ON A PAPER OF SHIUE AND CHAO

By

Shoichi Ikehata

(Received December 10, 1976)

Let p be a prime number, and let m, n be positive integers. A ring $R(\neq 0)$ will be called a $(p ; m, n)$-ring if $p R=0$ and $x^{p^{m+p^{n}}}=x$ for all $x \in R$. When $p=2$, the fact $2 R=0$ follows from the assumption $x^{p^{m+p^{n}}}=x$. If R is a ($p ; m, n$)-ring, then R is a commutative reduced ring by Jacobson's theorem to which a brief elementary proof has been given in [1]. Moreover, if we set $h=p^{m}$ and $k=p^{n}$ then for any non-negative integer i we have

$$
x+x^{i+1}=\left(x+x^{i+1}\right)^{h+k}=\left(x^{h}+x^{(i+1) h}\right)\left(x^{k}+x^{(i+1) k}\right)=x+x^{i h+1}+x^{i k+1}+x^{i+1},
$$

whence it follows

$$
\begin{equation*}
x^{i k+1}=-x^{i k+1} . \tag{}
\end{equation*}
$$

Especially, we have $2 x=0$, which means that p must be 2 . Now, the main results of [2] can be proved with notable economy of effort as follows:

Proposition. Let R be a (2; m,n)-ring, and $n=(m+1) q+r, 0 \leq r<m+1$. Then $x^{2^{r+1}}=x$ for all $x \in R$.

Proof. Let $h=2^{m}$, and $k=2^{n}=(2 h)^{9} 2^{r}$. Then by ($\left.{ }^{*}\right)$ we have $x^{h+1}=x^{k+1}$. Accordingly we obtain

$$
x=x^{k+1} x^{h-1}=x^{h+1} x^{h-1}=x^{2 h}
$$

and similarly

$$
x=x^{2 k}=x^{(2 h) q_{2} r+1}=x^{2^{r+1}}
$$

Corollary. Let R be a $(2 ; m, n)$-ring, and $n=(m+1) q+r, 0 \leq r<m+1$. If $r=0$ then R is a Boolean ring, in particular, if $m=1$ and n is even then R is a Boolean ring.

REFERENCES

[1] T. Nagahara and H. Tominaga: Elementary proofs of a theorem of Wedderburn and a theorem of Jacobson. Abh. Math. Sem. Univ. Hamburg, 41 (1974) 72-74.
[2] J.-S. Shiue and W.-M. Chao: On the Boolean rings. Yokohama Math. J., 24 (1976) 93-96.

