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Introduction.

We obtained the motive of this paper from the following elementary property
of a closed curve in the Euclidean 2-plane $R^{2}$ .

Proposition. Let $c:[0, a]\rightarrow R^{2}$ be a closed curve of class $C^{2}$ parametrized by
arc-length which is cotained in a closed ball in $R^{2}$ of radius $r$ . Then either
$|k(s)|>1/r$ holds for some $s\in[0_{1}a]$ or $c([0, a])$ is contained in the circle of radius
$r$ where $k$ denotes the curvature (defined up to a sign) of $c$ .

We want to extend this proposition to immersed hypersurfaces which are
contained in a domain with regular smooth boundary in a Riemannian manifold
in terms of mean curvature.

In this paper we investigate the problem stated above in the case where
ambieant spaces are homogeneous Riemannian manifolds. Theorem 1.1 is the
main theorem of this paper which is an extension of the proposition stated above.
In order to prove Theorem 1.1 we need to study a quasilinear elliptic partial
differential equation of second order. It will be carried out in Section 2. We
think that the results obtained there is useful for studies of hypersurfaces in a
Riemannian manifold. The complete $pr\ovalbox{\tt\small REJECT} f$ of Theorem 1.1 will be given in tec-
tion 4.

In the latter half of Section 4 we study some properties of minimal hyper-
surfaces in a homogeneous Riemannian manifold. In the last section we generalize
the results obtained in [6].

1. Hypersurfaces in a homogeneous Riemannian manifold.

Throughout this paper we assume that Riemannian manifolds and apparatu8
on them are of class $C^{\infty}$ and that manifolds are connected unless otherwise stated.

Theorem 1.1. Let $N$ be a homogeneous Riemannian manifold of dimension
$n+1(n\geqq 1)$ , and let $D$ be a domain in $N$ with regular smooth boundary $\partial D$ and
$\mathscr{G}$ the mean curvature of $\partial D$ with respect to the inward unit normal vector
to $\partial D$. Let $f:M\rightarrow N$ be an isometric immersion of an n-dimensional compact
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Riemannian manifold $M$ into $N$ such that $f(M)\subset\overline{D}$ where $\overline{D}=D\cup\partial D$ . Suppose
that for a non-negative constant $H_{0}\ovalbox{\tt\small REJECT} satisfies$ the condition

(1.1) $\mathscr{G}\geqq H_{0}$

at each point of $\partial D$ . Then either $|H(m)|>H_{0}$ holds at some point $m$ of $M$ or
there exists an isometry $\varphi$ of $N$ such that $\varphi(f(M))\subset\partial D$ where $H$ denotes the
mean curvature (defined up to a sign) of $M$ for isometric immersion $f$.

The proof of theorem 1.1 will be given in Section 4. The following argument
is used in the $pr\ovalbox{\tt\small REJECT} f$ of Theorem 1.1 and of Theorem 4.2.

Let $N$ be a homogeneous Riemannian manifold of dimension $n+1(n\geqq 1)$ . Let
$D$ be a domain in $N$ with regular smooth boundary $\partial D$ and $ $ the mean curva-
ture of $\partial D$ with respect to the inward unit normal vector to $\partial D$. Let $m_{0}$ be a
point of $\partial D$. Since $N$ is homogeneous, there exists a Killing vector field $X$ on
$N$ such that $X$ coincides with the inward unit normal vector to $\partial D$ at $m_{0}$ . Let
$\{\varphi_{\ell}\},$ $|t|<\tau^{\prime}$ , be the local l-parameter subgroup of local transformations generated
by $X$. Then, since $X$ is a Killing vector field, $\varphi_{\ell}$ is isometric for each $t\in(-\tau^{\prime}, \tau^{\prime})$ .
We can choose a local $c\ovalbox{\tt\small REJECT} rdinate$ neighborhood $U$ of $m_{0}$ in $\partial D$ and a positive
$\tau$ so that the mapping $\Phi:U\times(-\tau, \tau)\rightarrow N$ defined by $\Phi(m, t)=\varphi_{t}(m)$ for
$(m, t)\in U\times(-\tau, \tau)$ is imbedding. Let $(x_{1}, \cdots, x_{n})$ be the local $c\ovalbox{\tt\small REJECT} rdInate8ystem$

on $U$. We denote by $\langle, \rangle$ the Riemannian metric tensor on $U\times(-\tau, \tau)$ induced
by $\Phi$ . We set $g_{\alpha}\beta=\langle\partial/\partial x_{\alpha}, \partial/\partial x_{\beta}\rangle,$ $1\leqq\alpha,$ $\beta\leqq n+1$ , where we put $x_{n+1}=t$ . Since $\varphi_{t}$

is isometric for each $t\in(-\tau, \tau)$ and $X$ coincides with the inward unit nomal
vector to $\partial D$ at $m_{0}$ , we see that $g_{\alpha\beta}(1\leqq\alpha, \beta\leqq n+1)$ are independent of $t,$ $t\in(-\tau, \tau)$ ,
and that $g_{\ell n+1}(m_{0}, t)=0,1\leqq i\leqq n$ . For simplicity, in what follows, we shall use
the following notations:

$g_{\ell}=g_{n+1}$ , $1\leqq i\leqq n$ , and $g=g_{n+1n+1}$ .
For an open subset $V$ of $\partial D$ we shall denote by $C^{2}(T\mathfrak{h}$ the set of real-valued
functions of class $C^{2}$ on $V$ and we shall put $u_{\ell}=\partial ul\partial x,$ $u_{j}=\partial^{*}u/\partial x\partial x_{j},$ $1\leqq i$ ,
$j\leqq n$ , for each $ueC^{2}(V)$ . Now for a domain $\Omega$ of $U$ which contains $m_{0}$ we
consider the subset $C_{*}^{2}(\Omega, \tau)$ of $C^{2}(\Omega)$ whose each element $u$ satisfies the condition

(1.2) $|u(m)|<\tau$ for all $ m\in\Omega$ and $1+\sum_{\ell=\iota}^{n}u^{i}g>0$ on $\Omega$

where we put $u^{i}=\sum_{\dot{g}=1}^{n}g^{ij}u_{j},$ $1\leqq i\leqq n$ , and where $g^{ij}$ is the $(i,j)<omponent$ of the
inverse matrix of the matrix $(g_{j}),$ $1\leqq i,$ $j\leqq n$ . This is possible. In fact, since
for any $t\in(-\tau, \tau)g(m_{0}, t)=0,1\leqq i\leqq n$ , for a $u\in C^{t}(U)$ there exists a domain of $U$
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containing $m_{0}$ on which $1+\sum_{i=1}^{n}u^{\ell}g_{\ell}>0$ holds. For a $u\in C_{*}^{2}(\Omega, \tau)$ let us consider a
hypersurface $S(u)$ in $\Omega\times(-\tau, \tau)$ defined by

(1.3) $S(u)=$ {$(m,$ $u(m))\in\Omega\times(-\tau,$ $\tau)$ ; me $\Omega$}.

