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Let X be a compact Hausdorff space and let (R, X) be a flow. This means
that we are given a group homomorphism #—7; from the real line R into the
group of homeomorphisms of X with the property that the function (¢, p)—7T:p
from RxX to X is continuous. We denote by C(X) the set of all continuous
complex-valued functions on X, and by H”(R) the set of all continuous functions
on R which admit bounded analytic extensions into the upper half-plane. We
put Ax={fe CX); foTt, x) € H*(R) for every ze X}, then %y is a uniformly closed
subalgebra of C(X). But %y need not be a function algebra.

In [2], Forelli showed that: '

1) If the flow (R, X) is minimal, then %Ay is a maximal pervasive subalgebra
of C(X).

In [5] and [6], Muhly showed that: ~

2) If the flow (R, X) is strictely ergodic, then ¥y is a Dmchlet algebra and
its maximal ideal space is completely determined.

In this paper, we defined the normalized flow (R, X) of the flow (R, X) so
that Az is a function algebra and Ay is isometric-isomorphic to Uj;. In Sections
1 and 2, we study some properties of €x. In Section 3, we give necessary and
sufficient conditions of normalized flows (R, X) for which %y is essential, antisym-
metric, analytic, pervasive and maximal, respectively.

§1. A normalized flow (R, X) and a maximal ideal space of ¥Uyx.

Recall that if A is a function algebra on a compact Hausdorff space Y, then
a probability measure m on Y is called a representing measure for A if \ fgdm=
S fdms gdm for every f,ge A. Let X be a compact Hausdorff space Yarid Jet
(Ilé X) tl:e a flow. We write M(X) the set of all bounded Baire measures on X.
For e M(X) and ¢te R, we put T.u(E)= #(T-.E) for every Baire set E of X. A
measure g€ M(X) is called quasi-invariant if T,z is absolutely continuous with
respect to p for each teR, and pe M(X) is called T,-invariant if T,#(E)=p(E)
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for every te R and for every Baire set E of X. Fgr peC(X) and feL'(R), we
put Tip(x)=¢(T-wx) for xe X and te R, and ¢xf=\ (T.w)f(t)dt. Then we have
exfe C(X). For pe M(X) and fe L\(R), uxf is defined to be the measure such that
Sgodp*f:Sgo*fdp for all p € C(X), where f is the function whose value at ¢¢ R is
A—18). For pe M(X) and peC(X), we put Jip)={feL'(R); p»xf=0} and J(p)=
{fe L'(R); p+f=0}. Then J(¢) and J(u) are closed ideals of L'(R). We denote by
sp(p) (sp(p) the intersection of the zero sets of the Fourier transforms of the

functions in J(p) (J(1)). ,
Lemma 1. ([5], p. 114) Let (R, X) be a flow, then Ax={p € C(X); sp(p)[Q, o)}.

Lemma 2. ([5], p. 116) If u is a representing measure for Ux which is not a
point measure, then p is quasi-invariant. '

Lemma 3. ([8], p. 57) If a real measure pe M(X) satisfies S fap=0 for évery
feUAx (01 Ux), then p is T-invariant.

We put P={xe X; Tw=x for every f{c R}, then P is a compact subset of X.
At first, we note that %x need not separate the points of X. And by Lemma 3,
we have that if flx)=f(y) for every fe Uy then z, y € P.

For a given flow (R, X), we will construct a new flow (R, X ) as follows. For
z,y€X, we put z~y iff fix)=f(y) for every feWAx. Then ~ is an equivalence
relation on X. For x€ X, we denote by & the equivalence class of z. With the
quotient topology, X=X/~ is a compact Hausdorff space and let ¢: X—X be the
natural map. For £eR and &c X, we put T,aZ:T'::'v, then T, is a homeomorphism
of X to X.

Proposition 1. {T.:}.cr induces a flow on X.

