y_{1},$ $\cdots,$

$y_{n}\in\phi^{-1}(\overline{x})$ such that $\bigcup_{\ell=1}V(y_{i})\supset$

$\phi^{-1}(\tilde{x})$ . We put $V(t)=\acute{\bigcap_{i-1}^{\iota}}V_{u\ell}(t)$ , then $T_{u}ze\phi^{-1}(U(T_{\ell}\tilde{x}))$ for every $ueV(t)$ and $ z\in$

$\bigcup_{\ell\cdot 1}^{*}V(y_{i})$ . Since $\bigcup_{i=1}^{n}V(y_{i})$ is open and $\bigcup_{\ell=1}V(y_{i})\supset\phi^{-1}(\tilde{x})$ , we have that $(\bigcup_{i=1}V(y_{i}))^{0}$ is
compact, $\phi((\bigcup_{\ell-1}^{\prime*}V(y_{i}))^{0})$ is compact in $\tilde{X}$ and $\tilde{x}e(\phi((\bigcup_{i\approx 1}V(y_{i}))^{t}))^{\theta}$ . We put $V_{1}=$

$(\phi((\bigcup_{=1}V(y_{i}))^{t}))^{0}$, then $V_{1}$ is an open $neighborhd$ of $\tilde{x}$ . Since $T_{u}z\in\phi^{-1}(U(T_{\ell}\tilde{x}))$ for
everyue $V(t)$ and $ze\bigcup_{\ell\approx 1}^{n}V(y_{i})$ . we have $T_{u}\overline{z}\in U(T_{\ell}\tilde{x})$ for $ueV(t)$ and $\tilde{z}eV_{1}$ . This
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implies that $R\times\tilde{X}\ni(t,\tilde{x})\rightarrow T_{t}\tilde{x}\in\tilde{X}$ is continuous.
By Proposition 1, $\mathfrak{U}_{X}$ is isometric-isomorphic to $\mathfrak{U}_{\tilde{X}}$ , and $\mathfrak{U}_{\tilde{X}}$ separates the

points of $\tilde{X}$. So that $\mathfrak{U}_{\tilde{X}}$ is a function algebra on $\tilde{X}$. The flow $(R,\tilde{X})$ is called
the normalization of the flow $(R, X)$ . In the rest of this paper, we assume that
a flow $(R, X)$ is normalized, that is, $\mathfrak{U}_{X}$ is a function algebra on $X$.

Next, for a normalized flow $(R, X)$ , we study the maximal ideal space of $\mathfrak{U}_{X}$ .
Let $X_{1}$ be the maximal ideal space of $\mathfrak{A}_{X}$ . For $peX_{1}$ , let $m_{p}$ be one of the
representing measures on $X$ of $p$ . For $t\in R$ , we have $T_{\ell}f\in \mathfrak{U}_{X}$ for every $fe\mathfrak{A}_{X}$ .
And we have that for $f,$ $ge\mathfrak{U}_{X}$ ,

$\int fgdT_{\ell}m_{p}=\int T_{-\ell}fT_{-\ell}gdm_{p}=\int T_{-\ell}fdm_{p}\int T_{-\ell}gdm_{p}$

$=\int fdT_{\ell}m_{p}\int gdT_{t}m_{p}$ .

This implies that $T_{t}m$ is a representing measure for $\mathfrak{A}_{X}$ . If $\mu_{1}$ and $\mu_{2}$ are rep-
resenting measures for $\mathfrak{U}_{X}$ of the same point $p\in X_{1}$ , then $T_{\ell}\mu_{1}$ and $T_{t}\mu_{2}$ are rep-
resenting measures for $\mathfrak{U}_{X}$ of the same point of $X_{1}$ . Because,

$\{f\in \mathfrak{U}_{X};\int fdT_{t}\mu_{1}=0\}=\{f\in?1_{X}:\int T_{-\ell}fd\mu_{1}=0\}=\{fe\mathfrak{A}_{X};\int T_{-t}fd\mu_{2}=0\}$

$=\{fe\mathfrak{U}_{X};\int fdT_{t}\mu_{2}=0\}$ .