In particular, if $u$ is constant, say $t\in(-\tau.\tau)$ , we shall denote it by $S_{\ell}$ . We put
$X_{\ell}=\partial/\partial x_{\ell}+u\partial/\partial t,$ $1\leqq i\leqq n$ . Then $X_{1},$

$\cdots,$
$X_{n}$ are linearly independent vector fields

on $S\langle u$). We set

(1.4) $\overline{g}_{\ell j}=\langle X_{\ell}, X_{j}\rangle=g_{j}+g_{\ell}u_{j}+g_{j}u+guu_{j}$ , $1\leqq i,j\leqq n$ .
We can give a unit normal vector field $\eta=\eta^{\alpha}(\partial/\partial x_{a})^{*}$ on $S(u)$ by

(1.5) $\eta=-\frac{1}{\sqrt{G}}a^{\ell j}a_{j}$ , $1\leqq i\leqq n$ , $\eta^{n+1}=\frac{1}{\sqrt{G}}$

where
a $=g^{ij}-u^{\ell}g^{j}(1+u^{k}g_{k})^{-1}$ , $a_{j}=g_{j}+gu_{j}$ ,

(1.6) $u^{\ell}=g^{\ell k}u_{k,}$ $g^{j}=g^{jk}g_{k}$ ,
$G=g_{j}a^{k}a^{j\ell}a_{k}a_{\iota}-2a^{\ell k}ga_{k}+g>0$ .

Remark. For a $u\in C_{*}^{2}(\Omega, \tau)$ we put $a_{j}=g_{\ell j}+ug_{j},$ $1\leqq i,$ $j\leqq n$. Then, it is
easy to see that $a_{k}a^{kj}=\delta_{j}$ and det $(a_{j})=\det(g_{\ell j})(1+u^{k}g_{k})>0(by(1.2))$ .

For the moment we shall denote by $D$ the Riemannian connection on $ U\times$

$(-\tau_{1}\tau)$ . Let $\Gamma_{\rho r}^{\alpha},$ $1\leqq a,$ $\beta,$ $\gamma\leqq n+1$ , be the Riemannian connection coefficients on
$U\times(-\tau_{1}\tau)$ .

Let $H$ be the mean curvature of $S(u)$ with respect to $\eta$ . It is deflned by
$ H=(1/n)\overline{g}^{\ell j}\langle D_{X}X_{j}, \eta\rangle$ where $\overline{g}^{j}$ is the $(i, j)\cdot eomrnent$ of the inverse matrix of
the matrix $(\overline{g}_{j}),$ $1\leqq i,$ $j\leqq n$ . By (1.5) we have

$nH\sqrt{G}=\overline{g}^{j}\{(g-a^{k\ell}a_{\ell}g_{k})u_{u}+(g_{\alpha n+1}-a^{k\ell}a_{\ell}g_{\alpha k})(\Gamma_{\ell j}^{a}+\Gamma_{in+1}^{a}u_{j})\}$ .
We put

(1.7) $G^{j}=\det(\overline{g}_{u})\overline{g}^{u}$ , $1\leqq i,$ $j\leqq n$ .
Then we can rewrite the equality above as follows:

(1.8)
$\sum_{\ell,\dot{g}=1}A_{ij}(x, \nabla u)u_{u}=B(x, \nabla u, H)$

where

$\ovalbox{\tt\small REJECT}*$From now on, we suppose that Greek indice8 $ a,\beta,\gamma\ldots$ run over the range1,2 $\ldots$ ..
$n,n+1$ and that Latin indices $i,j,k,$ $\cdots$ run over the range 1,2, $\cdots$ , $n$ , and we shall use
the Ein8tein convention for repeating indices.
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$A_{\ell j}(x, \nabla u)=(g-a^{k\ell}a_{\ell}g_{k})G^{\ell j}$ , $1\leqq i,$ $j\leqq n,$ $\nabla u=(u_{1}, \cdots, u_{n})$ ,
(1.9) $B(x, \nabla u, H)=nH\sqrt{G}$ det $(\overline{g}_{\ell j})$

$-G^{\ell j}(\Gamma_{\ell f}^{\alpha}+\Gamma_{in+1}^{\alpha}u_{j})(g_{an+1}-g_{\alpha k}a^{k\ell}a_{l})$ .
We note $ g-a^{k\ell}a_{l}g_{k}=\langle\eta, \partial/\partial t\rangle$ . It never vanish on $S(u)$ . Since

$(g-a^{k\ell}a_{\ell}g_{k})(m_{0}, t)=g(m_{0}, t)>0$

and $S(u)$ is connected, we see that $g-a^{k\ell}a_{\ell}g_{k}>0$ holds on $S(u)$ . Therefore, when
in (1.8) we regard $H$ as a given continuous function on $\Omega,$ $(1.8)$ is a quasilinear
elliptic partial differential equation of second order on $\Omega$ . Then, if $u\in C_{*}^{2}(\Omega, \tau)$

is a solution of the equation (1.8), for this $u$ the mean curvature of the hyper-

surface in $\Omega\times(-\tau, \tau)$ defined by (1.3) equals $H$. Sinoe $g_{j}(1\leqq i, j\leqq n)$ are in-
dependent of $t\in(-\tau, \tau)$ , from (1.4) we see that for each $t\in(-\tau, \tau)$ the mean curva-
ture of $S_{t}$ is equal to $\mathscr{F}$ Hence from (1.6), (1.8) and (1.9) we have

Lemma 1.1. For a fixed $t\in(-\tau, \tau)$

$\mathscr{G}=\frac{1}{n}(g-g^{k\ell}g_{k}g_{\ell})^{-1/2}g^{\ell j}\Gamma_{lj}^{\alpha}(g_{\alpha n+1}-g_{\alpha k}g^{k\ell}g_{i})$ .
Theorem 1.2. Let $N$ be a homogeneous Riemannian manifold of dimension