Proof. It is sufficient to show that Rx X> (¢, £)—T.% € X is continuous. Let
U(T.%) be an open neighborhood of T:# in X. We note that it ¢ *(&)=(x}, then
¢ '(&)cP. For each yeg '(&), there are a neighborhood Vy(t) of ¢t in R and a
neighborhood V(y) of y in X such that T,ze ¢_1(U(T,m)) for every ue V,,(t) and
ze V(y). Since ¢ (%) 1s compact, there are y,, - -+, ¥, € (&) such that U V(y:)D
¢“ (£). We put V(t) ﬂ Vy(®), then Tuzegzi"(U(T,x)) for every ue V(t) and ze
U V(y.) Since U V(y;) is open and U V(%)ng"‘(x), we have that (U V(y,))° is
compact ¢((U V(y.))) is compact in X and we(gb((U V(y:))))°. We put Vi=
(¢((U V(y;))‘))‘ then V1 is an open neighborhood of &. Slnce Tuze ¢ {(U(T.&)) for
every ueV(t)and z¢ U V(y;), we have T,ze€ U(T.x) for ue V(@) and 2¢€ V.. This
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implies that RxX>s t, &)—Tk € X is continuous.

By Ay is isometric-isomorphic to Az, and Az separates the
points of X. So that %3 is a function algebra on X. The flow (R, X) is called
the normalization of the flow (R, X). In the rest of this paper, we assume that
a flow (R, X) is normalized, that is, ¥x is a function algebra on X.

Next, for a normalized flow (R, X), we study the maximal ideal space of Ux.
Let X, be the maximal ideal space of 2x. For peX,, let m, be one of the
representing measures on X of p. For te R, we have T;fe¥x for every fe¥Ux.
And we have that for f, g € Ux,

S fgd-TthS T, fT.,gdm,,:S T, fdm, S T_.gdm,
= S fdT.m, S gdT.m, .

This implies that T,m, is a representing measure for %x. If ¢ and g, are rep-
resenting measures for Ay of the same point p € X;, then T,y and Ty, are rep-
resenting measures for Ax of the same point of X;. Because,

{fe%tx; X detm:O}——-{fe A ST'_,fdm:O}:{fe A ST.,fdp,:O}
={fe Uy S de,p,:O}.

For te R and pec X;, we denote by T.p the point of X, which is represented by
T m,. Then T;: X,—X, is a one-to-one onto map. Moreover, we have

Proposition 2. {T:}:cr induces the flow on X.

Proof. (@) T, X,—X,; is a homeomorphism. It is sufficient to show that

T X,—X, is continuous. Let p,—p in X:and fe¥y. Then f"(T,p,,):S FAT =
T_.fdm, —\ T_.fdm,=f(T.p). This implies that T;: X;—X, is continuous.

(b) For fe¥%x and ¢>0, there exists >0 such that [|T:f—f|l.<s for every
real number |f{<d. Because, suppose that there are z,€ X and t,€ R (n=1,2, ---)
such that |f(T.,xa)—f(2s)|>¢ for every positive integer #» and f£,—0 (#—c0). We
may assume that x;#z; if i#j. Then there is x, € X which is contained in the
cluster points of {x;}i=; in X. Let U be a neighborhood of #, in X such that
| Ay)—Fwo)| <e/2 for every ye U. Since RxX—X is continuous, there exist a
neighborhood V, of z, in X and an interval I=[—7, 7] (>0) such that TweU
for every tel and yeV,. Since z, is a cluster point of {x;}i=1, there is a suf-
ficient large integer #, such that x, €V, and #. € L Since T,nox,‘o eU and w, €U,
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we have

| AT s Tng) —S(20)] <~§~ and | f{za) —f(wo)| <—;— .

These imply that | f(T,,oac,‘o) —f(@a,)|<e. This is a contradiction and this completes
the proof. ‘

(c) RxXla(t, p)—T.pe X, is continuous. Let t,—¢ in R and ps—p in X,.
We show that T, p;—T.p. For fe¥%y, we have

l S AT\ my— S fdT:m,

PN P
s[ Sdee,.mp,r Sde‘”’"’ HIT o F b — T ()]

Tt f—TosFlt I T F e — Toe F ()]
—0 (n—o0, f—o0) by (b).

