YOKOHAMA MATHEMATICAL JOURNAL VOL. 26, 1978

FLOWS AND FUNCTION ALGEBRAS OF GENERALIZED ANALYTIC FUNCTIONS

By

KEIJI IZUCHI and YUKO IZUCHI

(Received October 26, 1976)

Let X be a compact Hausdorff space and let (R, X) be a flow. This means that we are given a group homomorphism $t \to T_t$ from the real line R into the group of homeomorphisms of X with the property that the function $(t, p) \to T_t p$ from $R \times X$ to X is continuous. We denote by C(X) the set of all continuous complex-valued functions on X, and by $H^{\infty}(R)$ the set of all continuous functions on R which admit bounded analytic extensions into the upper half-plane. We put $\mathfrak{A}_X = \{f \in C(X); f \circ T(t, x) \in H^{\infty}(R) \text{ for every } x \in X\}$, then \mathfrak{A}_X is a uniformly closed subalgebra of C(X). But \mathfrak{A}_X need not be a function algebra.

In [2], Forelli showed that:

1) If the flow (R, X) is minimal, then \mathfrak{A}_X is a maximal pervasive subalgebra of C(X).

In [5] and [6], Muhly showed that:

2) If the flow (R, X) is strictely ergodic, then \mathfrak{A}_X is a Dirichlet algebra and its maximal ideal space is completely determined.

In this paper, we defined the normalized flow (R, \tilde{X}) of the flow (R, X) so that $\mathfrak{A}_{\tilde{X}}$ is a function algebra and \mathfrak{A}_{X} is isometric-isomorphic to $\mathfrak{A}_{\tilde{X}}$. In Sections 1 and 2, we study some properties of \mathfrak{A}_{X} . In Section 3, we give necessary and sufficient conditions of normalized flows (R, X) for which \mathfrak{A}_{X} is essential, antisymmetric, analytic, pervasive and maximal, respectively.

§1. A normalized flow (R, X) and a maximal ideal space of \mathfrak{A}_X .

Recall that if A is a function algebra on a compact Hausdorff space Y, then a probability measure m on Y is called a representing measure for A if $\int_{Y} fgdm = \int_{Y} fdm \int_{Y} gdm$ for every $f, g \in A$. Let X be a compact Hausdorff space and let (R, X) be a flow. We write M(X) the set of all bounded Baire measures on X. For $\mu \in M(X)$ and $t \in R$, we put $T_t \mu(E) = \mu(T_{-t}E)$ for every Baire set E of X. A measure $\mu \in M(X)$ is called quasi-invariant if $T_t \mu$ is absolutely continuous with respect to μ for each $t \in R$, and $\mu \in M(X)$ is called T_t -invariant if $T_t \mu(E) = \mu(E)$ for every $t \in R$ and for every Baire set E of X. For $\varphi \in C(X)$ and $f \in L^1(R)$, we put $T_t\varphi(x) = \varphi(T_{-t}x)$ for $x \in X$ and $t \in R$, and $\varphi * f = \int_{-\infty}^{\infty} (T_t\varphi)f(t)dt$. Then we have $\varphi * f \in C(X)$. For $\mu \in M(X)$ and $f \in L^1(R)$, $\mu * f$ is defined to be the measure such that $\int \varphi d\mu * f = \int \varphi * \tilde{f} d\mu$ for all $\varphi \in C(X)$, where \tilde{f} is the function whose value at $t \in R$ is f(-t). For $\mu \in M(X)$ and $\varphi \in C(X)$, we put $J(\varphi) = \{f \in L^1(R); \varphi * f = 0\}$ and $J(\mu) =$ $\{f \in L^1(R); \mu * f = 0\}$. Then $J(\varphi)$ and $J(\mu)$ are closed ideals of $L^1(R)$. We denote by $sp(\varphi)$ $(sp(\mu))$ the intersection of the zero sets of the Fourier transforms of the functions in $J(\varphi)$ $(J(\mu))$.

Lemma 1. ([5], p. 114) Let (R, X) be a flow, then $\mathfrak{A}_X = \{\varphi \in C(X); sp(\varphi) \subset [0, \infty)\}.$

Lemma 2. ([5], p. 116) If μ is a representing measure for \mathfrak{A}_X which is not a point measure, then μ is quasi-invariant.

Lemma 3. ([8], p. 57) If a real measure $\mu \in M(X)$ satisfies $\int f d\mu = 0$ for every $f \in \mathfrak{A}_X$ ($\mu \perp \mathfrak{A}_X$), then μ is T_i -invariant.

We put $P = \{x \in X; T_t x = x \text{ for every } t \in R\}$, then P is a compact subset of X. At first, we note that \mathfrak{A}_X need not separate the points of X. And by Lemma 3, we have that if f(x) = f(y) for every $f \in \mathfrak{A}_X$ then $x, y \in P$.