For $\ell\in R$ and $peX_{1}$ , we denote by $\tau_{t}p$ the point of $X_{1}$ which is represented by
$T_{t}m_{p}$ . Then $T_{\ell}:X_{1}\rightarrow X_{1}$ is a one-to-one onto map. Moreover, we have

Proposition 2. $\{T_{t}\}_{teR}$ induces the flow on $X_{1}$ .
Proof. (a) $T_{\ell}:X_{1}\rightarrow X_{1}$ is a homeomorphism. It is sufficient to show that

$T_{t}:X_{1}\rightarrow X_{1}$ is continuous. Let $p_{\alpha}\rightarrow p$ in $X_{1}$ and $f\in \mathfrak{U}_{x}$ . Then $f(\tau_{t}p_{\alpha})=\int fdTm_{p_{\alpha}}=$

$\int T_{-\ell}fdm_{p_{\alpha}}\rightarrow\int T_{-t}fdm_{p}=\hat{f}(T_{\ell}p)$ . This $impli\infty$ that $T:X_{1}\rightarrow X_{1}$ is continuous.
(b) For $fe\mathfrak{U}_{X}$ and $\epsilon>0$ , there exists $\delta>0$ such that $||T_{t}f-f\Vert_{\infty}<\epsilon$ for every

real number $|t|<\delta$ . Because, suppose that there are $x.eX$ and $t_{n}\in R(n=1,2, \cdots)$

such that $|f(T_{\ell_{*}}x_{n})-f(x_{n})|>\epsilon$ for every positive integer $n$ and $t.\rightarrow 0(n\rightarrow\infty)$ . We
may assume that $x_{i}\neq x_{j}$ if $i\neq j$ . Then there is $x_{0}eX$ which is contained in the
cluster points of $\{x_{i}\}_{i=1}^{\infty}$ in $X$. Let $U$ be a neighborhood of $x_{0}$ in $X$ such that
$|J\langle y$) $-f(x_{0})|<\epsilon/2$ for every $yeU$. Since $R\times X\rightarrow X$ is continuous, there exist a
neighborhood $V_{1}$ of $x_{0}$ in $X$ and an interval $I=[-\eta, \eta](\eta>0)$ such that $T_{\ell}y\in U$

for every $t\in I$ and $y\in V_{1}$ . Since $x_{0}$ is a cluster point of $\{x_{i}\}_{\ell=1}^{\infty}$ , there is a $suf$.
ficient large integer $n_{0}$ such that $x_{n_{0}}\in V_{1}$ and $t_{n_{0}}eI$. Since $T\ell_{n_{00}}x,.\in U$ and $x_{n_{0}}eU$,
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we have

$|f(T_{\ell 0}x_{n_{0}})-f(x_{0})|<\frac{\text{\’{e}}}{2}$ and $|flx_{n_{0}}$) $-f(x_{0})|<\frac{\epsilon}{2}$ .
These imply that $|f(T_{\ell 0}x_{n_{0}})-f(x_{n_{0}})|<\epsilon$ . This is a contradiction and this completes
the $prf$ .

(c) $R\times X_{1}\ni(t, p)\rightarrow T_{\ell}peX_{1}$ is continuous. Let $t.\rightarrow t$ in $R$ and $p_{\rho}\rightarrow p$ in $X_{1}$ .
We show that $T_{\ell}p_{p}\rightarrow T_{\ell}p$ . For $fe\mathfrak{A}_{X}$ , we have

$|\int fdT_{\ell_{\iota}}m_{p_{\beta}}-\int fdT_{\ell}m_{p}|\leq|\int fdT_{\ell_{n}}m_{p_{\beta}}-\int fdTm_{p_{\beta}}|+|Tf(p_{\rho})-T_{-\ell}f(p)|\bigwedge_{-\ell}\wedge$

$\leq\Vert T_{-\ell}J-T_{\rightarrow}f\Vert_{\infty}+|Tf(p_{\beta})-T_{-t}f(p)|\bigwedge_{-\ell}\wedge$

$\rightarrow 0$
$(n\rightarrow\infty, \beta\rightarrow\infty)$ by (b).

These imply that $R\chi X_{1}\ni(t, p)\rightarrow T_{t}peX_{1}$ is continuous. This completes the $prf$ .
Let $\hat{\mathfrak{U}}_{X}$ be the set of all Gelfand transforms of $fe\mathfrak{A}_{X}$ , then $\hat{\mathfrak{A}}_{X}\subset C(X_{1})$ . We

have the following.

Proposition 3. $\hat{\mathfrak{U}}_{X}\subset \mathfrak{U}_{X_{1}}$ .
Proof. For $peX_{1}$ and $fe\mathfrak{A}_{X}$ , we show that $\hat{f}(T_{t}p)\in H^{\infty}(R)$ . We put $F(t)=$

$\int fdT_{\ell}m_{p}=f(T_{\ell}p)$ and $G(t)=F(-t)$ . By Proposition 2 of [1], w\’e have $ sP(G)\subset$

$-sp(f)\cap sl(m_{p})\subset(-\infty, 0]$ . Since $sP(G)=-sP(F)$ , we have $sp(F)\subset[0, \infty)$ . Then
$F\in H^{\infty}(R)$ . This shows $\hat{\mathfrak{U}}_{X}\subset \mathfrak{U}_{X_{1}}$ .

