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1. Introduction. Let {;} be a strictly stationary sequence of random variables
which are defined on a probability space (2,%, P). For a=<b, let £} denote
the o- algebra of events generated by &, --+,&. As in [7]-[10], we shall say that
the sequence is absolutely regular if
(1.1) B(n)=E{ sup |P(A|-#£°,)—P(A)l}|0 (n—o0)

Aedtf
For any T (0<T=w0), let C,=[0, T'] be the space of all continuous functions

on [0, T]. We give the uniform topology by defining the distance between two
points 2 and ¥ in C, as

1.2) pr(x, y)= sup |¢(@t)—y@)| .
0St=T

Let S,,=_Zk: ¢, and S,=0, and define a random element S;={S;(f): 0<t<T} in
Cr by = '
S for t=Fk, k=0,1, ---,[T]
1.3) Sr(0)=18Stry for [TI=t=T,
linearly interpolated te[k—1, k), k=1, ---,[T]

where [s] denotes that largest integer m such that m=<s. Put S{#)=S_(¢) for all
t=0.

In [6], Strassen proved the almost sure invariance principle for martingales
and in [8], Jain, Jogdeo and Stout extended the Strassen’s results. On the other
hand, in [5], Philipp and Stout showed the almost sure invariance principle for
mixing sequences.

In this paper, we shall prove the almost sure invariance principle for absolutely
regular processes. In particular, we shall prove the following

Theorem 1. Assume that {&;} is a strictly stationary, absolutely regular
process which satisfies the following conditions;

1.4) (i) E¢,=0, E|&]|*°<oco for some 6>0, and
(1.5) (ii) P(n)=O0(e""™) for some y>0,
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Then, redefining {S@&), t=0}, ©f necessary, on. a new probability space, there
exists a standard Wiener process w={w(t): 0<t<oo} such that

(1.6) |S(#)—ow(t)|=0(t'/?(log log t)*+*)/2) gq.s.
as t—oo; where a is an arbitrary positive number and
L.7) o*=Eei+2 _fl E£8,>0.

=

Remark. It is known that under (i) and (ii) the series in converges
absolutely, (ef. [9]).

2. Aucxiliary results. In what follows, we shall agree to denote by the
letter K, with or without indices, various positive constants. The followings
were proved in [8], [9] and [10] under the conditions of Theorem 1; for all n=1

@.1) (1) | Var (Sa)—ne*| =K, ;
2.2) (II) ES.<K.n*;
2.3) (I11) P(|Sn1=2a0,n'? log n) = Kya~*n™*

where ¢2=Var (¢,)>0 and a is an arbitrary positive constant;
@.4) (Iv) P(max ls,lgz)gzp(w,.l >%)+2wr‘1,8('r)
isn

+2<[nr—1]+1>P(|ell+- --+|ew|g-%)

where r is an arbitrary positive integer such that r<n;
(V) If n,%e,---,7m are absolutely regular with B8,(5)=p8(sjq), then

@.5) P(max |3 70 =2)<P(max |3 X,|=2)-+mp(q)
1Sjsm i=1 1sjam i=1

where, for each {(1<¢<m), X, has the same df as that of 7, (cf. Lemma 2.4 in

[3).
2.6) 4'8)) sup |P(S.<ozV'n )—®(z)| < Kn~*(log n)*/?

where

O(2)= S Vlz;e—ﬂfzdt i

- 00

Now, we shall prove the following theorems concerning non-uniform estimates.

Theorem 2. If the conditions of Theorem 1 hold, then for all n sufficiently
large and for all x
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Kn~t*(log n)®

@.7) | P(Sn< n'262)—O(z)| < Ttg

Proof. Since from (I)

E|8./(Vn o)*=1+0(n™?) ,

S0

o= |E 1SV 7 a)l’-—r

—00

22 dO(®) l =0mY) .