For a given flow (R, X), we will construct a new flow (R, \tilde{X}) as follows. For $x, y \in X$, we put $x \sim y$ iff f(x) = f(y) for every $f \in \mathfrak{A}_X$. Then \sim is an equivalence relation on X. For $x \in X$, we denote by \tilde{x} the equivalence class of x. With the quotient topology, $\tilde{X} = X/\sim$ is a compact Hausdorff space and let $\phi: X \to \tilde{X}$ be the natural map. For $t \in R$ and $\tilde{x} \in \tilde{X}$, we put $T_t \tilde{x} = T_t \tilde{x}$, then T_t is a homeomorphism of \tilde{X} to \tilde{X} .

Proposition 1. $\{T_t\}_{t \in R}$ induces a flow on \widetilde{X} .

Proof. It is sufficient to show that $R \times \tilde{X} \ni (t, \tilde{x}) \to T_t \tilde{x} \in \tilde{X}$ is continuous. Let $U(T_t \tilde{x})$ be an open neighborhood of $T_t \tilde{x}$ in \tilde{X} . We note that it $\phi^{-1}(\tilde{x}) = \{x\}$, then $\phi^{-1}(\tilde{x}) \subset P$. For each $y \in \phi^{-1}(\tilde{x})$, there are a neighborhood $V_y(t)$ of t in R and a neighborhood V(y) of y in X such that $T_u z \in \phi^{-1}(U(T_t \tilde{x}))$ for every $u \in V_y(t)$ and $z \in V(y)$. Since $\phi^{-1}(\tilde{x})$ is compact, there are $y_1, \dots, y_n \in \phi^{-1}(\tilde{x})$ such that $\bigcup_{i=1}^n V(y_i) \supset \phi^{-1}(\tilde{x})$. We put $V(t) = \bigcap_{i=1}^n V_{y_i}(t)$, then $T_u z \in \phi^{-1}(U(T_t \tilde{x}))$ for every $u \in V(t)$ and $z \in \bigcup_{i=1}^n V(y_i)$. Since $\bigcup_{i=1}^n V_{y_i}(t)$, then $T_u z \in \phi^{-1}(U(T_t \tilde{x}))$ for every $u \in V(t)$ and $z \in \bigcup_{i=1}^n V(y_i)$. Since $\bigcup_{i=1}^n V(y_i)$ is open and $\bigcup_{i=1}^n V(y_i) \supset \phi^{-1}(\tilde{x})$, we have that $(\bigcup_{i=1}^n V(y_i))^o$ is compact, $\phi((\bigcup_{i=1}^n V(y_i))^o)$ is compact in \tilde{X} and $\tilde{x} \in (\phi((\bigcup_{i=1}^n V(y_i))^o))^o$. We put $V_1 = (\phi((\bigcup_{i=1}^n V(y_i))^o))^o$, then V_1 is an open neighborhood of \tilde{x} . Since $T_u z \in \phi^{-1}(U(T_t \tilde{x}))$ for every $u \in V(t)$ and $\tilde{z} \in V_1$. This

implies that $R \times \tilde{X} \ni (t, \tilde{x}) \rightarrow T_t \tilde{x} \in \tilde{X}$ is continuous.

By Proposition 1, \mathfrak{A}_X is isometric-isomorphic to $\mathfrak{A}_{\tilde{X}}$, and $\mathfrak{A}_{\tilde{X}}$ separates the points of \tilde{X} . So that $\mathfrak{A}_{\tilde{X}}$ is a function algebra on \tilde{X} . The flow (R, \tilde{X}) is called the normalization of the flow (R, X). In the rest of this paper, we assume that a flow (R, X) is normalized, that is, \mathfrak{A}_X is a function algebra on X.

Next, for a normalized flow (R, X), we study the maximal ideal space of \mathfrak{A}_X . Let X_1 be the maximal ideal space of \mathfrak{A}_X . For $p \in X_1$, let m_p be one of the representing measures on X of p. For $t \in R$, we have $T_t f \in \mathfrak{A}_X$ for every $f \in \mathfrak{A}_X$. And we have that for $f, g \in \mathfrak{A}_X$,

$$\int fg dT_{i}m_{p} = \int T_{-i}fT_{-i}g dm_{p} = \int T_{-i}f dm_{p} \int T_{-i}g dm_{p}$$
$$= \int f dT_{i}m_{p} \int g dT_{i}m_{p} .$$

This implies that $T_t m_p$ is a representing measure for \mathfrak{A}_X . If μ_1 and μ_2 are representing measures for \mathfrak{A}_X of the same point $p \in X_1$, then $T_t \mu_1$ and $T_t \mu_2$ are representing measures for \mathfrak{A}_X of the same point of X_1 . Because,

$$\left\{ f \in \mathfrak{A}_{X}; \ \int f dT_{t} \mu_{1} = 0 \right\} = \left\{ f \in \mathfrak{A}_{X}; \ \int T_{-t} f d\mu_{1} = 0 \right\} = \left\{ f \in \mathfrak{A}_{X}; \ \int T_{-t} f d\mu_{2} = 0 \right\}$$
$$= \left\{ f \in \mathfrak{A}_{X}; \ \int f dT_{t} \mu_{2} = 0 \right\} .$$

For $t \in R$ and $p \in X_1$, we denote by $T_t p$ the point of X_1 which is represented by $T_t m_p$. Then $T_t: X_1 \to X_1$ is a one-to-one onto map. Moreover, we have

Proposition 2. $\{T_t\}_{t \in \mathbb{R}}$ induces the flow on X_1 .