Remark 1. This fact implies that the flow $(R, X_{1})$ is normalized and $\mathfrak{U}_{X_{1}}|_{X}=\mathfrak{U}_{X}$ ,
where $\mathfrak{A}_{X_{1}}|_{X}$ is the set of all functions of $\mathfrak{U}_{X_{1}}$ restricted to $X$.

Remark 2. If $\mathfrak{U}_{X_{1}}\supsetneqq\hat{\mathfrak{U}}_{X}$ , then there is $fe\mathfrak{U}_{X_{1}}\backslash \hat{\mathfrak{U}}_{X}$ such that $f\neq 0$ and $f=0$ on
X. For, let $ge\mathfrak{U}_{X_{1}}\backslash \hat{\mathfrak{U}}_{X}$ , then there is $h\in \mathfrak{U}_{X}$ such that $g|_{X}=h$ . We put $f=g-\hat{h}$

then $f$ satisfies the above conditions.

\S 2. Some properties of $\mathfrak{A}_{X}$ .
In this section, we show some basic facts about the function algebra $\mathfrak{U}_{X}$ on

the normalized flow $(R, X)$ . For $xeX$, we put $\delta_{x}$ the unit point mass at $x$ . We
denote by $P_{z}$ the Poisson kernel for evaluation at $z$ in the upper half plane, that
is, $P_{*}(t)=y/\pi(y+(x-t)^{2})$ , where $z=x+iy,$ $y>0$ .

Lemma 4. ([6], Proposition 3.2) If $m$ is a representing measure for $\mathfrak{U}_{X}$ and
if $z$ is a point in the upper half plane, then $m*P$, is a represention measure for
$\mathfrak{U}_{X}$ .
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Theorem 1. For a given normalized flow $(R, X)$ , the following facts are
equivalent.

1) $\mathfrak{A}_{X}=C(X)$ .
2) $X=P$, where $P=$ {$x\in X;T_{\ell}x=x$ for every $teR$}.

3) $X_{1}=X$, where $(R, X_{1})$ is the normalized flow obtained in $Proposit\dot{t}on2$ .
4) $\hat{\mathfrak{U}}_{X}=\mathfrak{U}_{X_{1}}$ .
Proof. $2$) $\Rightarrow 1$) $\Rightarrow 3$) are trivial.

$3)\Rightarrow 2)$ . Suppose that $X\supsetneqq P$, then there exists $xeX\backslash P$. Then $\delta_{g}*P_{iy}(y>0)$ is

a representing measure for $\mathfrak{U}_{X}$ by Lemma 4. Since $x\not\in P,$ $\delta_{x}*P_{iy}$ is quasi-invariant

and not invariant by Lemma 2. Suppose that $\delta_{x}*P_{iy}$ represents the point $z\in X$.
Then $\delta_{z}-\delta_{x}*P_{iy}$ is invariant by Lemma 3. If $z\in P$, then $\delta_{x}*P_{iy}$ is invariant, and

this is a contradiction. If $z\not\in P$, then $\delta_{z}-\delta_{x}*P_{iy}$ is not invariant, and this is a
contradiction. Then $\delta_{x}*P_{iy}$ does not represent the point of $X$. This shows $X_{1}\supsetneq X$.

$3)\Rightarrow 4)$ is trivial. $4$) $\Rightarrow 3$). By the condition 4), the maximal ideal space of $\mathfrak{U}_{X_{1}}$

is $X_{1}$ . So that we have $\mathfrak{U}_{X_{1}}=C(X_{1})$ by the above argument. Then $\mathfrak{U}_{X_{1}}|_{X}=\mathfrak{U}_{X}=C(X)$ ,

we have $X_{1}=X$.
Remark 3. By the proof of Theorem 1, if $\mu$ is a representing measure for

$\mathfrak{U}_{X}$ which represents a point $x$ of $X\backslash P$, then we have $\mu=\delta_{x}$ . And this implies

that every point $x\in X\backslash P$ is a Choquet boundary point of $X$.
Proposition 4. Let $(R, X)$ be a normalized flow. Then the Shilov boundary

of $\mathfrak{A}_{X}$ is $X$.
Proof. Let $\partial X$ be the Shilov boundary of $\mathfrak{U}_{X}$ , then by Remark 3 we have