$n+1(n\geqq 1)$ , and let $D$ be a domain in $N$ with regular smooth boundary $\partial D$ and
$\mathscr{G}$ the mean curvature of $\partial D$ with respect to the inward unit normal vector to
$\partial D$. Let $\Omega$ be a domain in $\partial D$ which is contained in some local coordinate
neighborhood of $\partial D$ satisfying the condition discussed above. Suppose that

for a non-negative constant $H_{0}\ovalbox{\tt\small REJECT}$ satisfies the condition (1.1). Let $H$ be a
real-valued continuous function on $\Omega$ such that

(1.10) $|H|\leqq H_{0}$

holds on $\Omega$ . If $ueC_{*}^{2}(\Omega, \tau)$ is a solution of the equation (1.8), then $u$ can not
take its minimum value in $\Omega$ unless $u$ is constant where $C_{*}^{2}(\Omega, \tau)$ is defined by

(1.2).

The $pr\ovalbox{\tt\small REJECT} f$ of Theorem 1.2 will be given in Section 3.

2. Quasilinear elliptic partial differential equations of second order.

In this section we shall study quasilinear elliptic partial differential equations

of second order with more general fom than the equation (1.8).

Let $\Omega$ be a domain in the n-dimensional Euclidean space $R^{n}$ and let $C^{2}(\Omega)$ be
the set of real-valued functions of class $C^{2}$ on $\Omega$ . In the following, for a $u\in C^{2}(\Omega)$

we put
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$u_{\ell}=\partial ul\partial x_{\ell}$ , $1\leqq i\leqq n$ , $\nabla u=(u_{1}, \cdots, u_{n})$ and $u_{\ell j}=\partial^{2}u/\partial x_{\ell}\partial x_{j}$, $1\leqq i,$ $j\leqq n$ , where
$(x_{1}, \cdots, x_{n})$ stands for the canonical $c\ovalbox{\tt\small REJECT} rdinate$ system in $R$“. We denote by $||||$

the Euclidean norm of $R^{n}$ .
Let us consider on a domain $\Omega$ in $R^{n}$ a quasilinear elliptic partial differential

equation of second order:

(2.1) $\sum_{\ell,\dot{g}=1}^{*}A_{j}(x, u, Vu)u_{u}=B(x, u, \nabla u)$

where $A_{j}(1\leqq i, j\leqq n)$ and $B$ are real-valued continuous functions on $\Omega\times R\times R^{n}$

and $A_{j}=A_{j\ell}(1\leqq i, j\leqq n)$ . We shall denote by $(x, u, p)$ a point of $\Omega\times R\times R^{n}$ .
Ellipticity of the equation (2.1) requires that the coefficient matrix satisfie8 the
condition

(2.2) $\sum_{\ell,j=1}A_{j}(x, u, p)X_{\ell}X_{j}>0$ on $\Omega\times R\times R^{n}$

for arbitrary non-vanishing real vector $X=(X_{1}, \cdots, X_{n})\in R^{n}$ .
We set for a $u\in C^{2}(\Omega)$

$L(u)=\sum_{j=1}A_{j}(x, u, \nabla u)u_{\ell j}-B(x, u, \nabla u)$ .
It is called that $u$ is a supersolution (subsolution) of the equation (2.1) if $L(u)\leqq 0$

$(L(u)\geqq 0)$ .
Theorem 2.1. Assume that for the equation (2.1) the following conditions

hold:

(2.3) $B(x, u, 0)\leqq 0$ on $\Omega\times R$ ,

(2.4) $|B(x, u, p)-B(x, u, O)|\leqq h(x, u, p)F(\Vert p||)$ on $\Omega\times R\times R^{n}$

where $h$ is a non-negative valued continuous function on $\Omega\times R\times R^{n}$ and $F$ is
a non-negative valued function of one-variable such that

(2.5) $\lim_{l\rightarrow+0}\frac{F(t)}{t}=c$

where $c$ is a non-negative constant. Suppose that $u\in C’(\Omega)$ is a $\epsilon uper\epsilon olution$

of the equation (2.1). Then $u$ can not take its minimum value in $\Omega$ unless $u$

is constant.

Proof. Suppose for contradiction that $u$ takes the minimum value $m$ in $\Omega$

and that $u$ is not constant. We set $\Omega^{\prime}=\{x\in\Omega;u(x)=m\}$ . Since $\Omega$ is connected
and $\Omega^{\prime}$ is closed in $\Omega$ , there exists a point $y$ of $\Omega^{\prime}$ such that for any $r>0\Omega^{\prime}$ can
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not contain the open ball in $R^{n}$ of radius $r$ and of center $y$ . Then, taking $r$

sufficiently small, we can $ch\ovalbox{\tt\small REJECT} se$ a point $x_{0}\in\Omega-\Omega^{\prime}$ and a positive $r_{0}$ so that

(2.6) $\Omega_{0}=\{x\in R^{n};\Vert x-x_{0}||\leqq r_{0}\}\subset\Omega$ , $\Omega_{0}\cap\Omega^{\prime}=\{y_{0}\}$ .
Let $\Omega_{1}$ be the closed ball in $R$“ of radius $r_{1}$ and of center $y_{0}$ such that $0<r_{1}<r_{0}$

and $\Omega_{1}\subset\Omega$ . Then from (2.6) we see that there exists a constant $\delta,$ $0<\delta<1$ ,
satisfying the condition

(2.7) $ u\geqq m+\delta$ on $\Omega_{0}\cap\partial\Omega_{1}$

where $\partial\Omega_{1}=\{x\in R‘‘; ||x-y_{0}\Vert=r_{1}\}$ . We also see that

(2.8) $r_{2}\leqq||x-x_{0}\Vert\leqq r_{\epsilon}$ for all $x\in\Omega_{1}$

where $r_{2}=r_{0}-r_{1}$ and $r,=r_{0}+r_{1}$ .
By the condition (2.2) there exist positive constants $\lambda_{1}$ and $\lambda_{2}$ 8uch that

(2.9) $\lambda_{1}||X||^{2}\leqq\sum_{\dot{g}=1}^{n}A_{j}(x, u(x),$ $p(x))XX_{j}\leqq\lambda_{2}||X||^{2}$

for any vector $X=(X_{1}, \cdots, X_{n})\in R^{n}$ and any $x\in\Omega_{1}$ where we put $\nabla u(x)=p(x)$ (In

the following we also use the same notation). We put

(2.10)
$c_{1}=\sup_{xe\downarrow\prime_{1}}\{h(x, u(x), p(x))\}$ .