Hence, from Theorem 9, Chap. 5 in and (VI) it follows that

|P(Sa<m'’%02)—D(2)|
< Kn~*(log n)®+2, SK*n“"(log n)®
- 1422 = 142 ’

and the proof is completed. :

Let s2=FE|S,|*. Let F.(u) be the df of S./(Vn ¢) and ®,(u) be the normal
df with the same first two moments as F.(u). Set
2.8 X=F,%2), Y=071(Z)

where F-! is the function inverse to F' and Z is a random variable uniformly
distributed in [0,1]. It is well known that X is distibuted like S./V'%n ¢ and Y is
normally distributed random variables with the same first two moments as X, i.e.,

EY=0, EY:*=gt/(ne?) .
Theorem 3. If the conditions of Theorem 1 hold, then

@.9) E|X— Y|§S°° |Fo () — O, ()] du

—00

Jor all n sufficiently large, where X and Y are random variables defined by
2.8).

Proof. Let a be the median of S./Vn o. Then, the median of X—a is zero
and Y—a is normally distributed with parameters (—a, s2/no?). Thus, applying
in [2] to the random variable (X—a)—(Y—a)

(2.10) : EiX-Y|=FE|(X—a)—(Y—a)|
gg“’ | F9 () — 0 ()| das

where
Fo(u)=P(X—a<u)=F(u+a)
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and

N u)=P(Y—a=u)=9,(u+a) .
Hence, follows from and the proof is completed.

3. Proof of Theorem 1. To prove Theorem 1, we need some lemmas.

Lemma 1. Let the conditions of Theorem 1 be satisfied. For any fixed n,
put r=[n**(og n)®] and m=[nr*]. Let S,={S,(t): 0<t=<n} be the random ele-
ment in C, defined by

jS,r for t=gr, =0,1, ---, m,
(3.1) S5.4)=18mr for mr=<t=mn,
linearly interpolated for te[(j—L)r, j7r),j=1,---,m

Then, for any >0
8.2) P(pn(8,y Sn)Zez,)=0(n"*")
where z,=n'*(log log n)+®)/2,
Proof. As in the proof of in [1], we have that
0a(S., So)= Sup 1S,.(&)—S.(#)]

<2max max |S;—Su-,-l+ max |S;—Su-l .
1sism (i—-1)rsjisir mrsjsn

So, from (IV)
3.3) P(p.(S,, S)=ez.)
<5 P, max_ 1~ Su-or|Ze) +P( max 1S,~Sulz 52

_ (i—nrsjsir mrsjisn

<om+1)P(max IS)=52.)
e+ {2P(18.1 2 55 )+2ra 8@ +20ra DRI+ el =1}

where g=[clog n] (¢y>2).
Firstly, we note that by (1.5)
8.4 (m+1)rq*f(@)=o0(n)

and from (III)

3.5) mP(lSrl 2—;—-2,.)=0(n‘1) :

Secondly, let
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- {51 if |&1=m,
"o otherwise,

and &=¢,—Z,. Then, we have

P(|éll+ . -+|ézq|gf€zn)=o

for all n sufficiently large and so

(3.6) mrq“*P(lsllJr e +|ézq|é%zn>§mfrq"P(lal T -+I?qu%-1%z,.>

2 - =
<Kmrqz;"E(3. |5 <Emrq z;'E |E|*
=1
<EKmrq z;'m - *OF |?1|4+s:0(,n—2/s) .
Hence from (3.3)-(3.6) we have and the proof is completed.

Lemma 2. Let the conditions of Lemma 1 be satisfied. Then, ©f mecessary,
on a mew probability space, there exists a standard Wiener process w={w(t):
0=t< o} such that for all n sufficiently large

3.7 P(py(S,, 01b,) Ze2,)=0((log 1))
where W,={W,(t): 0=t=n} 18 the radom element in C, defined by

w(jr) for t=jr, =0,1,---,m ,
3.8) W) ={wimr)  for mr<t=nm,
linearly interpolated for te[(j—1)r, jr), j=1,:--,m,

and, z., m and r are integers defined in Lemma 1.

Proof. Put
(3-9) VI:SJT—“S(I—I)TMJ (j=1r ct m) ’ 7/m+1:Sn'_Smr ’
and
8.10) #=YT0 G, m).
r—q

It is clear that {7},1=j=m} is an absolutely regular sequence, each 7*
(=2, +++,m) having the same df as that of »¥.