$X\backslash \partial X\subset P$. Let $ x_{0}\in$ Int $P$, the interior of $P$ in $X$, and $U(x_{0})$ be an open neighbor-

hood of $x_{0}$ such that $U(x_{0})\subset IntP$. For $f\in \mathfrak{A}_{X}$ , there is a continuous function $g$ on
$U(x_{0})$ such that $\tilde{f}(x)e\mathfrak{U}_{X}$ and $|\tilde{f}(x_{0})|>\sup_{xtU(x_{0})}|\tilde{f}(x)|$ , where

$\tilde{f}(x)=\left\{\begin{array}{ll}f(x) & if x\not\in U(x_{0})\\g(x) & if xeU(x_{0}).\end{array}\right.$

This shows that $X=\partial X$.
Proposition 5. Let $(R, X)$ be a normalized flow and $x\in X$. If there is a

neighborhood $U(x)$ of $x$ in $X_{1}$ such that $U(x)\subset X$, then $xe$ Int $P$.
Proof. Let $x\not\in IntP$ and $U(x)$ an open neighborhood of $x$ in $X_{1}$ . Then there

is $yeU(x)\cap X$ such that $y\not\in P$ . For $z>0,$ $\delta_{y}*P_{i\ell}$ is a representing measure for $\mathfrak{U}_{X}$

which represents a point in $X_{1}\backslash X$. We note that $\{P_{i\ell}\}_{\ell>0}$ is an approximate identity
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for $L^{1}(R)$ . Then we have $\lim\Vert f*\tilde{P}:\ell-f\Vert_{\infty}=0$ for $fe\mathfrak{U}_{X}$ by Lemma 1 of [1]. For

$f\in \mathfrak{U}_{X}$ , we $have|\int fd\delta_{y}*P_{i\ell}-\int fd\delta_{y}|=|\int(f*\tilde{P}_{it}-f)d\delta_{y}|\rightarrow 0\ell\rightarrow 0(t\rightarrow 0)$ . This is a contradiction.

\S 3. Function algebra $\mathfrak{A}_{X}$ .
In this section, we give necessary and sufficient conditions of normalized flows

$(R, X)$ for which $\mathfrak{A}_{X}$ is essential, antisymmetric, analytic, pervasive and maximal,
respectively. Let $P=$ {$x\in X;T_{\ell}x=x$ for every $teR$}, then $P$ is a comact subset
of $X$. We put $H=\overline{X\backslash P.}$ For a function algebra $A$ on $Y$, there exists a unique
minimal closed subset $E\subset Y$, called the essential set for $A$ , such that if $f\in C(Y)$

and $f$ vanishes on $E$ then $feA$ . We say that the function algebra $A$ on $Y$ is
essential if the essential set for $A$ coincides with Y.

Proposition 6. For a normalized flow $(R, X),$ $H$ is the essential set for $\mathfrak{A}_{X}$ .
Proof. If fe C(X) and $f=0$ on $H$, then easily we have $fe\mathfrak{A}_{X}$ . Let $E$ be a

closed set with $E\subsetneqq H$. There exists $xeH\backslash E$ such that $x\not\in P$. Then there is an
interval $I=[-\epsilon, \epsilon]$ such that $\{T_{\ell}x;teI\}\cap E=\phi$ . Then there exists $g\in C(X)$ such
that $g=0$ on $E$ and $g|_{1\tau_{\ell^{x;\ell\in I\}}}}\neq h|_{\{T_{\ell}x;\ell et\}}$ for every $h\in \mathfrak{A}_{X}$ . Because $\{T_{\ell}x;t\in I\}$ is
not an interpolation set for $\mathfrak{A}_{X}$ . This implies that $E$ is not an essential set for
$\mathfrak{A}_{X}$ , so that $H$ is an essential set for $\mathfrak{A}_{X}$ .