Let $\{\epsilon_{k}\},$ $ k=1,2_{1}\cdots$ , be a sequence such that $0<\epsilon_{k}<1(k=1,2, \cdots)$ and $\lim_{}\epsilon_{k}=0$ .
For each $\epsilon_{k}(k=1,2, \cdots)$ we now consider the auxiliary function $w^{(k)}$ on $\Omega_{1}$ defined
by

(2.11) $w^{(k)}(x)=u(x)-\epsilon_{k}\phi(x)$ for $x\in\Omega_{1}$ $(k=1,2, \cdots)$

where

(2.12) $\phi(x)=\exp(-\alpha\Vert x-x_{0}\Vert^{2})-\exp(-\alpha r_{0}^{2})$ ,

$\alpha$ being a positive constant such that

(2.13) $\alpha>\max$ { $(r_{2})^{-2}$ log $(1/\delta),$ $(2\lambda_{1}r_{2}^{2})^{-1}(n\lambda_{2}+cc_{1}r_{\iota})$ }.

Since $|x-x_{0}|>r_{0}$ on $\partial\Omega_{1}-\Omega_{0},$ $\phi<0$ on $\partial\Omega_{1}-\Omega_{0}$ . Thus we have

(2.14) $w^{(k)}>m$ on $\partial\Omega_{1}-\Omega_{0}$ .
From (2.7), (2.8) and (2.13), on $\partial\Omega_{1}\cap\Omega_{0}$ we have

(2.15) $w^{(k)}\geqq m+\delta-e_{k}\phi>m+\delta-\epsilon_{k}$ exp $(-\alpha r_{2}^{2})>m$ .
On the other hand, at $y_{0}$ we have

(2.16) $w^{(k)}(y_{0})=u(y_{0})=m$ .
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Thus it follows from (2.14), (2.15) and (2.16) that $w^{(k)}$ takes its minimum value

at an interior point of $\Omega_{1}$ . Let $y^{(k)}$ be an interior point of $\Omega_{1}$ at which $w^{(k)}$

takes its minimum value. By taking a subsequence if necessary, we can assume
that $\{y^{(k)}\},$ $k=1,2,$ $\cdots$ , converges to a point $\overline{y}\in\Omega_{1}$ .

By (2.3), (2.4) and (2.10), we have at each interior point $x$ of $\Omega_{1}$

(2.17) $B(x, u(x),$ $p(x))\leqq c_{1}F(\Vert p(x)\Vert)$ .
Since $u$ is a supersolution of the equation (2.1) and $ u=w^{(k)}+\epsilon_{k}\phi$ for each
$e_{k}(k=1,2, \cdots)$ , we have at each interior point $x$ of $\Omega_{1}$

(2.18) $\sum_{\ell,\dot{g}=1}^{n}A_{\ell j}(x, u(x),$ $p(x))(w_{j}^{(k)}(x)+\epsilon_{k}\phi_{\ell j}(x))\leqq c_{1}F(||p(x)\Vert)$ .

We shall estimate the inequality (2.18) at $y^{(k)}(k=1,2, \cdots)$ . From (2.12) we have

$\phi(y^{(k)})=-2\alpha z_{\ell}^{(k)}\xi(y^{(k)})$ , $1\leqq i\leqq n$ ,
(2.19)

$\phi_{\ell j}(y^{(k)})=-2\alpha(\delta_{\ell j}-2\alpha z_{l}^{(k)}z_{j}^{(k)})\xi(y^{(k)})$ , $1\leqq i,$ $j\leqq n$ ,

where we put $z^{(k)}=(z_{1}^{(k)}, \cdots, z_{n}^{(k)})=y^{(k)}-x_{0}$ and $\xi(x)=\exp(-\alpha||x-x_{0}||^{a})$ . Since $w^{(k)}$

takes its minimum value on $\Omega_{1}$ at $y^{(k)}$ , we have

(2.20) $u(y^{(k)})=\epsilon_{k}\phi_{\ell}(y^{(k)})$ , $1\leqq i\leqq n$ ,

and

(2.21) $\sum_{\ell.f=1}^{n}A_{u}(y^{(k)}, u(y^{(k)}),$ $p(y^{(k)}))w_{\ell j}^{(k)}(y^{(k)})\geqq 0$ .

From (2.9), (2.19), (2.20) and (2.21), at $y^{(k)}$ we have

the left-hand 8ide of (2.18) $\geqq\mu_{k}(2\alpha\lambda_{1}\Vert z^{(k)}||^{2}-n\lambda_{2})$

$\geqq\mu_{k}(2\alpha\lambda_{1}r_{2}^{2}-n\lambda_{2})$

where we put $\mu_{l}=\&\epsilon\not\in(y^{(k)})(>0)$ and we note that the last inequality follows from
(2.8). Thus we have

(2.22) $2\alpha\lambda_{1}r_{2}^{2}-n\lambda_{2}\leqq c_{1}F(\Vert p(y^{(k)})||)/\mu_{k}$ .
By (2.19), (2.20) we have $\Vert p(y^{(k)})\Vert=2\alpha\epsilon\not\in(y^{(k)})\Vert z^{(k)}\Vert=\mu_{k}\Vert z^{(k)}||$ . Since $\lim_{k\rightarrow\infty}y^{(k)}=\overline{y}e\Omega_{1}$ ,
$0<r_{2}\leqq\Vert z^{(k)}\Vert\leqq r_{8}(k=1,2_{1}\cdots)$ and $||\overline{y}-x_{0}||\leqq r_{S}$ , by (2.5) we have

$\lim_{k\rightarrow\infty}\frac{F(||p(y^{(k)})\Vert)}{\mu_{k}}=c\Vert\overline{y}-x_{0}||\leqq cr_{\epsilon}$ .