Proof. (a) $T_t: X_1 \to X_1$ is a homeomorphism. It is sufficient to show that $T_t: X_1 \to X_1$ is continuous. Let $p_{\alpha} \to p$ in X_1 and $f \in \mathfrak{A}_X$. Then $\hat{f}(T_t p_{\alpha}) = \int f dT_t m_{p_{\alpha}} = \int T_{-t} f dm_{p_{\alpha}} \to \int T_{-t} f dm_p = \hat{f}(T_t p)$. This implies that $T_t: X_1 \to X_1$ is continuous.

(b) For $f \in \mathfrak{A}_X$ and $\varepsilon > 0$, there exists $\delta > 0$ such that $||T_i f - f||_{\infty} < \varepsilon$ for every real number $|t| < \delta$. Because, suppose that there are $x_n \in X$ and $t_n \in R$ $(n=1, 2, \cdots)$ such that $|f(T_{i_n}x_n)-f(x_n)| > \varepsilon$ for every positive integer n and $t_n \to 0$ $(n \to \infty)$. We may assume that $x_i \neq x_j$ if $i \neq j$. Then there is $x_0 \in X$ which is contained in the cluster points of $\{x_i\}_{i=1}^{\infty}$ in X. Let U be a neighborhood of x_0 in X such that $|f(y)-f(x_0)| < \varepsilon/2$ for every $y \in U$. Since $R \times X \to X$ is continuous, there exist a neighborhood V_1 of x_0 in X and an interval $I = [-\eta, \eta]$ $(\eta > 0)$ such that $T_i y \in U$ for every $t \in I$ and $y \in V_1$. Since x_0 is a cluster point of $\{x_i\}_{i=1}^{\infty}$, there is a sufficient large integer n_0 such that $x_{n_0} \in V_1$ and $t_{n_0} \in I$. Since $T_{in_0} x_{n_0} \in U$ and $x_{n_0} \in U$, we have

$$|f(T_{t_{n_0}}x_{n_0})-f(x_0)| < \frac{\varepsilon}{2}$$
 and $|f(x_{n_0})-f(x_0)| < \frac{\varepsilon}{2}$.

These imply that $|f(T_{t_{n_0}}x_{n_0})-f(x_{n_0})| < \varepsilon$. This is a contradiction and this completes the proof.

(c) $R \times X_1 \ni (t, p) \to T_t p \in X_1$ is continuous. Let $t_n \to t$ in R and $p_\beta \to p$ in X_1 . We show that $T_{t_n} p_\beta \to T_t p$. For $f \in \mathfrak{A}_X$, we have

$$\begin{split} \left| \int f dT_{t_n} m_{p_\beta} - \int f dT_t m_p \right| &\leq \left| \int f dT_{t_n} m_{p_\beta} - \int f dT_t m_{p_\beta} + |\widehat{T_{-t}f}(p_\beta) - \widehat{T_{-t}f}(p)| \\ &\leq \|T_{-t_n} f - T_{-t}f\|_{\infty} + |\widehat{T_{-t}f}(p_\beta) - \widehat{T_{-t}f}(p)| \\ &\to 0 \quad (n \to \infty, \ \beta \to \infty) \quad \text{by (b).} \end{split}$$

These imply that $R \times X_1 \ni (t, p) \rightarrow T_t p \in X_1$ is continuous. This completes the proof.

Let $\hat{\mathfrak{A}}_X$ be the set of all Gelfand transforms of $f \in \mathfrak{A}_X$, then $\hat{\mathfrak{A}}_X \subset C(X_1)$. We have the following.

Proposition 3. $\hat{\mathfrak{A}}_X \subset \mathfrak{A}_{X_1}$.

Proof. For $p \in X_1$ and $f \in \mathfrak{A}_X$, we show that $\hat{f}(T_t p) \in H^{\infty}(R)$. We put $F(t) = \int f dT_t m_p = \hat{f}(T_t p)$ and G(t) = F(-t). By Proposition 2 of [1], we have $sp(G) \subset -sp(f) \cap sp(m_p) \subset (-\infty, 0]$. Since sp(G) = -sp(F), we have $sp(F) \subset [0, \infty)$. Then $F \in H^{\infty}(R)$. This shows $\hat{\mathfrak{A}}_X \subset \mathfrak{A}_{X_1}$.