SoF  for t=gr, 3=0,1, .-+, m ,

i=1
(3.11) SEO=1{5 %  for mr<t<n,

i=1

linearly interpolated for te[(5—1)r, j7), j=1,---,m .
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Since
~ o~ J J
Pu(Sm Si‘)_s_ m.ax IZ (S(t—l)r+¢_S(¢—1)r)|+ m_ax lZ (7)1_7}?)[+|7’m+1' ’
1S5sm i=1 1Sism i=1
and from (I)

J 8r-q |4 |8}_g—1a?| | &
—_¥) | =] <L 109rmg TT N *
|5 = |1 15 gt At 5 g

<Krq15 74,
so for any >0
(3.12) P(0n(Sh, S¥)2e20)
gP( max K Iél v’i"lz—g—znr(I"l)+P(l7)m+1|§i-z,.)

1SjsSm

+P( max |ji1(s,,+q—s,,)|2izn)

2sism+1d=1 — 4

We note here that the followings hold:

>-e— = -1
P(I%HI: 4z,.) o=y  (by (III),

3.19) P( max % (S"H—S")l;—z-z,‘)gP( 1SSl ziz,,)

2SiSmtl i= — 4
SKmz;'E |S;|<Kmz;'q!/*=0(n"%) ,

P( max K| f} n’}‘l;%z,.'rq“>§P(K ﬁ’l |7i}"|—>_—%zn"‘<I")
e

1Sism i=1

<K(zr)"q 3 BInfISK@) g 3 (Bl =omnm) .

Hence, by and we have
(3.14) P(p.(S,, SH=ez,)=0(n"%)

Now, let Fx be the df of 7¥/vr ¢ and ®(u) the normal df with the same first
two moments as Fy(u), i.e. the normal df N(0,1). Consider

Vr olF3(2)—074(2)}

where Z is a random variable uniformly distributed in [0,1]. We choose normally
and identically distributed random variables {{,, -++,{.} having the following
properties;

(a) each ;/(¥7r )(G=1, .-+, m) has the normal df #-1(Z),
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(b) 7¥—0oli(j=1, ---,m) satisfy the absolute regularity condition with

B.(9)=B09),
(e) for each j(j=1, -+, m), n¥—ol, has the same df as that of

(8.16) vr o{F3MZ)—0(2)} ,
Define X,={X.(t):0<t<n} in C,

‘Ej gl for t=j7‘, 7j=0,1, ++e,m,
=1
(8.16) Xa(t)= glac, for mr<t<sa,
linearly interpolated for te[(j—1)r, j7), j=1, -+, m .

Using the method of the proof of (IV)
3.17) P( max |3] (nf—oc‘)lgiez,,)gzP(lﬁ (vi“—ac.)lz—l-ezn)+mﬁ(q) .
1Sjsm i=1 2 i=1 4

Since by construction random variables ¥ —a{;(1=1, - - -, m) satisfy the absolute
regularity condition coefficient 8,(7)=pB(7q), so it follows from Theorem 6.2 in
that

3.18) P(IE, ot —ot)izgez.)

<5, Plirf—otuzn*(og n)™)+ Kq( L2) "+ 4mp(g
where
(3.19) B=3 Elyf—oCd

and g=[c log n] (cy>1).
It follows from (III) that

8.20)  P(lp¥—alid=n*(log n)™*)
éP(lvi"l 2%%" *(log n)“*)+P<aIC‘I ::-%nl”(log n)“>=o(n"”’) .

On the other hand, from Theorems 2 and 8 it follows that for all »n sufficiently
large and for each j5(3=1, -, m)

E Irz""—actlérmar | Py () — O ()| de

—00

é?‘"’dsw Wdu=0(r1/4(log 7)%)=0(n'"*(log n)*)




128 KEN-ICHI YOSHIHARA

and so
8.21) ¢B,=q g.‘l E [y¥—o{|=qmOn*"*(log n)>)=0(n'"*(log 1)) .

Hence, from ([(3.18)-/(3.21)
(8.22) P(on(S%, X)=zez,)

<P(max 13, (1f—o0)| 2 3<z. ) -+mpp)=O(log m)™) .