These imply that Rx X, s (¢, p)—T.p € X, is continuous. This completes the proof.
} Let ﬁx be the set of all Gelfand transforms of fe %y, then,%AIXCC(Xl). We
have the following.

Proposition 3. QAIXC?IXI.

Proof. For pe X, and fe¥x, we show that A(T,p)e H*(R). We put F()=
Sdeszf(Tm) and G()=F(—?). By [Proposition 2 of [}, we have sp(G)c
—sp(f)Nsp(m)c(—o0,0]. Since sp(G)——sp(F), we have sp(F)c[0, o). Then
Fe H”(R). This shows %XCQIXI

Remark 1. This fact implies that the flow (R, X;) is normalized and Uy |x=Uy,
where 2Ix1| x is the set of all functions of Ay, restricted to X.

Remark 2. If %xlga‘rx, then there is fe % \%y such that f+0 and f=0 on
X. For, let ge%(xl\%x, then there is ke %y such that glx—-h We put f_.g h
then f satisfies the above conditions.

§ 2. Some properties of Uy.

In this section, we show some basic facts about fhe function algébfa Ax on
the normalized flow (R, X). For ze X, we put 9, the unit point mass at . We
denote by P, the Poisson kernel for evaluation at z in the upper half plane that
is, P,()=y/z(y*+(x—1)*), where z=x-+iy, y>O0.

Lemma 4. ([6], Proposition 3.2) If m is a representing ‘measure for Uy ‘and
if z is a point in the upper half plane, then m*P, is a represention measure for
Uy. ‘ " " :
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Theorem 1. For a given normalized flow (R, X), the following facts are
equivalent.
1) Ux=C(X).

2) X=P, where P={x e X; T, x=x for every te R}.

3) X=X, where (R, X,) is the normalized flow obtained ‘in Proposition 2.

4) Ux=Uy,.

_Proof. 2)=1)=3) are trivial.

3):2). Suppose that X=22P, then there exists z € X\P. Then 5,*?,-,, (y>0) is
a representing measure for %x by Lemma 4. Since z¢ P, 3,+P;, is quasi-invariant
and not invariant by Suppose that 6,+P;, represents the point ze X.
Then 6,—0.%P;, is invariant by If ze P, then d,+P;, is invariant, and
this is a contradiction. If z¢ P, then 8,—8,%P;, is not invariant, and this is a
contradiction. Then 8,xP;, does not represent the point of X. This shows X 2X.
~ 3)=4)is trivial. 4)=3). By the condition 4), the maximal ideal space of ¥x,
is X;. So that we have %x,=C(X,) by the above argument. Then Ay |x=x=C(X),

we have X;=X.
Remark 3. By the proof of [Theorem 1, if # is a representing measure for

%, which represents a point ¥ of X\P, then we have p=0.. And this implies
that every point z € X\P is a Choquet boundary point of X.

Proposition 4. Let (R, X) be a normalized flow. Then the Shilov boundary
of Ux is X. S

Proof. Let 80X be the Shilov boundary of U, then by Remark 3 we have
X\0XcP. Let x,¢cInt P, the interior of P in X, and U(z,) be an open neighbor-
hood of x, such that U(z,)cInt P. For fe Uy, there is a continuous function g on
Ulx,) such that f(x) € %x and | f(a:o)l>usbl£0) | f(x)|, where

J@)= { g(x) if xe U(x,) .

This shows that X=0X.

Proposition 5. Let (R, X) be a normalized flow and x€X. If there is a
neighborhood U(z) of x in X, such that Ux)C X, then x€lIntP.

Proof. Let x¢Int P and U(x) an open neighborhood of z in X;. Then there
is y e Ux)N X such that y ¢ P. For z>0, 8,%P;, is a representing measure for Ay
which represents a point in X;\X. We note that {P;}:>, is an approximate identity
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for L'(R). Then we have ltino1 | /%P —flle=0 for fe ¥y by of [1]. For
Sfdﬁy*P“—Sfda,, =l S(f*ﬁit_f)dazl

SfeUx, we have —0 (f—0). Thisis a contradiction.

