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Introduction.

We obtained the motive of this paper from the following elementary property
of a closed curve in the Euclidean 2-plane R:®.

Proposition. Let c: [0, a]>R? be a closed curve of class C* parametrized by
arc-length which is cotained im a closed ball in R* of radius r. Then either
|k(8)| >1/r holds for some s€[0, a] or c([0, a]) s contained in the circle of radius
r where k denotes the curvature (defined up to a sign) of c.

We want to extend this proposition to immersed hypersurfaces which are
contained in a domain with regular smooth boundary in a Riemannian manifold
in terms of mean curvature.

In this paper we investigate the problem stated above in the case where
ambieant spaces are homogeneous Riemannian manifolds. is the
main theorem of this paper which is an extension of the proposition stated above.
In order to prove we need to study a quasilinear elliptic partial
differential equation of second order. It will be carried out in Section 2. We
think that the results obtained there is useful for studies of hypersurfaces in a
Riemannian manifold. The complete proof of will be given in Sec-
tion 4. _

In the latter half of Section 4 we study some properties of minimal hyper-
surfaces in 2 homogeneous Riemannian manifold. In the last section we generalize
the results obtained in [6].

1. Hypersurfaces in a homogeneous Riemannian manifold.

Throughout this paper we assume that Riemannian manifolds and apparatus
on them are of class C* and that manifolds are connected unless otherwise stated.

Theorem 1.1. Let N be a homogeneous Riemannian manifold of dimension
n+1(n=1), and let D be a domain in N with regular smooth boundary oD and
¢ the mean curvature of oD with respect to the inward unit normal vector
to dD. Let f: M—N be an isometric immersion of an n-dimensional compact
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Riemannian manifold M into N such that f(M)c D where D=DUaD. Suppose
that for a nmon-negative constant H, 3¢ satisfies the condition

(L.1) s#=H,

at each point of oD. Then either |H(m)|>H, holds at some point m of M or
there exists an isometry ¢ of N such that o(f(M))<oD where H denotes the
mean curvature (defined up to a sign) of M for isometric immersion f.

The proof of theorem 1.1 will be given in Section 4. The following argument
is used in the proof of Theorem 1.1 and of Theorem 4.2.

Let N be a homogeneous Riemannian manifold of dimension n+1(n=1). Let
D be a domain in N with regular smooth boundary 0D and 5# the mean curva-
ture of 0D with respect to the inward unit normal vector to aD. Let m, be a
point of dD. Since N is homogeneous, there exists a Killing vector field X on
N such that X coincides with the inward unit normal vector to 9D at m,. Let
{e:}, 1t1<7’, be the local 1l-parameter subgroup of local transformations generated
by X. Then, since X is a Killing vector field, ¢; is isometric for each te (—7/, 7).
We can choose a local coordinate neighborhood U of m, in 6D and a positive
z so that the mapping @: UX(—7,7)—> N defined by &(m,t)=¢:(m) for
(m,t)e UX(—r7,7) is imbedding. Let (x,, -+, 2,) be the local coordinate system
on U. We denote by {,) the Riemannian metric tensor on UX(—r7,7) induced
by ®. We set g,8=<0/0%,, 0/028), 1=a, B=n+1, where we put z,,,=t. Since ¢,
is isometric for each t€(—7,7) and X coincides with the inward unit normal
vector to 0D at m,, we see that g,s(1=a, f<n-1) are independent of ¢, € (—r, 7),
and that g...(mg, t)=0, 1=¢=n. For simplicity, in what follows, we shall use
the following notations:

0i=Gins1, 1=i=n, and g=gnsins:

For an open subset V of 6D we shall denote by C*(V) the set of real-valued
functions of class C* on V and we shall put w,=ou/ox;, wu=0u/oxdx, 1=4,
j<n, for each w€C*( V). Now for a domain 2 of U which contains m, we
consider the subset C%(2,7) of C*(2) whose each element u satisfies the condition

1.2) lu(m)|<z for all meQ and 1+‘2" wig,>0 on 2
=1

where we put u‘= f_‘.l guy, 1=5i=n, and where g‘/ is the (¢, j)-component of the
9=

inverse matrix of the matrix (g,), 1=%, 7<n. This is possible. In fact, since

for any t € (—1, 7) gi(m,, t)=0, 1=<i=<mn, for a u e C*(U) there exists a domain of U
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containing m, on which l—f—Zn #'g;>0 holds. For a ue€ Ci(2,7) let us consider a
i=1
hypersurface S(u) in 2X(—z,7) defined by

1.3) ‘S(uw)={(m, um)) € QX (—z,7); me 2} .