Next, let {X,, -+, X} and {Y,, -+, Y.} be two independent collections of
random variables which are independently and identically distributed with df
N(, 7). Define a random element Y,={¥,(t): 0<t<n} in C, by

i
ag}l Y, for t=jr, 7=0,1,2,--,m,

(8.23) Y.¢)= o f Y, for mr=t<n,
i=1 .
linearly interpolated for te([(j—1)7,j7), j=1, -+, m ,

Since {;—Y.(1=1, --+, m) are absolutely regular with 8,(5)=8(sq), so from (V)

629 PeuX, Yngezn):P( max 15 (G— Y| ;-j—z,.)

1sjsm i=1

gP( max |3 (X,—Y‘n;%z,.)mﬁ(q)

1Sjsm i=1

We note that, by construction, the random variables X,—Y,(i=1, ---,m) are
independently and identically distributed with the normal df N(0,2r) and so
f} (X;—Y,) is normally distributed with df N(0,2mr). Hence

i=1

(3.25) P( max |3 (X,—Y))| z%zn)

1€5=m i=1

=2P(1 X—YoizLz,)

1 u?
=92 - —
SI"IZ(s/o)zn 2vVTmr exp ( 8mr )du
=0((log n)~*)

for all n sufficiently large. As mpB(g)=o0(n"?/%), so from and [3.25
(3.26) P(p(X,, Y)Zez)=0((log n)™*) .

Since, Y,,:+-, Y, are independently and identically distributed with df N(O, r),
so, if necessary, on a new probability space, there exists a standard Wiener
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process w={w(t): 0=t< o} such that

M-

3.27) L= iZil @(r)—w(r—10)=w(rj) (G=1,---,m)

i=t

[

with probability one where
(3.28) w(ry)=w(ry) (3=1, -+, m)
Define the random element w,={w,(t): 0<t<n} in C, by

w(Jr) for t=jr, 5=0,1,---,m,
(3.29) W)= {Ww(mr) for mr=t<n,
linearly interpolated for te[(j—1)r, j7) (=1, :-+,m).

Then, ¥,=0w, with probability one, and so
(3.30) P(p,(Y,, 0ib,)e=2,)=0((log n)®) .
Hence, the conclusion of follows from [8.14), (3.22), (3.26) and [3.30).

Lemma 3. Let m and r be integers defined in Lemma 1. Then for any
e>0 and all n sufficiently large

(8.31) P(p, (W, w)=ez,)=0(n"%*)

where z,=n'%(log log n)+*)/2,

Proof. We use the method of the proof of in [I]. For each
JA=7=m), let

0,= max |wt)—w.0)|=2 max |wE)—w((G—Dr)l.
(§—1)rst<gjr (§—1)rstsgr

It follows that for all » sufficiently and jA<j<m)

Pw,gez,og(max IW(t)lgizn)
ostser 2

< 2 a0 m)=om ).
T
Since p,(1,, w)= max 4,,
1sjsm

P(o,(10,, w) =ez,) =mo(n~*'*)=0(n"") .

Thus, the proof is completed.
From [Lemma 1|, 2 and 3, we have the following

Lemma 4. Let the conditions of Theorem 1 be satisfied. Then redefining
{S®), t=0}, ©f mecessary, on a mew probability space, there exists a standard
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Wiener process w={w(t): 0=t< oo} such that for each n sufiiciently large and
any >0
(3.32) P(p,(8, ow)=ez,)=0((log n)™*)
where z,=mn''*(log log n)¢+a)/2,
Now, we proceed to prove Theorem 1. Let #,=2%*, %k=1,2,:--. To prove
Theorem 1|, it is enough to show that for the sequeuce {n}
(3.39) P(p,,(S, ow)=ez,, i.0.)=0
where S, w and z, are the ones in But, from we have

co -— ©o 1
> < =
g.";IP(pn,,(S, ow)Zezn)SK 5 e
Thus, from Borel-Cantelli’s lemma we have (3.83), which completes the proof of

Theorem 1

4. Integral tests. As in [3] using Theorem 1, we have the following theorems

concerning integral tests.

Theorem 4. Let the conditions of Theorem 1 be satisfied. Let ¢>0 be a
non-decreasing function. Then, we have the followings: (a)

4.1) P(S,>n%ep(n) i.0.)=0 or 1
according as

4.2) I(go)=r @exp (—o*®)/2)dt<co or =oo.
(b)

4.3) P(mla.SJ§SIS,I<n1”a{go(n)}‘1 i.o)=1 or 0
according as

4.4 I(p)= Sm &’:) exp {—8¢*(u)/nldu=cc or <oo.

The proofs of these theorems are analogous to Theorems 5.1 and 6.1 in [3]
and so are omitted.