Thus from (2.22) we have

$2\alpha\lambda_{1}r_{2}^{2}-n\lambda_{2}\leqq cc_{1}r_{8}$ .
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This contradicts (2.10). Hence we complete the proof.
We suppose that the inhomogeneous term $B$ of the equation (2.1) is of class

$C^{1}$ for the variables $p_{\ell}(1\leqq i\leqq n)$ . Then we have

$|B(x, u, p)-B(x, u, 0)|$

$\leqq[\sum_{k=1}^{n}\int_{0}^{1}|\frac{\partial B}{\partial p_{k}}(x, u, tp)|dt]\Vert p\Vert$ .

Therefore we see that the conditions (2.4) and (2.5) of Theorem 2.1 are satisfied.
Thus we have

Corollary 2.1. Suppose that for the equation (2.1) the inhomogeneous term
$B$ is of class $C^{1}$ for the variables $p_{\ell}(1\leqq i\leqq n)$ and that the inequality $B(x, u, 0)\leqq 0$

holds on $\Omega\times R$ . If $ueC^{2}(\Omega)$ is a supersolution of the equation (2.1), then $u$

can not take its minimum value in $\Omega$ unless $u$ is constant.

Theorem 2.2. Suppose that for the equation (2.1) the $ condition\epsilon$ of Theorem
2.1 hold except the condition (2.3) and that the inequality $B(x, u, 0)\geqq 0$ holds on
$\Omega\times R$ . If $ueC^{2}(\Omega)$ is a subsolution of the equation (2.1), then $u$ can not take
its maximum value in $\Omega$ unless $u$ is constant.

The $pr\ovalbox{\tt\small REJECT} f$ can be proved by a similar argument as in the $pr\ovalbox{\tt\small REJECT} f$ of Theorem
2.1. In this case we adopt $w^{(k)}=u+\epsilon_{k}\phi,$ $k=1,2,$ $\cdots$ , as auxiliary functions cor-
responding to (2.11).

Corollary 2.2. $Suppo\epsilon e$ that for the equation (2.1) the $ inhomogeneou\epsilon$ term
$B$ is of class $C^{1}$ for the variables $p(1\leqq i\leqq n)$ and that the inequality $B(x, u, 0)\geqq 0$

holds on $\Omega\times R$ . If $ueC^{2}(\Omega)$ is a subsolution of the equation (2.1), then $u$ can
not take its maximum value in $\Omega$ unless $u$ is constant.

Remark. For the conditions (2.3) and (2.4) in Theorem 2.1 we obtained an
idea from R. Redheffer’s paper [71 It will be indicated in Sections 3 and 5 that
for the equations (1.8) and (5.13) the condition (2.3) closely relates to a geometrical

condition which is connected with the mean curvature.

3. Proof of Theorem 1.2.

The notation8 which will be used in this section are all same a8 in Section 1
unless otherwise stated. In the following we shall put $\nabla u=p=(p_{1}, \ldots, p_{n})$ for a
$ueC^{2}(\Omega)$ .

We put $\overline{B}(x, p)=B(x, p, H_{0})$ . Then from (1.6) and (1.9) we have

Lemma 3.1. For the equation (1.8), $A_{\ell j}(1\leqq i, j\leqq n)$ and $\overline{B}$ are continuous



ON HYPERSURFACES IN A HOMOGENEOUS RIEMANNIAN MANIFOLD 177

on $\Omega\times R^{n}$ and $\overline{B}$ is of class $C^{1}$ for the variables $p_{\ell}(1\leqq i\leqq n)$ .
Lemma 3.2.

$\overline{B}(x, 0)=n(H_{0}-\mathscr{G})(g-g^{j}gg_{j})^{1/2}$ det $(g_{\ell j})$ , $ x\in\Omega$ .
Proof. From (1.6), (1.7) and (1.9) we have

$B(x, 0, H_{0})=nH_{0}(g-g^{ij}g_{\ell}g_{j})^{1/a}$ det $(g_{j})$

$-\det(g_{\ell j})g^{j}\Gamma_{ij}^{\alpha}(g_{\alpha n+1}-g_{ak}g^{k\ell}g_{\ell})$ .
Then the lemma follows from Lemma 1.1.

Proof of Theorem 1.2. For a real-valued continuous function $H^{\prime}$ on $\Omega$ , we
set

$L_{E^{\prime}}(u)=\sum_{i,j=1}A_{j}(x, p)u_{ij}-B(x, p, H^{\prime})$

where $ueC_{*}^{2}(\Omega, \tau),$ $A_{j}(1\leqq i, j\leqq n)$ and $B$ are given by (1.9). Let $u\in C_{*}^{2}(\Omega, \tau)$ be
a solution of the equation (1.8). Since $|H|\leqq H_{0}$ , we have

$L_{q_{0}}(u)=L_{E_{0}}(u)-L_{E}(u)=n(H-H_{0})\sqrt{G}$ det $(\overline{g}_{j})\leqq 0$ .
Hence $u$ is a 8upersolution of the equation $L_{H_{0}}(v)\equiv 0$ on $\Omega$ . Since $\ovalbox{\tt\small REJECT}^{P}\geqq H_{0}$ , by

Lemma 3.2 we have $\overline{B}(x, 0)\leqq 0$ . Therefore by Lemma 3.1 we can apply Corollary

2.1 to the equation $L_{r_{0}}(v)\equiv 0$ . Then the theorem follows from Corollary 2.1.

4. Proof of Theorem 1.1.

We first give a proof of Theorem 1.1 and in the next place we study minimal
hypersurfaces in a homogeneous Riemannian manifold.

Proof of Theorem 1.1. Suppose that $|H(m)|\leqq H_{0}$ holds at each point $m$ of
$M$. Let $m$ and $m_{1}$ be points of $M$ and $\partial D$, respectively. Since $N$ is homogeneous,