Remark 1. This fact implies that the flow (R, X_1) is normalized and $\mathfrak{A}_{X_1|X} = \mathfrak{A}_X$, where $\mathfrak{A}_{X_1|X}$ is the set of all functions of \mathfrak{A}_{X_1} restricted to X.

Remark 2. If $\mathfrak{A}_{x_1} \supseteq \hat{\mathfrak{A}}_x$, then there is $f \in \mathfrak{A}_{x_1} \setminus \hat{\mathfrak{A}}_x$ such that $f \neq 0$ and f = 0 on X. For, let $g \in \mathfrak{A}_{x_1} \setminus \hat{\mathfrak{A}}_x$, then there is $h \in \mathfrak{A}_x$ such that $g|_x = h$. We put $f = g - \hat{h}$ then f satisfies the above conditions.

§ 2. Some properties of \mathfrak{A}_X .

In this section, we show some basic facts about the function algebra \mathfrak{A}_X on the normalized flow (R, X). For $x \in X$, we put δ_x the unit point mass at x. We denote by P_z the Poisson kernel for evaluation at z in the upper half plane, that is, $P_z(t)=y/\pi(y^2+(x-t)^2)$, where z=x+iy, y>0.

Lemma 4. ([6], Proposition 3.2) If m is a representing measure for \mathfrak{A}_X and if z is a point in the upper half plane, then $m*P_z$ is a represention measure for \mathfrak{A}_X .

10

Theorem 1. For a given normalized flow (R, X), the following facts are equivalent.

- 1) $\mathfrak{A}_{X} = C(X).$
- 2) X=P, where $P=\{x \in X; T_tx=x \text{ for every } t \in R\}$.
- 3) $X_1=X$, where (R, X_1) is the normalized flow obtained in Proposition 2.
- 4) $\hat{\mathfrak{A}}_{X} = \mathfrak{A}_{X_{1}}$.

Proof. 2) \Rightarrow 1) \Rightarrow 3) are trivial.

3) \Rightarrow 2). Suppose that $X \supseteq P$, then there exists $x \in X \setminus P$. Then $\delta_x * P_{iy}$ (y > 0) is a representing measure for \mathfrak{A}_X by Lemma 4. Since $x \notin P$, $\delta_x * P_{iy}$ is quasi-invariant and not invariant by Lemma 2. Suppose that $\delta_x * P_{iy}$ represents the point $z \in X$. Then $\delta_z - \delta_x * P_{iy}$ is invariant by Lemma 3. If $z \in P$, then $\delta_x * P_{iy}$ is invariant, and this is a contradiction. If $z \notin P$, then $\delta_z - \delta_x * P_{iy}$ is not invariant, and this is a contradiction. Then $\delta_x * P_{iy}$ does not represent the point of X. This shows $X_1 \supseteq X$.

3) \Rightarrow 4) is trivial. 4) \Rightarrow 3). By the condition 4), the maximal ideal space of \mathfrak{A}_{x_1} is X_1 . So that we have $\mathfrak{A}_{x_1} = C(X_1)$ by the above argument. Then $\mathfrak{A}_{x_1}|_x = \mathfrak{A}_x = C(X)$, we have $X_1 = X$.

Remark 3. By the proof of Theorem 1, if μ is a representing measure for \mathfrak{A}_X which represents a point x of $X \setminus P$, then we have $\mu = \delta_x$. And this implies that every point $x \in X \setminus P$ is a Choquet boundary point of X.

Proposition 4. Let (R, X) be a normalized flow. Then the Shilov boundary of \mathfrak{A}_X is X.

Proof. Let ∂X be the Shilov boundary of \mathfrak{A}_X , then by Remark 3 we have $X \setminus \partial X \subset P$. Let $x_0 \in \operatorname{Int} P$, the interior of P in X, and $U(x_0)$ be an open neighborhood of x_0 such that $U(x_0) \subset \operatorname{Int} P$. For $f \in \mathfrak{A}_X$, there is a continuous function g on $U(x_0)$ such that $\tilde{f}(x) \in \mathfrak{A}_X$ and $|\tilde{f}(x_0)| > \sup_{x \in U(x_0)} |\tilde{f}(x)|$, where

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } x \notin U(x_0) \\ g(x) & \text{if } x \in U(x_0) \end{cases}$$

This shows that $X = \partial X$.

Proposition 5. Let (R, X) be a normalized flow and $x \in X$. If there is a neighborhood U(x) of x in X_1 such that $U(x) \subset X$, then $x \in \text{Int } P$.