By Proposition 6, we have

Theorem 2. Let $(R, X)$ be a normalized flow. Then $\mathfrak{A}_{X}$ is an essential algebra

iff Int $ P=\phi$ .
For a function algebra $A$ on $Y$, a closed subset $E$ of $Y$ is called a set of

antisymmetric for $A$ if $fe$ $A$ and $f|_{B}$ real implies $f|_{E}$ is constant. If $Y$ is a set
of antisymmetric for $A,$ $A$ is called antisymmetric. For $xe$ X. we put $O(x)=$

$\{T_{\ell}x;teR)$ .
Lemma 5. Let $\varphi eC(X)$ , then $sp(\varphi)=\{0\}$ iff $\varphi|_{o(x)}$ is constant for each $xeX$.
Proof. $(\Leftarrow)$ Let $\varphi\in C(X)$ and $\varphi|_{o(t)}$ is constant for each $x\in X$. Then we have

$J(\varphi)=\{feL^{1}(R);;(0)=0\}$ , where $\hat{f}$ is the Fourier transform of $f$. Then $sp(\varphi)=\{0\}$ .
$(\Rightarrow)$ Suppose that $\varphi|0_{(x)}$ is not constant for some $xeX$. Then there is $geL^{1}(R)$

such that $\hat{g}(0)=0$ and $\varphi*g(x)\neq 0$ . So that we have $J(\varphi)\neq\{f\in L^{1}(R);;(0)=0\}$ . Since
$\{O\}\subset R$ is the set of spectral synthesis, we have $sP(\varphi)\neq\{0\}$ .

Lemma 6. If $\varphi eC(X)$ and $\varphi|_{oI\sim)}$ is constant for each $xeX$, then $\varphi\in \mathfrak{A}_{X}$ .
Proof. This is a trivial fact.
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Theorem 3. Let $(R, X)$ be a normalized flow. Then $\mathfrak{A}_{X}$ is antisymmetric iff
$\varphi\in C(X)$ and $sP(\varphi)=\{0\}$ imply $\varphi$ is constant.

Proof. $(\Leftarrow)$ Let $f\in \mathfrak{A}_{X}$ be a real function, then $f_{o(xI}$ is constant for every
$x\in X$. By Lemma 6, we have $sp(\varphi)=10$}. By the condition, $\varphi$ is constant.

$(\Rightarrow)$ Suppose that there exists $\varphi eC(X)$ such that $\varphi$ is not constant and
$sp(\varphi)=\{0\}$ . By Lemma 6, $\varphi|_{o(x)}$ is constant for each $xeX$. If $|\varphi|$ is not constant,

then $|\varphi|e\mathfrak{U}_{X}$ by Lemma 6 and $\mathfrak{U}_{X}$ is not antisymmetric. If $|\varphi|$ is constant, there

is a continuous function $h$ on the complex plane such that $|h\circ\varphi|$ is not constant.
Since $|h\circ\varphi|e\mathfrak{U}_{X},$ $\mathfrak{U}_{X}$ is not antisymmetric. This completes the $prf$ .

A function algebra $A$ on $Y$ is called analytic if $fe$ $A$ vanishes on an open set
of $Y$ then $f=0$ .

Theorem 4. Let $(R, X)$ be a normalized flow, then the following assertions
are equivalent.

1) $\mathfrak{U}_{X}$ is analytic.
2) $\mathfrak{U}_{X}$ is an integral domain.
3) Each $T_{t}$-invariant oPen set of $X$ is dense in $X$.
Proof. $1$) $\Rightarrow 2$) is $a$ trivial fact.
$2)\Rightarrow 3)$ . Suppose that $Q$ is a $T_{\ell}$-invariant open subset of $X$ such that $Q$ is

not dense in $X$. We put $Q_{1}=X\backslash \overline{Q}$ , then $Q_{q}$ is a non-void $T_{t}$-invariant open sbset
of $X$. Here we can consider that $(R, Q)$ and $(R, Q_{1})$ are flows on locally compact
spaces $Q$ and $Q_{1}$ , respectively. By Lemma 2 of [1], there are non-zero $f\in C_{0}(Q)$

and $g\in C_{0}(Q_{1})$ such that $sP(f)\subset[0, \infty)$ and $sP(g)\subset[0, \infty)$ , where $C_{0}(\cdot)$ is the set of
all continuous functions which vanish at infinity. We put

$\varphi_{1}(x)=\left\{\begin{array}{ll}f(x) & if xeQ\\0 & if xeX\backslash Q , and\end{array}\right.$

$\varphi_{2}(x)=\left\{\begin{array}{ll}g(x) & if x\in Q_{1}\\0 & if xeX\backslash Q_{1} ,\end{array}\right.$

then $\varphi_{q},$
$\varphi_{2}e\mathfrak{A}_{X},$ $\varphi_{1}\neq 0,$ $\varphi_{2}\neq 0$ and $\varphi_{1}\varphi_{2}=0$ . This is a contradiction.