§$3. Fuhction algebra %y.

In this section, we give necessary and sufficient conditions of normalized flows
(R, X) for which %x is essential, antisymmetric, analytic, pervasive and maximal,
respectively. Let P={re X, T,x=x for every fe R}, then P is a comact subset
of X. We put H=X\P. For a function algebra A on Y, there exists a unique
minimal closed subset EcCY, called the essential set for A, such that if fe CY)
and f vanishes on E then fe A. We say that the function algebra A on Y is
essential if the essential set for A coincides with Y.

Proposition 6. For a normalized flow (R, X), H is the essential set for Ux.

Proof. If fe C(X) and f=0 on H, then easily we have fe¥y. Let E be a
closed set with EGH. There exists € H\E such that ¢ P. Then there is an
interval I=[—c¢, ¢] such that {Tix; t€ I[}N E=¢. Then there exists ge C(X) such
that g=0 on E and glir,e;ter)#Alir,ziter) for every he ¥y, Because {Tix; tel} is
not an interpolation set for Ax. This implies that E is not an essential set for
Ax, so that H is an essential set for Ay.

By we have

Theorem 2. Let (R, X) be a normalized flow. Then Ux is an essential algebra
iff Int P=¢.

For a function algebra A on Y, a closed subset E of Y is called a set of
antisymmetric for A if fe A and f]g real implies f|z is constant. If Y is a set
of antisymmetric for A, A is called antisymmetric. For ze X, we put O(x)=
{T.x; te R).

Lemma 5. Let ¢ € C(X), then sp(e)={0} iff ¢|os is constant for each x e X.

Proof. (=) Let ¢ € C(X) and ¢|o(.) is constant for each x € X. Then we have
J@)={fe L'(R); f(0)=0}, where f is the Fourier transform of f. Then sp(¢)={0}.

(=) Suppose that ¢lo, is not constant for some z € X. Then there is g € L'(R)
such that §(0)=0 and ¢*g(x)#0. So that we have J(p)#{fe L'(R); f(0)=0}. Since
{0}cR is the set of spectral synthesis, we have sp(p)+{0}. .

Lemma 6. If ¢ e C(X) and sol})«,) is constant for each x € X, then ¢ € Ux.

Proof. This is a trivial fact.




FLOWS AND FUNCTION ALGEBRAS 13

Theorem 3. Let (R, X) be a normalized flow. Then Ux is antisymmetric iff
0 € C(X) and sp(p)={0} imply ¢ is constant.

Proof. (=) Let fe¥%x be a real function, then flow. is constant for every
zeX. By we have sp(p)={0}. By the condition, ¢ is constant.

(=) Suppose that there exists ¢ € C(X) such that ¢ is not constant and
sp(p)={0}. By ¢lows is constant for each z € X. If |p| is not constant,
then |p| € Ax by and Yy is not antisymmetric. If || is constant, there
is a continuous function % on the complex plane such that [kop| is not constant.
Since |kop| € Ax, Ax is not antisymmetric. This completes the proof.

A function algebra A on Y is called analytic if f€ A vanishes on an open set
of Y then f=0.

Theorem 4. Let (R, X) be a normalized flow, then the following assertions
are equivalent.

1) Ux is analytic.
2) Uy is an integral domain. ,
3) Each Tinvariant open set of X is dense in X.

Proof. 1)=2) is a trivial fact.