Proof. Let $x \notin \text{Int } P$ and U(x) an open neighborhood of x in X_1 . Then there is $y \in U(x) \cap X$ such that $y \notin P$. For z > 0, $\delta_y * P_{it}$ is a representing measure for \mathfrak{A}_X which represents a point in $X_1 \setminus X$. We note that $\{P_{it}\}_{t>0}$ is an approximate identity

KEIJI IZUCHI AND YUKO IZUCHI

for $L^{1}(R)$. Then we have $\lim_{t\to 0} ||f*\tilde{P}_{it}-f||_{\infty}=0$ for $f \in \mathfrak{A}_{X}$ by Lemma 1 of [1]. For $f \in \mathfrak{A}_{X}$, we have $\left|\int f d\delta_{y} * P_{it} - \int f d\delta_{y}\right| = \left|\int (f*\tilde{P}_{it}-f) d\delta_{y}\right| \to 0$ (t $\to 0$). This is a contradiction.

§ 3. Function algebra \mathfrak{A}_X .

In this section, we give necessary and sufficient conditions of normalized flows (R, X) for which \mathfrak{A}_X is essential, antisymmetric, analytic, pervasive and maximal, respectively. Let $P = \{x \in X; T_i x = x \text{ for every } t \in R\}$, then P is a comact subset of X. We put $H = \overline{X \setminus P}$. For a function algebra A on Y, there exists a unique minimal closed subset $E \subset Y$, called the essential set for A, such that if $f \in C(Y)$ and f vanishes on E then $f \in A$. We say that the function algebra A on Y is essential if the essential set for A coincides with Y.

Proposition 6. For a normalized flow (R, X), H is the essential set for \mathfrak{A}_X .

Proof. If $f \in C(X)$ and f=0 on H, then easily we have $f \in \mathfrak{A}_X$. Let E be a closed set with $E \subsetneq H$. There exists $x \in H \setminus E$ such that $x \notin P$. Then there is an interval $I=[-\varepsilon, \varepsilon]$ such that $\{T_t x; t \in I\} \cap E = \phi$. Then there exists $g \in C(X)$ such that g=0 on E and $g|_{\{T_t x; t \in I\}} \neq h|_{\{T_t x; t \in I\}}$ for every $h \in \mathfrak{A}_X$. Because $\{T_t x; t \in I\}$ is not an interpolation set for \mathfrak{A}_X . This implies that E is not an essential set for \mathfrak{A}_X , so that H is an essential set for \mathfrak{A}_X .

By Proposition 6, we have

Theorem 2. Let (R, X) be a normalized flow. Then \mathfrak{A}_X is an essential algebra iff Int $P = \phi$.

For a function algebra A on Y, a closed subset E of Y is called a set of antisymmetric for A if $f \in A$ and $f|_E$ real implies $f|_E$ is constant. If Y is a set of antisymmetric for A, A is called antisymmetric. For $x \in X$, we put $O(x) = \{T_t x; t \in R\}$.

Lemma 5. Let $\varphi \in C(X)$, then $sp(\varphi) = \{0\}$ iff $\varphi|_{O(x)}$ is constant for each $x \in X$.

Proof. (\Leftarrow) Let $\varphi \in C(X)$ and $\varphi|_{O(x)}$ is constant for each $x \in X$. Then we have $J(\varphi) = \{f \in L^1(R); \hat{f}(0) = 0\}$, where \hat{f} is the Fourier transform of f. Then $sp(\varphi) = \{0\}$.

(⇒) Suppose that $\varphi|_{O(x)}$ is not constant for some $x \in X$. Then there is $g \in L^1(R)$ such that $\hat{g}(0)=0$ and $\varphi * g(x) \neq 0$. So that we have $J(\varphi) \neq \{f \in L^1(R); \hat{f}(0)=0\}$. Since $\{0\} \subset R$ is the set of spectral synthesis, we have $sp(\varphi) \neq \{0\}$.

Lemma 6. If $\varphi \in C(X)$ and $\varphi|_{O(x)}$ is constant for each $x \in X$, then $\varphi \in \mathfrak{A}_X$. **Proof.** This is a trivial fact. **Theorem 3.** Let (R, X) be a normalized flow. Then \mathfrak{A}_X is antisymmetric iff $\varphi \in C(X)$ and $\mathfrak{sp}(\varphi) = \{0\}$ imply φ is constant.

Proof. (\Leftarrow) Let $f \in \mathfrak{A}_X$ be a real function, then $f|_{O(x)}$ is constant for every $x \in X$. By Lemma 6, we have $sp(\varphi) = \{0\}$. By the condition, φ is constant.

 (\Rightarrow) Suppose that there exists $\varphi \in C(X)$ such that φ is not constant and $sp(\varphi) = \{0\}$. By Lemma 6, $\varphi|_{O(x)}$ is constant for each $x \in X$. If $|\varphi|$ is not constant, then $|\varphi| \in \mathfrak{A}_X$ by Lemma 6 and \mathfrak{A}_X is not antisymmetric. If $|\varphi|$ is constant, there is a continuous function h on the complex plane such that $|h \circ \varphi|$ is not constant. Since $|h \circ \varphi| \in \mathfrak{A}_X$, \mathfrak{A}_X is not antisymmetric. This completes the proof.