$3)\Rightarrow 1)$ Let $f\in \mathfrak{A}_{X}$ and $f=0$ on an open set $Q$ of $X$. Then $f=0$ on $\{T_{t}q, teR\}$

for every $qeQ$ , and $f=0$ on $\bigcup_{teR}T_{\ell}Q$ . Since $\bigcup_{\ell eR}T_{t}Q$ is dense in $X$, we have $f=0$ .
A function algebra $A$ on $Y$ is called pervasive if for every closed subset

$E\subsetneqq X,$ $\mathfrak{U}_{X}|_{E}$ is sup-norm dense in $C(E)$ .
Theorem 5. If $(R, X)$ is a normalized flow, then $\mathfrak{U}_{X}$ is pervasive iff $\mathfrak{U}_{X}|_{P}$ is

dense in $C(P)$ and a proper $T_{\ell}$-invariant closed subset of $X$ is contained in $P$.
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Proof. $(\Rightarrow)$ Suppose that there is a closed $T_{\ell}$-invariant subset $F\subsetneqq X$ such that
$F\not\subset P$ . We note that $(R, F)$ is a flow. Since $\mathfrak{A}_{X}|_{F}\subset \mathfrak{U}_{F}$ and $F\not\subset P$, we have
$\mathfrak{U}_{F}\subsetneqq C(F)$ by $Threm1$ . Then $\mathfrak{U}_{X}|_{F}$ is not dense in $C(F)$ .

$(\Leftarrow)$ Suppose that $\mathfrak{U}_{X}$ is not pervasive. Then there is a closed subset $F\subsetneqq X$

such that $\overline{\mathfrak{U}_{X}|_{F}}=C(F)$ . Then there exists a non-zero $\mu eM(F)$ such that $\mu\perp \mathfrak{U}_{X}$ .
Since $\mu$ is quasi-invariant by Forelli [1], $\bigcup_{teQ}T_{\ell}F^{e}$ is an open $\mu$-measure zero set,

where $Q$ is the set of rational numbers. We put $G=\bigcup_{teQ}T_{\ell}F^{\iota}$ . Then $G=\bigcup_{\ell eR}T_{\ell}F^{c}$ .
Since $\mu eM(G^{\epsilon}),$ $G^{0}$ is non-void, closed and $T_{\ell}$-invariant. By the condition, we
have $G^{C}\subset P$ . Since $\mathfrak{U}_{X}|_{P}$ is dense in $C(P)$ , we have $\mu=0$ . This is a contradiction.

A function algebra $A$ on $Y$ is called maximal if $B$ is a closed subalgebra of
$C(Y)$ such that $A\subset B\subset C(Y)$ then $B=A$ or $B=C(Y)$ . A flow $(R, Y)$ is called
minimal if $O(x)$ is dense in $X$ for every $xeX$. In [2], Forelli showed that if
$(R, X)$ is minimal then $\mathfrak{U}_{X}$ is maximal. Here we give a necessary and sufficient
condition for which $\mathfrak{U}_{X}$ is maximal. The $prf$ is a precise modification of the
$prf$ of Forelli [2].

Lemma 7. ([2], Lemma 2.2) If $FeL^{\infty}(R)$ , then $FeH^{\infty}(R)$ iff $\int F(t)G(t)dt=0$

for every $G$ in $H^{1}(R)$ .
Lemma 8. ([2], Lemma 2.4) If $\varphi\in C(X)$ and $feH^{1}(R)$ , then $\int f(T_{\ell}x)F(-t)dt$

belongs to $\mathfrak{U}_{X}$ .
We put $U(t, x)=(t, T_{\ell}x)$ for $(t, x)eR\times X$, then $U$ is a homeomorphism of $R\times X$.
Lemma 9. ([2], Lemma 2.6) Let $\lambda\in M(R)$ and $\mu eM(X)$ . If $\mu$ is quasi-invariant,

then there is a finite non-negative Baire measurable function $\varphi$ on $R\times X$ such that
$\int fd(\lambda\times\mu)=\int(f\circ U)\varphi d(\lambda\times\mu)$ for all $f\in L^{1}(\lambda\times\mu)$ .