In particular, if » is constant, say te(—r,z), we shall denote it by S;.. We put

X,=0/ow+ud/ot, 1=¢=<mn. Then X,,---, X, are linearly independent vector fields
on S(u). We set

(1.4 guy=<(X, Xj>:gtj+gtuj+gjut+guiuj ’ 1=4,j=n.

We can give a unit normal vector field y=7%(3/0%,)* on S(u) by

1 .. . 1
. = ———qt i< =
(1.5) 7 Voo iay , 1=i=n, 7 Zel

where
a=g"—ulg'1+u*gy)™, a;=g,+gu,,
(1.6) w'=g%ur, g'=g"%gq,
G=g,a**a’ a.a;—2a**gar+g>0 .
Remark. For a ucCi(2,7) we put ay=g,+u.g, 1=4,5<n. Then, it is
easy to see that axa*/=d,, and det (a;)=det (g,,)(1+u*g,) >0(by (1.2)).
For the moment we shall denote by D the Riemannian connection on UX

(—7 7). Let I'j;, 1=a,B,y=n-+1, be the Riemannian connection coefficients on
UXx(—rz, 7).

Let H be the mean curvature of S(u) with respect to 7. It is defined by
H=(1/n)§**{Dy,X,;, 7> where §* is the (3, 5)component of the inverse matrix of
the matrix (§,;), 1=¢,7=<n. By we have

nHY G =§{(g—a*a1g:)Ues+ (Gan+1— ¥ @1Gen) (I 8+ 1 80 419} .
We put

.7 GY=det (7.)g%, 1=i,j=n.

Then we can rewrite the equality above as follows:

"
(1.8) , -21 A, Pu)uy=B(x, Vu, H)
3=
where
* From now on, we suppose that Greek indices @,8,7,--- run over the range 1,2,--,
n,n+1 and that Latin indices ¢,7,k,--- run over the range 1,2,-:-,n, and we shall use

the Einstein convention for repeating indices.




172 RYOSUKE ICHIDA

Ay, Fu)=(g—aa1g)G¥ , 1=t,5=m, Fu=(Uy ***, %,) ,
1.9 B, Pu, H=nHvG det (§,,)
—GY(I 4Tt s Ug) (Ganss— Jax@F'ar) o

We note g—a*'a,g,=<,d/ot>. It never vanish on S(u). Since
(g—a*'a.gs)(my, t)=g(m,, £) >0

and S(u) is connected, we see that g—a*'a;g,>0 holds on S(u). Therefore, when
in [(1.8) we regard H as a given continuous function on 2, (1.8) is a quasilinear
elliptic partial differential equation of second order on £2. Then, if ue Ck(2,7)
is a solution of the equation [(1.8), for this « the mean curvature of the hyper-
surface in 2X(—rz,7) defined by equals H. Since g,,(1=¢,7<n) are in-
dependent of t€ (—z, ), from we see that for each ¢t € (—7, ) the mean curva-
ture of S: is equal to 2. Hence from [1.6), and (1.9) we have

Lemma 1.1. For a fized t€(—z,7)
5’5’=—11;(9—y"’ykaz)“”g"l"?j(yam—y..kg"‘g;) .

Theorem 1.2. Let N be a homogeneous Riemannian manifold of dimension
n+1 (n=1), and let D be a domain in N with regular smooth boundary 9D and
27 the mean curvature of oD with respect to the inward unit normal vector to
oD. Let 2 be a domain in 0D which is contained in some local coordinate
neighborhood of 0D satisfying the condition discussed above. Suppose that
for a mon-negative constant H, ¢ satisfies the condition (1.1). Let H be a
real-valued continuous function on 2 such that

(1.10) |HI|<H,
holds on 2. If uweCi(2,7) is a solution of the equation (1.8), then w can mnot
take its minimum value in 2 unless u i8 constant where Ci(2,) is defined by
1.2).

The proof of will be given in Section 3.

2. Quasilinear elliptic partial differential equations of second order.

In this section we shall study quasilinear elliptic partial differential equations
of second order with more general form than the equation [(1.8).

