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Let $P$ be a prime number, and let $m,$ $n$ be positive integers. A ring $R(\neq 0)$

will be called a $(p;m, n)$-ring if $pR=0$ and $x^{p^{\hslash}+p^{\iota}}’=x$ for all $x\in R$ . When $p=2$ ,
the fact $2R=0$ follows from the assumption $x^{p^{\hslash}+p^{\hslash}}=x$ . If $R$ is a $(p;m, n)$-ring,
then $R$ is a commutative reduced ring by Jacobson’s theorem to which a brief
elementary $prf$ has been given in [1]. Moreover, if we set $h=p^{n}$ and $k=p^{\prime\prime}$

then for any non-negative integer $i$ we have

$x+x^{i+1}=(x+x^{i+1})^{h+k}=(x^{h}+x^{(i+1)h})(x^{k}+x^{(i+1)k})=x+x^{ih+1}+x^{ik+1}+x^{i+1}$ ,

whence it follows

$(^{*})$ $x^{ih+1}=-x^{ik+1}$

Especially, we have $2x=0$ , which means that $p$ must be 2. Now, the main result8
of [21 can be proved with notable economy of effort as follows:

Proposition. Let $R$ be a $(2; m, n)$-ring, and $n=(m+1)q+r,$ $0\leq r<m+1$ .
Then $x^{2^{r+1}}=x$ for all $x\in R$ .

Proof. Let $h=2^{m}$ , and $k=2^{n}=(2h)^{q}2^{r}$ . Then by $(^{*})$ we have $x^{h+1}=x^{k+1}$ .
Accordingly we obtain

$x=x^{k+1}x^{h-1}=x^{h+1}x^{h-1}=x^{2h}$

and similarly
$x=x^{2k}=x^{(2h)^{q}2^{r+1}}=x^{a^{f}+1}$ .

Corollary. Let $R$ be a $(2; m, n)$-ring, and $n=(m+1)q+r,$ $0\leq r<m+1$ . If
$r=0$ then $R$ is a Boolean ring, in particular, if $m=1$ and $n$ is even then $R$

is a Boolean ring.
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