2)=3). Suppose that @ is a T:-invariant open subset of X such that @ is
not dense in X. We put @,=X\Q, then @, is a non-void T:-invariant open shset
of X. Here we can consider that (R, Q) and (R, @,) are flows on locally compact
spaces @ and @, respectively. By Lemma 2 of [1], there are non-zero fe Cy(Q)
and ge Cy(Q:) such that sp(f)c][0, o) and sp(g) [0, o), where Cy(-) is the set of
all continuous functions which vanish at infinity. We put

or(@)= {f(w) if 2ze@

0 if zeX\@Q, and
_(g@ if xe@
al®)= {o if zeX\Q:,

then ¢y, 02 € Ax, ¢1#0, ¢.#0 and ¢,0,=0. This is a contradiction.
3)=1) Let fe¥UAx and f=0 on an open set @ of X. Then f=0on {T.q, t€ R}
for every g€ @, and f=0 on tEJRTtQ. Since :'E‘LT‘Q is dense in X, we have f=0.
A function algebra A on Y is called pervasive if for every closed subset
ES X, Ux|g is sup-norm dense in C(E).

Theorem 5. If (R, X) is a normalized flow, then Ux is pervasive iff Uxlp is
dense in C(P) and a proper T.-invariant closed subset of X is contained in P.
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Proof. (=) Suppose that there is a closed T-invariant subset F'& X such that
FgP. We note that (R, F) is a flow. Since Ux|rCc¥r and F¢Z P, we have
Ar&C(F) by Theorem 1. Then Ux|r is not dense in C(F).

(=) Suppose that Ay is not pervasive. Then there is a closed subset F&X
such that Ux|r=C(F). Then there exists a non-zero ze M(F) such that 1 %x.
Since 4 is quasi-invariant by Forelli [1], tléqu,F’ is an open p-measure zero set,
where @ is the set of rational numbers. We put G=tLeJQTth. Then G—_—‘LGJRT,F".
Since ¢ € M(G°), G° is non-void, closed and T-invariant. By the condition, we
have G°cP. Since Ux|p is dense in C(P), we have py=0. This is a contradiction.

A function algebra A on Y is called maximal if B is a closed subalgebra of
C(Y) such that AcBcC(Y) then B=A or B=C(Y). A flow (R,Y) is called
minimal if O(x) is dense in X for every xe€ X. In [2], Forelli showed that if
(R, X) is minimal then %y is maximal. Here we give a necessary and sufficient
condition for which ¥y is maximal. The proof is a precise modification of the

proof of Forelli [2].

Lemma 7. ([2], Lemma 2.2) If FeL™(R), then Fe H°(R) iff SF(t)G(t)dt:O
for every G in H'(R).

Lemma 8. ([2], Lemma 2.4) If ¢eC(X) and fe H'R), then S AT ) F(—t)dt
belongs to Ax.

We put U(t, )=(t, T:x) for (¢, ) € R < X, then U is a homeomorphism of R X X.

Lemma 9. ([2], Lemma 2.6) Let 2€ M(R) and € M(X). If p is quasi-invariant,
then there is a finite non-negative Baire measurable function ¢ on RxX such that
S FAAX )= S( FoU)od(A 1) for all fe L*Ax p).

Theorem 6. Let (R, X) be a normalized flow. Then Ux is maximal iff Ux|p
is dense in C(P) and O(x) is dense in X\P for each x e X\P.

Proof. (=) Let B be any closed subalgebra of C(X) that contains Ax. Suppose
that B#C(X). Then there is a non-zero measure e M(X) such that 1 B. By
Forelli [1], 8 is quasi-invariant, so that |8 is quasi-invariant. For G e H'(R) with
G+#0, we put dA=G(t)dt, and u#=|B|, and let ¢ be a finite non-negative Baire
measurable function on R XX which satisfies Furthermore let Y and
x be bounded complex measurable functions on R and X, such that G=Y|G]| and
B=xp, respectively. We denote by Z, the class of all non-negative integers and
Q. the class of all non-negative rational numbers. First we note that, since fx|p
is dense in C(P), we have
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(1) Be M(P) .

We will show that Bc%y. Let geB. We put F(t,xz)=¢" Y(t)x(x)g9(®)*AAT-.x),
where r€@Q,, ke Z, and fe C(X). Then we have

(2) S Fd(x p)= SS " Y () 1(0)g (@) AT - ) dA)dpu(x)

=S(Sf(T_,w)e"'G(t)dt>y(w)kdﬁ and

(3) S (FU)ed(Ax 1) =§§ YT 9Ty Fw)olt, v)dad)dp(e)

=S (S e Gx(Tw)e(t, w)y(Tzw)"dt)f(m)dﬁ(x) .