Let 2 be a domain in the n-dimensional Euclidean space R" and let C*(2) be
the set of real-valued functions of class C? on 2. In the following, for a u € C*9Q)

we put




ON HYPERSURFACES IN A HOMOGENEOUS RIEMANNIAN MANIFOLD 173

ue=0u/or,, 1=1=n, VFu=u, -+, %,) and uy,;=0u/or0x;, 1=1%,j5=mn, where
(@, *++,x,) stands for the canonical coordinate system in R*. We denote by | ||
the Euclidean norm of R*.

Let us consider on a domain 2 in R® a quasilinear elliptic partial differential
equation of second order:

@.1) t 5 Ay, w, Puyie=Bla, u, 7u)
FE

where A,(1=1,7=n) and B are real-valued continuous functions on 2XRXR"
and A;;=A;(1=<%,7=n). We shall denote by (x,u,p) a point of 2XRXR".
Ellipticity of the equation requires that the coefficient matrix satisfies the
condition

2.2) tﬁ: lA,,(at;, u, )X, X;>0 on 2XRXR»
»I=

for arbitrary non-vanishing real vector X=(X,, -+, X,) € R,
We set for a u € C*Q)

L= 3 Ay, u, Puyuy—B@,u7v) .

»J=

It is called that » is a supersolution (subsolution) of the equation if Luw)=0
(L(u)=0).

Theorem 2.1. Assume that for the equation (2.1) the following conditions
hold:

2.3) B, 4,000 on 2XR,
2.49) | B(x, u, p)—B(w, w, 0)|<h(x, u, p)F(|pl) on Q2XRXR"

where h i8 a non-negative valued continuous function on QXRXR* and F 1is
a non-negative valued function of one-wvariable such that

@.5) lim L0

t-+0 ¢

where ¢ i8 a mon-negative constant. Suppose that u < C*(2) is a supersolution
of the equation (2.1). Then u can not take its minimum value in Q2 unless u
18 constant.

Proof. Suppose for contradiction that u takes the minimum value m in Q
and that % is not constant. We set 2’={x e Q; u(x)=m}. Since 2 is connected
and &’ is closed in 2, there exists a point y of 2’ such that for any >0 2’ can
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not contain the open ball in R® of radius » and of center y. Then, taking =
sufficiently small, we can choose a point z,€ 2—2’ and a positive 7, so that
(2.6) Qo={x € R™ |lz—x,|=r}c 2, 2,N2"={y,} .

Let 2, be the closed ball in R* of radius , and of center y, such that 0<7r,<7,
and 2,cQ. Then from we see that there exists a constant J, 0<6<1,
satisfying the condition

2.7 u=m-+06 on £,NdQ,
where 02,={x € R*; [lx—y,.||=7.}. We also see that
2.8) ro<llx—x,|<rs for all xzeQ,
where r;=7,—r, and ry=r,47r,.
By the condition there exist positive constants A, and 1, such that
2.9 MIXIS 3 Ao, u@), p@) X X<k I X]*

for any vector X=(X,, --+, X,) € R* and any xz€ 2, where we put Vu(x)=p() (In
the following we also use the same notation). We put

(2.10) ¢;=sup {h(x, u(x), p(x))} .

xeul
Let {ex}, k=1,2, - - -, be a sequence such that 0<¢,<1(k=1,2, --+) and ’l‘lm &=>0.

For each ¢(k=1,2, --+) we now consider the auxiliary function w® on 2, defined
by

2.11) w® (2)=u(x)—ed(x) for x€, k=12, --.)
where
(2.12) p(@)=exp (—a ||x—x,|*) —exp (—ar}) ,

a being a positive constant such that

(2.13) a>max {(ry) "t log (1/9), (22,73 *(nds+ce.rs)} .
Since |x—x,|>7, on 32,—2,, $<0 on 02,—2,. Thus we have
2.14) w®>m on 0Q2,—2,.

From [2.7), and (2.18), on 92,N 2, we have

(2.15) wP=m+d—e;d>m+o—e. exp (—ard) >m .
On the othef hand, at y, we have

(2.16) wP (Y )=uly,)=m .
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Thus it follows from [2.14), and that w™ takes its minimum value
at an interior point of 9,. Let y¥® be an interior point of 2, at which w®
takes its minimum value. By taking a subsequence if necessary, we can assume
that {y*®}, k=1,2, .-, converges to a point y€Q,.