A function algebra A on Y is called analytic if $f \in A$ vanishes on an open set of Y then f=0.

Theorem 4. Let (R, X) be a normalized flow, then the following assertions are equivalent.

1) \mathfrak{A}_X is analytic.

2) $\mathfrak{A}_{\mathbf{X}}$ is an integral domain.

3) Each T_t -invariant open set of X is dense in X.

Proof. 1) \Rightarrow 2) is a trivial fact.

2) \Rightarrow 3). Suppose that Q is a T_t -invariant open subset of X such that Q is not dense in X. We put $Q_1 = X \setminus \overline{Q}$, then Q_1 is a non-void T_t -invariant open sbset of X. Here we can consider that (R, Q) and (R, Q_1) are flows on locally compact spaces Q and Q_1 , respectively. By Lemma 2 of [1], there are non-zero $f \in C_0(Q)$ and $g \in C_0(Q_1)$ such that $sp(f) \subset [0, \infty)$ and $sp(g) \subset [0, \infty)$, where $C_0(\cdot)$ is the set of all continuous functions which vanish at infinity. We put

$$arphi_1(x) = egin{cases} f(x) & ext{if} \quad x \in Q \ 0 & ext{if} \quad x \in X \setminus Q \ , & ext{and} \ arphi_2(x) = egin{cases} g(x) & ext{if} \quad x \in Q_1 \ 0 & ext{if} \quad x \in X \setminus Q_1 \ , \ \end{cases}$$

then $\varphi_1, \varphi_2 \in \mathfrak{A}_X, \varphi_1 \neq 0, \varphi_2 \neq 0$ and $\varphi_1 \varphi_2 = 0$. This is a contradiction.

3) \Rightarrow 1) Let $f \in \mathfrak{A}_X$ and f=0 on an open set Q of X. Then f=0 on $\{T_tq, t \in R\}$ for every $q \in Q$, and f=0 on $\bigcup_{t \in P} T_tQ$. Since $\bigcup_{t \in P} T_tQ$ is dense in X, we have f=0.

A function algebra A on Y is called pervasive if for every closed subset $E \subseteq X$, $\mathfrak{A}_X|_E$ is sup-norm dense in C(E).

Theorem 5. If (R, X) is a normalized flow, then \mathfrak{A}_X is pervasive iff $\mathfrak{A}_X|_P$ is dense in C(P) and a proper T_i -invariant closed subset of X is contained in P.

Proof. (\Rightarrow) Suppose that there is a closed T_t -invariant subset $F \subsetneq X$ such that $F \not\subset P$. We note that (R, F) is a flow. Since $\mathfrak{A}_X|_F \subset \mathfrak{A}_F$ and $F \not\subset P$, we have $\mathfrak{A}_F \subsetneq C(F)$ by Theorem 1. Then $\mathfrak{A}_X|_F$ is not dense in C(F).

(\Leftarrow) Suppose that \mathfrak{A}_X is not pervasive. Then there is a closed subset $F \subsetneq X$ such that $\overline{\mathfrak{A}_X|_F} = C(F)$. Then there exists a non-zero $\mu \in M(F)$ such that $\mu \perp \mathfrak{A}_X$. Since μ is quasi-invariant by Forelli [1], $\bigcup_{t \in Q} T_t F^{\circ}$ is an open μ -measure zero set, where Q is the set of rational numbers. We put $G = \bigcup_{t \in Q} T_t F^{\circ}$. Then $G = \bigcup_{t \in R} T_t F^{\circ}$. Since $\mu \in M(G^{\circ})$, G° is non-void, closed and T_t -invariant. By the condition, we have $G^{\circ} \subset P$. Since $\mathfrak{A}_X|_F$ is dense in C(P), we have $\mu = 0$. This is a contradiction.

A function algebra A on Y is called maximal if B is a closed subalgebra of C(Y) such that $A \subset B \subset C(Y)$ then B = A or B = C(Y). A flow (R, Y) is called minimal if O(x) is dense in X for every $x \in X$. In [2], Forelli showed that if (R, X) is minimal then \mathfrak{A}_X is maximal. Here we give a necessary and sufficient condition for which \mathfrak{A}_X is maximal. The proof is a precise modification of the proof of Forelli [2].

Lemma 7. ([2], Lemma 2.2) If $F \in L^{\infty}(R)$, then $F \in H^{\infty}(R)$ iff $\int F(t)G(t)dt = 0$ for every G in $H^{1}(R)$.

Lemma 8. ([2], Lemma 2.4) If $\varphi \in C(X)$ and $f \in H^1(R)$, then $\int f(T_t x) F(-t) dt$ belongs to \mathfrak{A}_X .

We put $U(t, x) = (t, T_t x)$ for $(t, x) \in R \times X$, then U is a homeomorphism of $R \times X$.