Since ¢"'G(t) e H'(R), we have \ Fd(Ax ¢)=0 by By we have
S (FoU)pd(Ax p)=0 for every fe C(X). Therefore

S TGt Tur)o(t, 2)g(T ) dt=0

for ¢ almost all z. Since Q. and Z, are countable sets, there is a Baire set
Nc X of ¢ measure 0 such that if z e N°, then

(4) S T GO T @)p(t, 2)g(T o) di=0
for all €@, and all ke Z,. We remark that if x € N°, then
(5) | IGOxT o, <o
By (with f(¢, x)=|x(x)]), we have
120 el = te@idax = e Taipte, widax s
We put p=p+py,, where p, € M(P) and g, 1| M(P). Then we have
Slx(T:w)lsO(t, 2)d(x m=“ (Tl t, 2)dA(E)d (@) + SS (Tt 2)dAB)dpa(z)
={] et givdm@+
=“ x'dat)dps () +(-)

= {121 2] +“ (T @)\, 2)dAE)dma) ,
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where ' is a Baire function such that p=y'p.
By (1), we have SSlx(nx)ko(t, 2)dA(t)dps(®)>0. This implies that there is
2 € N° with 2 e X\P such that

(6) | S IGOUT )lp(t, ©)dt>0 .

Fix such an # and we put H(#)=G(#)x(T:x), then H(t)e L'(R) with H(t)#0 by (5)
and (6). By (4), we have H(t)g(T.x)* e HY(R) for every ke Z,. Then we have
9(Tx) e H”(R) by Gamelin ([3], p. 177). Since H”(R) is a translation invariant
space, we have g(T.y) € H"(R) for every y € O(x), for each € X. Let Ge HY(R).
Then \ g(T:2)G(¢)dt € C(X). By we have | g(T.y)G({#)dt=0 for every
¥y € O(x). Since O(z) is dense in X\P, we have S 9(T2)G(t)dt=0 for every ze X\P
and every Ge H'(R). By [Lemma 7, we have g(T.2) e H*(R) for every zeX\P.
Therefore g(T:2) e H*(R) for every zeX and we have g e Ux.

(=) Case I. Suppose that there is ze X\P such that O(z)UPSX. Since
O(x) is a T.-invariant set, (R, O(z)) is a normalized flow. We put B={fe C(X);
Sflo@ € Yo}, then B is a closed subalgebra of C(X). Since %oz =C(0O(z)), we
have B&EC(X). Since there exists y € X\O(z) with y ¢ P, we have %xSB.

Case II. Suppose that x|, is not dense in C(P). We put B'={feC(X);
flp=%x[p}, then easily we have xS B'SC(X).

Corollary 2. Let (R, X) be a normalized flow. Suppose that Ux is essential,
then we have that Ux is pervasive iff x is maximal.

Proof. (=) Suppose that €y is not maximal. By there is a
T-invariant closed subset F&X such that FZP. Then there is z¢ F\P, and
O@)cF. If O(x) is dense in X\P, then X\PcF and this contradicts with
Int P=¢. Consequently, O(x) is not dense in X\P, and O(x)>X\P. By [Theorem
5, ¥x is not pervasive.

(=) For ze X\P, we have O(x)=X. This implies that O(x) is dense in X.
By this completes the proof.

Note added in proof. Professor Tomiyama points out that int P, the interior
of Pin X, is open in X; by his paper: Some remarks on antisymmetric decom-
positions of function algebras, Toéhoku Math. J., 16 (1964), 340-344. Because let
@ be the collection of all antisymmetric sets of Ax in X which consist of a single
point, and let Q* be the essential set of Ay in X by of Tomiyama’s
paper. By we have X\P=X\Q* so that int P=Q".
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