By [2.3), [2.4) and [2.10), we have at each interior point x of 2,

(2.17) B, u(®), p@)=c. F(lp@)) .

Since % is a supersolution of the equation [2.I] and u=w®-+e¢ for each
&(k=1,2, ---), we have at each interior point ¢ of 2,

(2.18) . f: Ay, u®@), p@) (W @) +ed @) =c. F(p@)]) .

yJ=1
We shall estimate the inequality [2.18) at y*®(k=1,2, ---). From we have

Gy ®)=—2a2P¢(y*), 1=i=n,

2.19 . .
(219) Pe/(Y®)=—2a(d;;—2azFP2{)E(Y®) , 1=4,5=n,

where we put z®=(2{®, -+, 2®)=y*® —gz, and &@x)=exp (—a [x—x,|[*). Since w®
takes its minimum value on 2, at ¥y, we have

(2.20) (Y P)=e,(y®), 1=i=m,
and
@.21) 3 Ay y®, uly®), ply®)wPy®)=0 .

€, 5=1
From [2.9), (2.19), and [2.21), at y*®> we have

the left-hand side of = 2al, |29 ]|2—na,)
= x(2aA, 75— N2s)

where we put z4,=2ae,5(¥*)(>0) and we note that the last inequality follows from
(2.8). Thus we have

2.22) 2ai, 13 —ni e, F(Ipy™) )/ -

By (2.19), we have [|p(y®)]|=2ae£(y®) [2® | =44 [|2*]l. Since imy®=ge 2,
0< 7, =< ||z®|| = 7rs(k=1,2, -+ ) and [|F—,[|=7s, by we have

i F@®))

k—oo P

Thus from we have

=¢ |F—z.<Zcrs .

2a2,7i—nA =cC, 75 .
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This contradicts [(2.10). Hence we complete the proof.
We suppose that the inhomogeneous term B of the equation is of class
C! for the variables p;(1=¢<m). Then we have

| B(x, u, p)— Bz, u, 0)]
n 1 aB
=P

—(x, u, t dt] .
7o @) dt [
Therefore we see that the conditions [(2.4) and [2.5) of are satisfied.
Thus we have

Corollary 2.1. Suppose that for the equation (2.1) the inhomogeneous term
B i8 of class C* for the variables p,(1=1=mn) and that the inequality B(x, u, 0)=0
holds on 2XR. If ueC*RQ) is a supersolution of the equation (2.1), then u
can not take its minimum value in 2 unless u 8 comstant.

Theorem 2.2. Suppose that for the equation (2.1) the conditions of Theorem
2.1 hold except the condition (2.3) and that the inequality B(x,wu,0)=0 holds on
2XR. If weC¥Q) is a subsolution of the equation (2.1), then u can not take
1ts maximum value in 2 unless u is constant.

The proof can be proved by a similar argument as in the proof of
2.1. In this case we adopt w®=u-+¢¢, k=1,2, ---, as auxiliary functions cor-

responding to (2.11).

Corollary 2.2. Suppose that for the equation (2.1) the inhomogeneous term
B s of class C! for the variables p;(1=t=<n) and that the inequality B(x, u,0)=0
holds on @XR. If weC*Q) is a subsolution of the equation (2.1), then u can
not take its maximum value in 2 unless u 18 constant.

Remark. For the conditions [(2.3) and [2.4) in we obtained an
idea from R. Redheffer’s paper [7]. It will be indicated in Sections 8 and 5 that
for the equations and (5.13) the condition closely relates to a geometrical
condition which is connected with the mean curvature.

3. Proof of Theorem 1.2.

The notations which will be used in this section are all same as in Section 1
unless otherwise stated. In the following we shall put Fu=p=(p,, -+, p,) for a
u € C*9Q). ‘

We put B, p)=B(x, p, H,). Then from and (1.9) we have

Lemma 3.1. For the equation (1.8), Ay(1=%,7<n) and B are continuous
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on 2XR" and B is of class C* for the variables p,(1=i1=<mn).
Lemma 3.2.
B, 0)=n(H,—5¢)(g—g"g.9)"* det (g.)) , 2€Q.
Proof. From (1.6), and (1.9) we have |
B(x, 0, H)=nH,(g—g"g9.9,"" det (g:y)
—det (9.9 %/(Gan+1— I 9 -
Then the lemma follows from Lemma 1.1.