5. Almost sure convergence for U-statistics. In [8], the author proved the
almost sure invariance principle for U-statistics generated by ¢-mixing sequences.
But, the results are easily extended by [Theorem 1 and the methods of the proofs
of Theorems 4 and 5 in [7] as follows: Let F'(z) be the df of &, and consider a

funectional
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5.1) 0<F>=S S 9@, -+, T)dF@,) - - AF(®,,)

defined over F={F" |6(F)|<o} where g(, -+, *,) is symmetric in its m(=1)
arguments. As an estimator of 6(F'), we define a U-statistic

n —1(n)
(5.2) Un=( ) S G ), MM

m (1)

(n)
where the summation (%} extends over all possible 1=7,<:-:-<ta,=n. As another

estimator of O(F'), we shall consider von Mises’ differentiable functional 6(F,)
defined by

5.9) OF)=n" 55 - 3 g sEu) -

i1=1

Finally, we define random processes V={V(t); 0<t<co} and V*={V*({): 0=
t<oo}, respectively, by

0 for t=k, 0=<ks=m—1,
(5.4) V()= klU,—0(F)] for t=k, k=m,
linearly interpolated for te(k, k+1], k=0,
and
o(F,)—0O6(F =k, k=0,
5.5) V)= {k[ (F) \ ()] for t=k, k=
linearly interpolated for te[k, k+11, k=0 .

Theorem 5. Let {£,} be a strictly stationary, absolutely regular process.
Suppose that

5.6) S o S 19(0, -+, B [OAF ()3 + - AF (@) S My < 00
and for all integers 1., tg * -y tn(1: <2<+ <im)
6.7 E Ig(&p Sis o0y Etm)l‘+8§Mo<°° .

If the conditions of Theorem 1 are satisfied, then, upon redefining {V(t): 0=
t<oo} and {V*(t): 0=t< o} respectively on a new probability space, 1.f mecessary,
there exists a standard Wiener process w={w(t): 0<t<oo} such that as t—oo

(6.8) | V(t)—mo,w(t)|=0(t*(log log t)*+*/?) q.3.,
(5.9 | V*(t)—mo,w(t)|=o0(t*(log log t)1e*)/2) a.s,

and
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(56.10) | V() — V*(#) | =0(t"*(log log 1) *®/%) a.s.

where a>0 i8 arbitrary,

oi=(Egi(¢)—0"(F)}+2 I {Eg.6)9:Enn) —O*(F)} ,
and

gl(w1)=S S g(®s, By, oo 0y Tp)AF(25) o+ AF () .

Theorem 6. Let the conditions of Theorem b be satisfied. Let ¢ be any
nondecreasing function such that 0<¢ 1. Then the followings hold: (a)

(6.11) P(V(n)>n%c,0(n) i.0.)=0(or 1)

and

(5.12) P(V*(n)>n'0,0(n) i.0.)=0(or 1)
according as I(p)<oo (or=o0).

(b)

(5.13) P(g&:ﬁ [V(@)I=n'%0,{p(n)}* i.0.)=0(0r 1)
and

(5.14) P(lréliag [ V*@) | En'te,{p(n)} ! i.0.)=0(or 1)

according as I,(¢)<co(or=oco).

Remark. If {¢&,} is a strictly stationary and ¢-mixing sequence with
2 {p(m)}/2< o, and and hold, then the stronger conclusions than those
fn=1

of Theorem & are obtained. More specifically, instead of (5.8)-(5.10), the following
relations hold:

(5.15) | V() —mo,w@)|=o0(/*"*) a.s.,
(5.16) | V*(t)—mo,w(t)|=o0(t/*"*) a.s.,
and '

(6.17) | V(@)— V*@®)|=o0@**) a.s.

where ¢ is any number such that < (24-0)/(484-129).
The proof of this fact is easily obtained by Theorem 4.1 in [6] and Lemmas
7 and 8 in [8].
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