there exists an element $\varphi_{1}$ of $I_{0}(N)$ such that $\varphi_{1}(f(m))=m_{1}$ where $I_{0}(N)$ denotes
the identity component of the isometry group of $N$. Let $\varphi:[0,11\rightarrow I_{0}(N)$ be a
continuous curve in $I_{0}(N)$ such that $\varphi(0)$ is the identity transformation and $\varphi(1)=\varphi_{1}$ .
We set $ t_{0}=\sup$ {$t\in[0,1];(o_{t^{\prime}}(f(M))\subset D$ for any $t^{\prime}\in[0,$ $t]$ } where we Put $\varphi_{t}=\varphi(t)$ for
each $t\in[0,1]$ . Since $M$ is compact, $\partial D$ is closed in $N$ and $\varphi$ is continuous, we see
that $\varphi_{\ell_{0}}(f(M))\subset\overline{D}$ and $\varphi_{\ell_{0}}(f(M))\cap\partial D$ is non-empty. We put $\overline{f}=\varphi_{\ell_{0}^{\circ}}f$. Then we
want to show $\overline{f}(M)\subset\partial D$. We 8et $M^{\prime}=\{m\in M;\overline{f(}m)\in\partial D\}$ . Let $m$ be a point of
$M^{\prime}$ and we put $m_{0}=\overline{f(}m$). Now we note that the following notations have all
8ame meaning as in Section 1 unless otherwise stated. As we have 8hown in
Section 1 (see Section 1) there exist a local $c\ovalbox{\tt\small REJECT} rdinateneighborh\ovalbox{\tt\small REJECT} dU$ of $m_{0}$ in
$\partial D$ and a positive $\tau$ such that $U\times(-\tau, \tau)$ is a local coordinate $neighborh\ovalbox{\tt\small REJECT} d$ of $m_{0}$
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in $N$. Since $\overline{f(}M$) is tangent to $\partial D$ at $m_{0}$ , by the theorem of implicit function,

there exist a domain $\Omega(\subset U)$ in $\partial D$ which contains $m_{0}$ and a $u\in C_{*}^{2}(\Omega, \tau)$ such that
$u\geqq 0$ holds on $\Omega,$ $u(m_{0})=0$ and $\overline{f(}M$) is locally expressed by the form (1.3). Then,
by the argument in Section 1, $u$ is a solution of the equation (1.8) on $\Omega$ . Since
$u$ takes its minimum value at $ m_{0}\in\Omega$ , by Theorem 1.2 we can conclude that there
exists an open neighborhood $V$ of $m$ in $M$ such that $\overline{f(}V$) $\subset\partial D$. Thus we have
proved that $M^{\prime}$ is open in $M$. Since $\partial D$ is closed in $N,$ $M^{\prime}$ is closed in $M$. Hence,
by connectedness of $M,\overline{f}(M)$ must be contained in $\partial D$. Thus we complete the $pr\ovalbox{\tt\small REJECT} f$ .

Let $M$ and $N$ be Riemannian manifolds of dimension $n(n\geqq 1)$ and of dimension
$n+1$ , respectively. Let $f:M\rightarrow N$ be an isometric immersion. If the mean curva-
ture of $M$ for $f$ vanishes at each point of $M,$ $M$ is called a minimal hypersurface

in $N$. In particular, for $n=1$ we say that $f:M\rightarrow N$ is a goedesic in $N$.
From Theorem 1.1 we have

Theorem 4.1. Let $N$ be a homogeneous Riemannian manifold of dimension
$n+1(n\geqq 1)$ . Let $D$ be a domain in $N$ with regular smooth boundary $\partial D$ and
$\mathscr{G}$ the mean curvature of $\partial D$ with respect to the inward unit normal vector
to $\partial D$. Suppose that $\mathscr{G}>0$ holds at each point of $\partial D$. Then there are no
compact minimal hypersurfaces in $N$ which is contained in $\overline{D}$ where $\overline{D}=D\cup\partial D$.

Theorem 4.2. Let $N$ be a homogeneous Riemannian manifold of dimension
$n+1(n\geqq 1)$ and $M_{0}$ a closed hypersurface in N. Let $M$ be a compact Riemannian
manifold of dimension $n$ and $f:M\rightarrow N$ an isometric immersion. Suppose that
$M_{0}$ and $M$ are minimal hypersurfaces in $N$ and that $M$ is not a Riemannian
covering manifold of $M_{0}$ . Then for any isometry $\varphi$ of $N\varphi(f(M))$ and $M_{0}$

must $intersect^{*}$ each other.

Proof. It is sufficient to show that $f(M)$ and $M_{0}$ intersect each other. Sup-
pose for contradiction that $f(M)$ and $M_{0}$ do not intersect. Let $D$ be the connected
component of $N-M_{0}$ whose closure $\overline{D}$ contains $f(M)$ . We note $\partial D=\overline{D}-D\subset M_{0}$ .
Then, using a similar argument as in the proof of Theorem 1.1, there exists an
isometry $\varphi$ of $N$ such that $\varphi(f(M))\subset\overline{D}$ and $\varphi(f(M))\cap M_{0}$ is non-empty. We put

$\overline{f}=\varphi\circ f$, and set $M^{\prime}=\{m\in M;\overline{f(}m)\in M_{0}\}$ . Since $M_{0}$ is a closed hypersurface in $N$,
$M^{\prime}$ is closed in $M$. Let $m$ be a point of $M^{\prime}$ , and we put $m_{0}=\overline{f}(m)$ . Now we

* Here, for example, by $f(M)$ and $M_{0}$ intersect each other we mean that there exists
a point $m$ of $M$ such that $f(m)\in M_{0}$ and for an open neighborhood $U$ of $f(m)$ in $N$ which
is divided by $M_{0}$ iust two connected components, say $U_{1}$ , $U_{2}$ , we can choose an open
neighborhood $V$ of $m$ in $M$ so that $f(V)\subset U$ and $f(V)$ has certainly common points with
$U_{1}$ and $U_{2}$ , respectively.
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note that the following notations have all same meaning as in Section 1 unless

otherwise stated. As we have shown in Section 1 (see Section 1) there exist a
local coordinate $neighborh\ovalbox{\tt\small REJECT} dU$ of $m_{0}$ in $M_{0}$ and a positive $\tau$ such that $U\times(-\tau, \tau)$

is a local $c\ovalbox{\tt\small REJECT} rdinateneighborh\ovalbox{\tt\small REJECT} d$ of $m_{0}$ in $N$. Since $\overline{f}(M)$ is tangent to $M_{0}$ at
$m_{0}$ , by the theorem of implicit function, we see that there exi8t a domain $\Omega(\subset U)$

in $M_{0}$ which contains $m_{0}$ and a $u\in C_{*}^{2}(\Omega, \tau)$ such that $u\geqq 0$ holds on $\Omega,$ $u(m_{0})=0$

and $f(M)$ is locally expressed by the form (1.3). Since $M$ is a minimal hyersurface

in $N$, by the argument in Section 1 we see that $u$ is a solution of the following

equation on $\Omega$ :

$\sum_{i,g=1}^{r}A_{\ell j}(x, \nabla u)u_{u}=B(x, \nabla u, 0)$

where $A_{\ell j}(1\leqq i, j\leqq n)$ and $B$ are given by (1.9). Since $M_{0}$ and $M$ are minimal
hypersurfaces in $N$, we can apply Theorem 1.2 to the equation above. Since $u$

takes its minimum value at $ m_{0}\in\Omega$ , it follows from Theorem 1.2 that $u\equiv 0$ on $\Omega$ .
Therefore there exists an open neighborhood $V$ of $m$ in $M$ such that $\overline{f(}V$) $\subset M_{0}$ .
Thus we have proved that $M^{\prime}$ is open in $M$. By connectedness of $M,\overline{f(}M$) must
be contained in $M_{0}$ . Then we can conclude that the isometric immersion $\overline{f:}M\rightarrow M_{0}$

is a covering mapping. This contradicts the hypothesis.