Lemma 9. ([2], Lemma 2.6) Let $\lambda \in M(R)$ and $\mu \in M(X)$. If μ is quasi-invariant, then there is a finite non-negative Baire measurable function φ on $R \times X$ such that $\int fd(\lambda \times \mu) = \int (f \circ U)\varphi d(\lambda \times \mu)$ for all $f \in L^1(\lambda \times \mu)$.

Theorem 6. Let (R, X) be a normalized flow. Then \mathfrak{A}_X is maximal iff $\mathfrak{A}_X|_P$ is dense in C(P) and O(x) is dense in $X \setminus P$ for each $x \in X \setminus P$.

Proof. (\Leftarrow) Let *B* be any closed subalgebra of C(X) that contains \mathfrak{A}_X . Suppose that $B \neq C(X)$. Then there is a non-zero measure $\beta \in M(X)$ such that $\beta \perp B$. By Forelli [1], β is quasi-invariant, so that $|\beta|$ is quasi-invariant. For $G \in H^1(R)$ with $G \neq 0$, we put $d\lambda = G(t)dt$, and $\mu = |\beta|$, and let φ be a finite non-negative Baire measurable function on $R \times X$ which satisfies Lemma 9. Furthermore let Y and χ be bounded complex measurable functions on R and X, such that G = Y|G| and $\beta = \chi \mu$, respectively. We denote by Z_+ the class of all non-negative integers and Q_+ the class of all non-negative rational numbers. First we note that, since $\mathfrak{A}_X|_P$ is dense in C(P), we have

14

$$(1) \qquad \qquad \beta \notin M(P) .$$

We will show that $B \subset \mathfrak{A}_X$. Let $g \in B$. We put $F(t, x) = e^{irt} Y(t)\chi(x)g(x)^k f(T_{-t}x)$, where $r \in Q_+$, $k \in Z_+$ and $f \in C(X)$. Then we have

(2)
$$\int Fd(\lambda \times \mu) = \iint e^{irt} Y(t)\chi(x)g(x)^k f(T_{-t}x)d\lambda(t)d\mu(x)$$
$$= \int \left(\int f(T_{-t}x)e^{irt}G(t)dt\right)g(x)^k d\beta \quad \text{and}$$

(3)
$$\int (FU)\varphi d(\lambda \times \mu) = \iint e^{irt} Y(t)\chi(T_t x)g(T_t x)^k f(x)\varphi(t, x)d\lambda(t)d\mu(x)$$
$$= \iint \left(\int e^{irt} G(t)\chi(T_t x)\varphi(t, x)g(T_t x)^k dt \right) f(x)d\mu(x)$$

Since $e^{irt}G(t) \in H^1(R)$, we have $\int Fd(\lambda \times \mu) = 0$ by Lemma 8. By Lemma 9, we have $\int (F \circ U)\varphi d(\lambda \times \mu) = 0$ for every $f \in C(X)$. Therefore

$$\int e^{i\tau t} G(t) \chi(T_i x) \varphi(t, x) g(T_i x)^k dt = 0$$

for μ almost all x. Since Q_+ and Z_+ are countable sets, there is a Baire set $N \subset X$ of μ measure 0 such that if $x \in N^{\circ}$, then

(4)
$$\int e^{irt} G(t) \chi(T_t x) \varphi(t, x) g(T_t x)^k dt = 0$$

for all $r \in Q_+$ and all $k \in Z_+$. We remark that if $x \in N^{\circ}$, then

(5)
$$\int |G(t)\chi(T_tx)|\varphi(t, x)dt < \infty .$$

By Lemma 9 (with $f(t, x) = |\chi(x)|$), we have

$$\|\lambda\| \|\mu\| = \int |\chi(x)| d(\lambda \times \mu) = \int |\chi(T_t x)| \varphi(t, x) d(\lambda \times \mu) .$$

We put $\mu = \mu_1 + \mu_2$, where $\mu_1 \in M(P)$ and $\mu_2 \perp M(P)$. Then we have

$$\begin{split} \int |\chi(T_i x)|\varphi(t, x)d(\lambda \times \mu) &= \iint |\chi(T_i x)|\varphi(t, x)d\lambda(t)d\mu_1(x) + \iint |\chi(T_i x)|\varphi(t, x)d\lambda(t)d\mu_2(x) \\ &= \iint \varphi(t, x)d\lambda(t)d\mu_1(x) + (\cdot) \\ &= \iint \chi'd\lambda(t)d\mu_1(x) + (\cdot) \\ &= \|\lambda\| \|\mu_1\| + \iint |\chi(T_i x)|\varphi(t, x)d\lambda(t)d\mu_2(x) , \end{split}$$

where χ' is a Baire function such that $\mu_1 = \chi' \mu$.