Proof of Theorem 1.2 For a real-valued continuous function H’ on £, we
set

LH’(u)=i§:=1A¢!(w’ p)uij—"B(xy B H,)
where u € C%(2,7), A,;(1=%,7=<mn) and B are given by (1.9). Let ue€C%(2,7) be
a solution of the equation [(1.8). Since |H|<H,, we have
Lay(w)=Lg,u)— Lz(w)=n(H—H)VG det (§:;)=0 .

Hence u is a supersolution of the equation Lg,(v)=0 on £2. Since #=H, by
Lemma 3.2 we have B(x,0)<0. Therefore by Lemma 3.1 we can apply [Corollary|
2. 1 to the equation Lg,(v)=0. Then the theorem follows from [Corollary 2.1.

4. Proof of Theorem 1.1.

We first give a proof of and in the next place we study minimal
hypersurfaces in a homogeneous Riemannian manifold.

Proof of Suppose that |H(m)|<H, holds at each point m of
M. Let m and m, be points of M and dD, respectively. Since N is homogeneous,
there exists an element ¢, of I,(N) such that ¢,(f(m))=m, where I,(N) denotes
the identity component of the isometry group of N. Let ¢:[0,1]>I,(N) be a
continuous curve in I,(N) such that ¢(0) is the identity transformation and ¢(1)=¢,.
We set t,=sup {t €[0, 1]; 0., (f(M))< D for any t’€[0,t]} where we put ¢.=¢(f) for
each t€[0,1]. Since M is compact, D is closed in N and ¢ is continuous, we see
that ¢;,(f(M))cD and ¢ (f(IM))NAD is non-empty. We put f=gotoof. Then we
want to show f(M)caD. We set M'={me M; film)eaD}. Let m be a point of
M’ and we put m,=f(m). Now we note that the following notations have all
same meaning as in Section 1 unless otherwise stated. As we have shown in
Section 1 (see Section 1) there exist a local coordinate neighborhood U of m, in
oD and a positive = such that UX(—rz,7) is a local coordinate neighborhood of m,
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in N. Since f(M) is tangent to 8D at m,, by the theorem of implicit function,
there exist a domain 2(c U) in D which contains m, and a u € Ci(f, ) such that
#=>0 holds on 2, u(m,)=0 and f(M) is locally expressed by the form (1.3). Then,
by the argument in Section 1, # is a solution of the equation on £2. Since
% takes its minimum value at m,€ 2, by we can conclude that there
exists an open neighborhood V of m in M such that f{iV)caD. Thus we have
proved that M’ is open in M. Since dD is closed in N, M’ is closed in M. Hence,
by connectedness of M, F(M) must be contained in dD. Thus we complete the proof.

Let M and N be Riemannian manifolds of dimension n(n=1) and of dimension
n-+1, respectively. Let f: M—>N be an isometric immersion. If the mean curva-
ture of M for f vanishes at each point of M, M is called a minimal hypersurface
in N. In particular, for n=1 we say that f: M—>N is a goedesic in N.

From we have

Theorem 4.1. Let N be a homogeneous Riemannian manifold of dimension
n+1(n=1). Let D be a domain in N with regular smooth boundary D and
SZ the mean curvature of 0D with respect to the inward wunit mormal wvector
to 0D. Suppose that >0 holds at each point of dD. Then there are no
compact minimal hypersurfaces in N which is contained in D where D=DUaD.

Theorem 4.2. Let N be a homogeneous Riemannian manifold of dimension
n+1(n=1) and M, a closed hypersurface in N. Let M be a compact Riemannian
manifold of dimension n and f: M—>N an isometric immersion. Suppose that
M, and M are minimal hypersurfaces in N and that M is not a Riemannian
covering manifold of M,. Then for any isometry ¢ of N o(f(M)) and M,
must intersect* each other.