Remark. In the case $N$ is a complete Riemannian manifold with positive

Ricci curvature, T. Frankel obtained a similar result as Theorem 2.2 in [4].

5. Non-parametric hypersurfaces in the Euclidean sphere.

The purpose of this section is to generalize the results obtained in [61 Let
$r$ be a positive constant, :and let $\Omega$ be a domain in the n-dimensional $(n\geqq 2)$

Euclidean space $R^{n}$ which is contained in the open ball of radius $r$ centred at the
origin. We denote by $C^{2}(\Omega)$ the set of real-valued functions of class $C^{2}$ on $\Omega$ .
Let $C^{2}(\Omega, r)$ be the subset of $C^{2}(\Omega)$ whose each element $u$ satisfies the condition

(5.1) $r^{2}>||x||^{2}+(u(x))^{2}$ for any $ xe\Omega$

where $||\Vert$ stands for the Euclidean norm of $R^{n}$ . We denote by $S^{n+1}(r)$ the $(n+1)$ .
dimensional Euclidean sphere of radius $r$ centred at the origin. For a $ueC^{2}(\Omega, r)$ ,
let us codsider a non-parametric hypersurface $M$ in $S^{n+1}(r)$ defined by

(5.2) $\overline{u}(x)=(x_{1}, \cdots, x_{n}, \sqrt{r^{2}-\Vert x\Vert^{2}-(u(x))^{2}}, u(x))$ , $ xe\Omega$ ,

where $x(1\leqq i\leqq n)$ denotes the i-th coordinate of $x$ . We put

(5.3) $X_{\ell}=(0, \cdots, 1, \cdots, 0, U_{\ell}, p_{\ell})(1\leqq i\leqq n)$ , $g_{\ell j}=X\cdot X_{j}$ $(1\leqq i, j\leqq n)$



180 RYOSUKE ICHIDA

where $U=(r^{2}-\Vert x\Vert^{2}-(u(x))^{2})^{1/2},$ $U_{\ell}=\partial Ul\partial x_{\ell},$ $p_{\ell}=\partial u/\partial x_{\ell}(1\leqq i\leqq n)$ and where the dod
stands for the inner product of $R^{n}$ . Then we have

(5.4) $U^{a}$ det $(g_{\ell j})=r^{2}(1+\Vert p\Vert^{2})-(u-p\cdot x)^{2}$

where $p=(p_{1}, \cdots, p_{n})$ . We put

(5.5) $\mathcal{G}=r^{2}(1+\Vert p\Vert^{2})-(u-p\cdot x)^{2}>0$ .
Now we take the unit normal vector field $\eta=(\eta_{1}, \cdots, \eta_{n+2})$ on $M$ a8 follow8:

(5.6) $\eta=-\{r^{2}p_{\ell}+(u-p\cdot x)x\}/r^{\sqrt{\mathcal{G}}}$ , $1\leqq i\leqq n$ ,
$\eta_{n+1}=-(u-p\cdot x)U/r^{\sqrt{\mathcal{G}}}$ , $\eta_{n+},=\{r^{2}-(u-p\cdot x)u\}/r^{\sqrt{}\Leftrightarrow}$ .

Let $H$ be the mean curvature of $M$ with respect to $\eta$ . We denote by $D$ the
Riemannian connection on $S^{n+1}(r)$ defined by the standard Riemannian metric on
$S^{\mathfrak{n}+1}(r)$ . Then we have

(5.7) $\frac{\partial\eta}{\partial x}=D_{X}\eta$ , $1\leqq i\leqq n$ .

By the Weingarten’s formula $D_{X}\eta(1\leqq i\leqq n)$ are expressed a8

(5.8) $D_{X}\xi=-\sum_{j=1}^{\hslash}a_{\ell},X_{j}$ , $1\leqq i\leqq n$ ,

where $a_{u}(1\leqq i, j\leqq n)$ are continuous functions on $\Omega$ . Then the mean curvature
of $M$ at $\overline{u}(x)$ with re8pect to $\eta$ is defined by

(5.9) $H(x)=\frac{1}{n}\sum_{\ell=1}^{\#}a_{\ell}(x)$ , $ x\in\Omega$ ,

By $(5.6)\sim(5.9)$ we have at each point $\overline{u}(x)$ of $M$

(5.10) $H(x)=\frac{1}{n}\sum_{\ell=1}^{n}\frac{\partial}{\partial x_{\ell}}\{\frac{r^{a}p_{\ell}+(u-p\cdot x)x_{\ell}}{r^{\sqrt{\mathcal{G}}}}\}$ .

Theorem 5.1. Assume that $\Omega$ is an open $bau$ in $R^{n}$ of radius $R$ which is
contained in the open ball in $R$“ of radius $r$ centred at the origin. For a
$ueC^{2}(\Omega, r)$ let $M$ be a non-parametric hypersurface in $S^{n+1}(r)$ defined by (5.2)

and $H$ the mean curvature of $M$ with respect to $\eta$ which is given by (5.6).