By (1), we have $\iint |\chi(T_t x)| \varphi(t, x) d\lambda(t) d\mu_2(x) > 0$. This implies that there is $x \in N^{\circ}$ with $x \in X \setminus P$ such that

(6)
$$\int |G(t)\chi(T_tx)|\varphi(t,x)dt > 0.$$

Fix such an x and we put $H(t)=G(t)\chi(T_tx)$, then $H(t) \in L^1(R)$ with $H(t) \neq 0$ by (5) and (6). By (4), we have $H(t)g(T_tx)^k \in H^1(R)$ for every $k \in Z_+$. Then we have $g(T_tx) \in H^{\infty}(R)$ by Gamelin ([3], p. 177). Since $H^{\infty}(R)$ is a translation invariant space, we have $g(T_ty) \in H^{\infty}(R)$ for every $y \in O(x)$, for each $x \in X$. Let $G \in H^1(R)$. Then $\int g(T_tz)G(t)dt \in C(X)$. By Lemma 7, we have $\int g(T_ty)G(t)dt=0$ for every $y \in O(x)$. Since O(x) is dense in $X \setminus P$, we have $\int g(T_tz)G(t)dt=0$ for every $z \in X \setminus P$ and every $G \in H^1(R)$. By Lemma 7, we have $g(T_tz) \in H^{\infty}(R)$ for every $z \in X \setminus P$. Therefore $g(T_tz) \in H^{\infty}(R)$ for every $z \in X$ and we have $g \in \mathfrak{A}_X$.

(\Rightarrow) Case I. Suppose that there is $x \in X \setminus P$ such that $\overline{O(x)} \cup P \subsetneq X$. Since $\overline{O(x)}$ is a T_t -invariant set, $(R, \overline{O(x)})$ is a normalized flow. We put $B = \{f \in C(X); f|_{\overline{O(x)}} \in \mathfrak{A}_{\overline{O(x)}}\}$, then B is a closed subalgebra of C(X). Since $\mathfrak{A}_{\overline{O(x)}} = C(\overline{O(x)})$, we have $B \subsetneq C(X)$. Since there exists $y \in X \setminus \overline{O(x)}$ with $y \notin P$, we have $\mathfrak{A}_X \subsetneq B$.

Case II. Suppose that $\mathfrak{A}_X|_P$ is not dense in C(P). We put $B' = \{f \in C(X); f|_P = \overline{\mathfrak{A}_X|_P}\}$, then easily we have $\mathfrak{A}_X \subsetneq B' \subsetneq C(X)$.

Corollary 2. Let (R, X) be a normalized flow. Suppose that \mathfrak{A}_X is essential, then we have that \mathfrak{A}_X is pervasive iff \mathfrak{A}_X is maximal.

Proof. (\Rightarrow) Suppose that \mathfrak{A}_X is not maximal. By Theorem 6, there is a T_t -invariant closed subset $F \subsetneq X$ such that $F \not\subset P$. Then there is $x \in F \setminus P$, and $\overline{O(x)} \subset F$. If O(x) is dense in $X \setminus P$, then $X \setminus P \subset F$ and this contradicts with $\operatorname{Int} P = \phi$. Consequently, O(x) is not dense in $X \setminus P$, and $\overline{O(x)} \supset X \setminus P$. By Theorem 5, \mathfrak{A}_X is not pervasive.

(\leftarrow) For $x \in X \setminus P$, we have $\overline{O(x)} = X$. This implies that O(x) is dense in X. By Theorem 5, this completes the proof.

Note added in proof. Professor Tomiyama points out that int P, the interior of P in X, is open in X_1 by his paper: Some remarks on antisymmetric decompositions of function algebras, Tôhoku Math. J., 16 (1964), 340-344. Because let Q be the collection of all antisymmetric sets of \mathfrak{A}_X in X which consist of a single point, and let Q^i be the essential set of \mathfrak{A}_X in X by Theorem 3 of Tomiyama's paper. By Proposition 6, we have $\overline{X \setminus P} = X \setminus Q^i$ so that int $P = Q^i$.

References

- [1] F. Forelli: Analytic and quasi-invariant measures. Acta Math., 118 (1967), 33-59.
- [2] ———: A maximal algebra. Math. Scand., 30 (1972), 152–158.
- [3] T. Gamelin: Uniform algebras. Prentice-Hall (1969).
- [4] G. Leibowitz: Lectures on complex function algebras. Scott, Foresman (1970).
- [5] P. Muhly: Function algebras and flows. Acta Sci. Math. (Szeged), 35 (1973), 111– 121.
- [6] _____: Function algebras and flows II. Ark. Math., 11 (1973), 203-213.
- [7] ———: Function algebras and flows III. Math. Z., 136 (1974), 253-260.
- [8] _____: Function algebras and flows IV. Trans. Amer. Math. Soc., 203 (1975), 55-66.

Department of Mathematics Kanagawa University Yokohama, Japan and Yutaka-cho 4-23-7, Shinagawa Tokyo, Japan