Proof. It is sufficient to show that f(M) and M, intersect each other. Sup-
pose for contradiction that f(M) and M, do not intersect. Let D be the connected
component of N—M, whose closure D contains f(M). We note dD=D—DcM,.
Then, using a similar argument as in the proof of Theorem 1.1, there exists an
isometry ¢ of N such that ¢(f(M))c D and o(f(M))NM, is non-empty. We put
F=pof, and set M’={m e M; fim)e M,}. Since M, is a closed hypersurface in N,
M’ is closed in M. Let m be a point of M’, and we put m,=f(m). Now we

* Here, for example, by f(M) and M, intersect each other we mean that there exists
a point m of M such that f(m)e M, and for an open neighborhood U of f(m) in N which
is divided by M, just two connected components, say U;, U., we can choose an open
neighborhood V of m in M so that fA(V)c U and f(V) has certainly common points with
U; and U;, respectively.
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note that the following notations have all same meaning as in Section 1 unless
otherwise stated. As we have shown in Section 1 (see Section 1) there exist a
local coordinate neighborhood U of m, in M, and a positive r such that UX(—=z,7)
is a local coordinate neighborhood of m, in N. Since f(M ) is tangent to M, at
m,, by the theorem of implicit function, we see that there exist a domain 2(c U)
in M, which contains m, and a %€ Ck(®2,7) such that =0 holds on 2, u(m,)=0
and f(M) is locally expressed by the form [1.8). Since M is a minimal hyersurface
in N, by the argument in Section 1 we see that w is a solution of the following
equation on £2:

>  Ay(@, Puyuy=B@, v, 0)

i,3=

where A (1=1,j=<n) and B are given by (1.9). Since M, and M are minimal
hypersurfaces in N, we can apply to the equation above. Since %
takes its minimum value at m,c 2, it follows from that #=0 on 2.
Therefore there exists an open neighborhood V' of m in M such that FfONcM,.
Thus we have proved that M’ is open in M. By connectedness of M, f(M) must
be contained in M,. Then we can conclude that the isometric immersion f M->M,
is a covering mapping. This contradicts the hypothesis.

Remark. In the case N is a complete Riemannian manifold with positive
Ricci curvature, T. Frankel obtained a similar result as in [4].

5. Non-parametric hypersurfaces in the Euclidean sphere.

The purpose of this section is to generalize the results obtained in [6]. Let
r be a positive constant, and let 2 be a domain in the n-dimensional (n=2)
Euclidean space R® which is contained in the open ball of radius r centred at the
origin. We denote by C*(2) the set of real-valued functions of class C* on 2.
Let C*(2,7) be the subset of C*(2) whose each element u satisfies the condition

(6.1) r*>|lz)24 (u(x)): for any zeQ

where || || stands for the Euclidean norm of R*. We denote by S**'(r) the (n-+1)-
dimensional Euclidean sphere of radius 7 centred at the origin. For a u € C*(2, r),
let us codsider a non-parametric hypersurface M in S**!(r) defined by

(5.2) W)= (@) * * *) Tuy VP — 2] —(u(x))* ,u®), €2,
where r,(1=%=<n) denotes the i-th coordinate of x. We put

(5-3) th(oy M) 11 M) 0) Uh pl) (léién) ’ gtIZX{'XJ (léir jé'n)
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where U=(r*—|lz|*—(u(x))**/?, U,=aU/ox,, p,=0u/ox,(1<i=<n) and where the dod
stands for the inner product of R*. Then we have

(5.4) U* det (g)=r*1+|pll*) —(u—p-2)*

where p=(p,, -+, p,). We put

(5.5) F=r1+lplI)—(u—p-z)*>0.

Now we take the unit normal vector field »=(y,, ++*, 7..2) on M as follows:

(5.6) n=—{rp+u—p-a}rv¥, 1=i=n,
Tan=—U—D-D)UrVE |,  pu={r—(u—p-2)u}/rv¥ .

Let H be the mean curvature of M with respect to 7. We denote by D the
Riemannian connection on S**!(r) defined by the standard Riemannian metric on
Srti(9). Then we have

6.7 A =Dry, 1ZiZn.
%
By the Weingarten’s formula Dy 7(1<¢<n) are expressed as
5.8 Drg=—3ouX,, 1Sisn,
=

where a.(1=%, J=n) are continuous functions on 2. Then the mean curvature
of M at ii(x) with respect to 7 is defined by

(5.9) H(w)=-?17 i au®), x€,

i=1

By (5.6)~(5.9) we have at each point #(x) of M

1 % 0 (rp+u—p-2)w
(5.10) Ho=+ 5 895,{ ] } ,

Theorem 5.1. Assume that 2 i8 an open ball in R™ of radius R which 18
contained in the open ball in R" of radius r centred at the origin. For a
u€C*2,r) let M be a non-parametric hypersurface in S*(r) defined by (5.2)
and H the mean curvature of M with respect to y which is given by (5.6).
Suppose that for a positive constant H, the condition |H|=H, holds at each
point of M. Then we have

H,R<1.