Suppose that for a positive constant $H_{0}$ the condition $|H|\geqq H_{0}$ holds at each
point of M. Then we have

$H_{0}R\leqq 1$ .
Proof. Let $\Omega_{r^{\prime}}$ be the closed ball of radius $r^{\prime}$ in $R$“ whose centre i8 the

same as $\Omega$ where $0<r^{\prime}<R$ . We may assume without loss of generality that $H\geqq H_{0}$
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holds at each point of $M$. By the divergence formula, (5.6) and (5.10), we have

(5.11) $\int_{0_{r}}$ , $nHdx=\int_{\partial\Omega_{r}},$ $[\sum_{i=1}^{n}(-\eta_{\ell})\nu_{\ell]dS}$ ,

where $ dx=dx_{1}\wedge\cdots$ A $dx_{n},$ $\nu=(\nu_{1}, \cdots, \nu_{n})$ is the outward unit normal vector field on
the boundary $\partial\Omega_{t^{\prime}}$ of $\Omega_{r^{\prime}}$ and $dS$ denotes the volume element of $\partial\Omega_{r^{\prime}}$ . Since $H\geqq H_{0}$

and $\sum_{i=1}^{\#}(\eta_{\ell})^{2}<1$ , we have

$\int_{0_{r^{\prime}}}nHdx\geqq nH_{0}\times$ ($volume$ of $\Omega_{r^{\prime}}$ )

(5.12)

$\int_{\partial\Omega_{r^{\prime}}}[\sum_{\ell=1}^{\sim}(-\eta_{\ell})\nu_{\ell}]dS<volume$ of $\partial\Omega_{r^{\prime}}$ .
By (5.11) and (5.12) we have $H_{0}r^{\prime}<1$ . Thus we have $H_{0}R\leqq 1$ as $r^{\prime}\rightarrow R$ .

Remark. Theorem 5.1 implies the following: Let $\Omega$ be a domain in $R$’ which
is contained in the open ball of radius $r$ centred at the origin. For a $u\in C^{2}(\Omega, r)$ ,
let $M$ be a non-parametric hypersurface in $S^{n+1}(r)$ defined by (5.2). Suppose that
for a positive constant $H_{0}$ the mean curvature $H$ (defined up to a sign) of $M$

satisfies the inequality $|H|\geqq H_{0}$ at each point of $M$. Then $\Omega$ can not contain a
closed ball of radius $1/H_{0}$ .

Theorem 5.2. Let $\Omega$ be a domain in $R^{\hslash}$ whose closure $\overline{\Omega}$ is contained in
the open $bau$ of radius $r$ centred at the origin. Let $k$ and $H_{0}$ be constants
such that $0<k<\sqrt{r^{2}-r_{1}^{2}}$ and $0\leqq H_{0}<k/\sqrt{r^{2}-k^{2}}$ where $ r_{1}=ma_{\frac{x}{\Omega}}xe||x\Vert$ . For a
$u\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ satisfying the condition $m_{0}:=r^{2}H_{0}/\sqrt{r^{2}H_{0}^{2}+1}\leqq u\leqq k$ on $\overline{\Omega}$ , let
$M$ be a non-parametric hypersurface in $S^{n+1}(r)$ defined by (5.2) where $C^{0}(\Omega)$

denotes the set of real-valued continuous functions on $\overline{\Omega}$ . Suppose that for
the mean curvature $H$ of $M$ the inequality $|H|\leqq H_{0}$ holds at each point of $M$.
If $\overline{u}(\partial\Omega)\subset Q_{m_{1}}^{k}$ , then $\overline{u}(\overline{\Omega})\subset Q_{m_{1}}^{k}$ where $m_{1}$ is a constant such that $m_{0}<m_{1}<k$ and
$Q_{m_{1}}^{k}=\{(x_{1}, \cdots, x_{n+2})\in S^{n+1}(r);x_{\mathfrak{n}+1}>0, m_{1}\leqq x_{n+2}\leqq k\}$ .

Proof. Let $\eta$ be the unit normal vector field on $M$ deflned by (5.6). The
mean curvature $H$ of $M$ with respect to $\eta$ is expressed as the fom (5.10). Then
we can rewrite (5.10) as follows:

(5.18) $\sum_{\ell,j=1}A_{\ell j}(x, u, p)u_{\ell j}=B(x, u, p, H)$

where
$A_{u}(x, u, p)=r^{2}\{\mathcal{G}\delta_{j}-r^{2}p_{\ell}p_{j}-(1+\Vert p||^{2})x_{\ell}x_{j}$

(5.14) $-(u-p\cdot x)(xp_{j}+x_{f}p_{\ell})$} , $1\leqq i,$ $j\leqq n$ ,
$B(x, u, p, H)\{-(u-p\cdot x)\}$ .
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By (5.5) and (5.14), $A_{\ell j}(1\leqq i, j\leqq n)$ and $B$ are continuous on $\Omega\times R\times P$ and $B$ is
of class $C^{1}$ for the valiables $p_{t}(1\leqq i\leqq n)$ . It is easy to see $A_{\ell j}=r^{2}\mathcal{G}g^{j}(1\leqq i, j\leqq n)$

where $g^{\ell j}(1\leqq i\leqq n)$ is the $(i, j)$-component of the inverse matrix of the matrix
$(g_{\ell j})$ . If we regard $H$ as a given continuous function on $\Omega,$ $(5.13)$ is a quasilinear
elliptic partial differential equation of second order on $\Omega$ . Now for a continuou8
function $H^{\prime}$ on $\Omega$ we put

$L_{E^{\prime}}(v)=\sum_{\ell,\dot{g}=1}^{n}A_{ij}(x, v, p)v_{u}-B(x, v, p, H^{\prime})$

where $veC^{2}(\Omega, r),$ $p=(\partial v/\partial x_{1}, \cdots, \partial v/\partial x_{n})$ and $A_{\ell j}(1\leqq i, j\leqq n)$ and $B$ are defined by
(5.14). Since $u$ is a solution of the equation (5.13) and $|H|\leqq H_{0}$ , we have

$L_{E_{0}}(u)=L_{E_{0}}(u)-L_{B}(u)=nr\mathcal{G}^{8/a}(H-H_{0})\leqq 0$ .
$|$

Therefore $u$ is a supersolution of the equation $L_{E_{0}}(v)\equiv 0$ on $\Omega$ . Since by the
hypothesis $u\geqq r^{2}H_{\alpha}/\sqrt{r^{2}H_{0}^{2}+1}$ holds on $\Omega$ , we have $B(x, u, 0, H_{0})\leqq 0$ . Then we
can apply Corollary 2.1 to the equation $L_{E_{0}}(u)\equiv 0$ . The present theorem follows
from Corollary 2.1.

Remark. Theorem 5.2 is a generalization of Theorem 2.1 which was obtained
in [6]. By a similar argument as in the proof of Theorem 5.2 and Corollary 2.2
we can also generalize Theorem 3.2 which was obtained in [6].
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