Theorem 6. Let $(R, X)$ be a normalized flow. Then $\mathfrak{U}_{X}$ is maximal iff $\mathfrak{U}_{X}|_{P}$

is dense in $C(P)$ and $O(x)$ is dense in $X\backslash P$ for each $xeX\backslash P$ .
Proof. $(\Leftarrow)$ Let $B$ be any closed subalgebra of $C(X)$ that contains $\mathfrak{A}_{X}$ . Suppose

that $B\neq C(X)$ . Then there is a non-zero measure $\beta\in M(X)$ such that $\beta\perp B$. By
Forelli [1], $\beta$ is quasi-invariant, so that $|\beta|$ is quasi-invariant. For $GeH^{1}(R)$ with
$G\neq 0$ , we put $d\lambda=G(t)dt$ , and $\mu=|\beta|$ , and let $\varphi$ be a finite non-negative Baire
measurable function on $R\times X$ which satisfies Lemma 9. Furthermore let $Y$ and
$\chi$ be bounded complex measurable functions on $R$ and $X$, such that $G=Y|G|$ and
$\beta=\chi\mu$ , respectively. We denote by $Z_{+}$ the class of all non-negative integers and
$Q_{+}$ the class of all non-negative rational numbers. First we note that, since $\mathfrak{U}_{X}|_{P}$

is dense in $C(P)$ , we have



FLOWS AND FUNCTION ALGEBRAS 15

(1) $\beta\not\in M(P)$ .
We will show that $B\subset \mathfrak{U}_{X}$ . Let $geB$. We put $F(t, x)=e^{:r\ell}Y(t)\chi(x)g(x)^{k}f(T_{-\ell}x)$ ,
where $r\in Q_{+},$ $keZ_{+}$ and $feC(X)$ . Then we have

(2) $\int Fd(\lambda\times\mu)=\int\int e^{ir\ell}Y(t)\chi(x)g(x)^{k}f(T_{-\ell}x)d\lambda(t)d\mu(x)$

$=\int(\int f(T_{-\ell}x)e^{:}r\ell G(t)dt)g(x)^{k}d\beta$ and

(3) $\int(FU)\varphi d(\lambda\times\mu)=\int\int e^{ir\ell}Y(t)\chi(T_{t}x)g(T_{\ell}x)^{k}f(x)\varphi(t, x)d\lambda(t)d\mu(x)$

$=\int(\int e^{ir\ell}G(t)\chi(T_{\ell}x)\varphi(t, x)g(T_{t}x)^{k}dt)f(x)d\mu(x)$ .

Since $e^{ir\ell}G(t)eH^{1}(R)$ , we have $\int Fd(\lambda\times\mu)=0$ by Lemma 8. By Lemma 9, we have
$\int(F\circ U)\varphi d(\lambda\times\mu)=0$ for every $f\in C(X)$ . Therefore

$\int e^{ir\ell}G(t)\chi(T_{\ell}x)\varphi(t, x)g(T_{\ell}x)^{k}dt=0$

for $\mu$ almost all $x$ . Since $Q_{+}$ and $Z_{+}$ are countable sets, there is a Baire set
$N\subset X$ of $\mu$ measure $0$ such that if $xeN^{\epsilon}$ , then

(4) $\int e^{ir\ell}G(t)\chi(T_{t}x)\varphi(t, x)g(T_{t}x)^{k}dt=0$

for all $r\in Q_{+}$ and all $keZ_{+}$ . We remark that if $xeN^{\iota}$ , then

(5) $\int|G(t)\chi(T_{\ell}x)|\varphi(t, x)dt<\infty$ .
By Lemma 9 (with $f(t,$ $x)=|\chi(x)|$), we have

$\Vert\lambda\Vert\Vert\mu\Vert=\int|\chi(x)|d(\lambda\times\mu)=\int|\chi(T_{\ell}x)|\varphi(t, x)d(\lambda\times\mu)$ .
We put $\mu=\mu_{1}+\mu_{2}$ , where $\mu_{1}eM(P)$ and $\mu_{2}\perp M(P)$ . Then we have

$\int|\chi(T_{\ell}x)|\varphi(t, x)d(\lambda\times\mu)=\int\int|\chi(T_{\ell}x)|\varphi(t, x)d\lambda(t)d\mu_{1}(x)+\int\int|\chi(T_{t}x)|\varphi(t, x)d\lambda(t)d\mu_{2}(x)$

$=\int\int\varphi(t, x)d\lambda(t)d\mu_{1}(x)+(\cdot)$

$=\int\int\chi^{\prime}d\lambda(t)d\mu_{1}(x)+(\cdot)$

$=\Vert\lambda\Vert\Vert\mu_{1}\Vert+\int\int|\chi(T_{\ell}x)|\varphi(t, x)d\lambda(t)d\mu_{2}(x)$ ,
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where $\chi^{\prime}$ is a Baire function such that $\mu_{1}=\chi^{\prime}\mu$ .
By (1), we have II $|\chi(T_{t}x)|\varphi(t, x)d\lambda(t)d\mu_{2}(x)>0$ . This implies that there is