Proof. Let 2, be the closed ball of radius 7’ in R™ whose centre is the
same as 2 where 0<7/<RE. We may assume without loss of generality that H=H,
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holds at each point of M. By the divergence formula, [5.6) and [(5.10), we have

6.11) Sg ' 'anx=Sm [ é (—7]‘)u,j|dS ,

where dz=dz, A --- Ad%,, v=(v,, ++-,v,) is the outward unit normal vector field on
the boundary 92, of 2, and dS denotes the volume element of 32,.. Since H=H,

and é}l (7)2<1, we have

S nHdx=nH, X (volume of 2,/)

(5.12) 2’ i

S [iZl(—m)v¢]dS<volume of 492, .
agf, =

By and (5.12) we have H,r’<1. Thus we have H,R<1 as r'—>R.

Remark. [Theorem 5.1 implies the following: Let 2 be a domain in R* which
is contained in the open ball of radius » centred at the origin. For a u€ C*Q, r),
let M be a non-parametric hypersurface in S**!(r) defined by [5.2). Suppose that
for a positive constant H, the mean curvature H (defined up to a sign) of M
satisfies the inequality |H|=H, at each point of M. Then 2 can not contain a
closed ball of radius 1/H,.

Theorem 5.2. Let 2 be a domain in R™ whose closure 2 is contained in
the open ball of radius r centred at the origin. Let k and H, be constants
such that 0<k<vri—r! and O0=<H,<k/vr*—k* where r,=max|z|. For a
u € CQ)NCR) satisfying the condition m°:=r2H.,/«/'7'rHﬁle gfuék on 2, let
M be a non-parametric hypersurface in S*(r) defined by (5.2) where C°(Q)
denotes the set of real-valued continuous functions on 2. Suppose that for
the mean curvature H of M the inequality |H|<H, holds at each point of M.
If w0 Q:,, then W(D)CQ:L, where m, is a constant such that m,<m,<k and

=@ ++ s Baso) € S™HT); 204, >0, M, =201k}

Proof. Let » be the unit normal vector field on M defined by [5.6). The
mean curvature H of M with respect to » is expressed as the form [(5.10). Then
we can rewrite as follows:

(5.19) 5 Ay(o, w, p)uy=B(@, v, p, H)

where
Ay, u, D)=r{Loy—r*pp,—1+|pl)22,

(5.14) —(u—p-2)(@p; 2,00}, 1=9,5=n,
B, u, p, H)=nC{rHVE —(u—p-2)} .



182 RYOSUKE ICHIDA

By and (5.14), A,(1=7,7=n) and B are continuous on 2XRXR" and B is
of class C! for the valiables p,(1=<¢=n). It is easy to see A,,=r*FgY(1<1, j<n)
where g¥(1=1=n) is the (¢, j)-component of the inverse matrix of the matrix
(94). If we regard H as a given continuous function on @2, (5.13) is & quasilinear
elliptic partial differential equation of second order on £2. Now for a continuous
function H’ on 2 we put

LH'(W)’:i ,Zi ) Ay, v, p)vy— B, v, p, H')

where v e C*(2, r), p=(0v/0x,, **+, 0v/0x,) and A.;(1=1%,5<n) and B are defined by
(6.14). Since u is a solution of the equation (5.18) and |H|<H,, we have

Lgy(u)=Lg,(u)—La(w)=nr F(H—H,)=<0 .

Therefore w is a supersolution of the equation Ly (v)=0 on 2. Since by the
" hypothesis w=7*H,/v7*Hi+1 holds on 2, we have B(r,u,0, H,)<0. Then we
can apply to the equation Lg,(u)=0. The present theorem follows
from Corollary 2.1.

Remark. is a generalization of which was obtained

in [6]. By a similar argument as in the proof of [Theorem 5.2 and [Corollary 2.2
we can also generalize Theorem 3.2 which was obtained in [6].
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