$xeN^{\iota}$ with $x\in X\backslash P$ such that

(6) $\int|G(t)\chi(T_{\ell}x)|\varphi(t, x)dt>0$ .
Fix such an $x$ and we put $H(t)=G(t)\chi(T_{\ell}x)$ , then $H(t)eL^{1}(R)$ with $H(t)\neq 0$ by (5)

and (6). By (4), we have $H(t)g(T_{\ell}x)^{k}eH^{1}(R)$ for every $keZ_{+}$ . Then we have
$g(T_{\ell}x)eH^{\infty}(R)$ by Gamelin ([3], p. 177). Since $H^{\infty}(R)$ is a translation invariant
space, we have $g(T_{\ell}y)\in H^{\infty}(R)$ for every $y\in O(x)$ , for each $x\in X$. Let $GeH^{1}(R)$ .
Then $\int g(Tz)G(t)dt\in C(X)$ . By Lemma 7, we have $\int g(T_{\ell}y)G(t)dt=0$ for every
$yeO(x)$ . Since $O(x)$ is dense in $X\backslash P$, we have $\int g(T_{\ell}z)G(t)dt=0$ for every $z\in X\backslash P$

and every $GeH^{1}(R)$ . By Lemma 7, we have $g(T_{\ell}z)eH^{\infty}(R)$ for every $zeX\backslash P$.
Therefore $g(T_{t}z)eH^{\infty}(R)$ for every $zeX$ and we have $ge\mathfrak{U}_{X}$ .

$(\Rightarrow)$ Case I. Suppose that there is $x\in X\backslash P$ such that $\overline{O(x)}\cup P\subsetneqq X$. Since
$\overline{O(x)}$ is a $T_{t}$-invariant set, $(R, \overline{O(x)})$ is a normalized flow. We put $B=\{f\in C(X)$ ;

$f|_{\overline{0tx)}}e\mathfrak{A}_{\overline{O\langle x)}}\}$ , then $B$ is a closed subalgebra of $C(X)$ . Since $\mathfrak{U}_{\overline{O(x)}}=C(\overline{O(x)})$ , we
have $B\subsetneqq C(X)$ . Since there exists $yeX\backslash \overline{O(x)}$ with $y\not\in P$, we have $\mathfrak{U}_{X}\subsetneqq B$.

Case II. Suppose that $\mathfrak{U}_{X}|_{P}$ is not dense in $C(P)$ . We put $B^{\prime}=\{feC(X)$ ;
$flp=\overline{\mathfrak{U}_{X}|_{P}\}}$ , then easily we have $\mathfrak{U}_{X}\subsetneqq B^{\prime}\subsetneqq C(X)$ .

Corollary 2. Let $(R, X)$ be a normalized flow. Suppose that $\mathfrak{U}_{X}$ is essential,
then we have that $\mathfrak{U}_{X}$ is Pervasive iff $\mathfrak{U}_{X}$ is maximal.

Proof. $(\Rightarrow)$ Suppose that $\mathfrak{A}_{X}$ is not maximal. By Theorem 6, there is a
$T_{\ell}$-invariant closed subset $F\subsetneqq X$ such that $F\not\subset P$ . Then there is $xeF\backslash P$, and
$\overline{O(x)}\subset F$. If $O(x)$ is dense in $X\backslash P$, then $X\backslash P\subset F$ and this contradicts with
Int $ P=\phi$ . Consequently, $O(x)$ is not dense in $X\backslash P$, and $\overline{O(x)}\supset X\backslash P$ . By Theorem
5, $\mathfrak{A}_{X}$ is not pervasive.

$(\Leftarrow)$ For $xeX\backslash P$, we have $\overline{O(x)}=X$. This implies that $O(x)$ is dense in $X$.
By Theorem 5, this completes the proof.

Note added in proof. Professor Tomiyama points out that int $P$, the interior
of $P$ in $X$, is open in $X_{1}$ by his paper: Some remarks on antisymmetric decom-
positions of function algebras, T\^ohoku Math. J., 16 (1964), 340-344. Because let
$Q$ be the collection of all antisymmetric sets of $\mathfrak{U}_{X}$ in $X$ which consist of a single
point, and let $Q^{\ell}$ be the essential set of $\mathfrak{U}_{X}$ in $X$ by Theorem 3 of Tomiyama’s
paper. By Proposition 6, we have $\mathcal{F}\backslash \overline{P}=X\backslash Q^{i}$ so that int $P=Q^{i}$ .
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