HEEGAARD SPLITTINGS OF $F \times S^1$

By

MITSUYUKI OCHIAI

(Received October 18, 1976)

A closed 3-manifold M with a Heegaard splitting of genus one such that $\pi_1(M)$ is Z, an infinite cyclic group, is homeomorphic to $S^2 \times S^1$ where S^2 is a 2-sphere and S^1 is a 1-sphere. We extend this result to $F \times S^1$ where F is a closed orientable 2-manifold. We work in the piecewise linear category throughout the paper.

Definition. Let $(H_1, H_2; V)$ be a triad such that H_1 , H_2 are solid tori with genus n and V is a closed 2-manifold. Then the triad $(H_1, H_2; V)$ is said to be a Heegaard splitting with genus n for a closed orientable 3-manifold M if followings hold;

$$M=H_1\cup H_2$$

and

$$\partial H_1 = \partial H_2 = H_1 \cap H_2 = V.$$

Definition. Let H be a compact 3-manifold. We say that H is irreducible when any 2-spheres embedded in H bound 3-cells in H.

Proposition. Let F be a closed orientable 2-manifold with genus n and S^1 a 1-sphere. Then $F \times S^1$ has a Heegaard splitting of genus 2n+1.

Proof. Let $(m_1, \dots, m_n; l_1, \dots l_n)$ be longitudemeridian system of F, i.e.,

- (1) $m_i(i=1,\dots,n)$ and $l_k(k=1,\dots,n)$ are simple closed curves in F,
- (2) $m_i \cap m_k = l_i \cap l_k = q$ a point in $F(i \neq k)$,
- (3) $m_i \cap l_k = q$ for all i, k,
- (4) $F \bigcup_{i=1}^{n} \mathring{N}(m_i, F) \bigcup_{k=1}^{n} \mathring{N}(l_k, F)$ is a 2-disk where $N(m_i, F)\{N(l_k, F)\}$ is a regular neighborhood of $m_i(l_k)$ in F. Then

$$N((igcup_{i=1}^n m_i) \cup (igcup_{k=1}^n l_k) \cup (q \times S^{\scriptscriptstyle 1}), F \times S^{\scriptscriptstyle 1})$$
 ,

a regular neighborhood of $(\bigcup_{i=1}^n m_i) \cup (\bigcup_{k=1}^n l_k) \cup (q \times S^1)$ in $F \times S^1$, is a solid torus with genus 2n+1 and $F \times S^1 - \mathring{N}((\bigcup_{i=1}^n m_i) \cup (\bigcup_{k=1}^n l_k) \cup (q \times S^1), F \times S^1)$ is also a solid torus with genus 2n+1 since the condition (4) holds. Q.E.D.

Definition. The connected sum $M \sharp M'$ of two closed orientable 3-manifolds M, M' is obtained by removing the interior of a 3-cell from each, and then matching the resulting boundaries, using an orientation reversing homeomorphism. (See Waldhausen [7].)

Hereafter let M be a closed orientable 3-manifold and F a closed orientable 2-manifold with genus n. Then we have;

Lemma 1. If $\pi_1(M)$ is isomorphic to $\pi_1(F) \times Z$, then M has no Heegaard splittings whose genus is less than 2n+1.

Proof. At first, $H_1(F)$, the first homology group of F, has rank 2n. Here if M has a Heegaard splitting whose genus is less than 2n+1, it follows from the definition of the Heegaard splitting that $\pi_1(M)$ has generators of less than 2n+1. Consequently $H_1(M)$ has rank of less than 2n+1, it is impossible since $\pi_1(M)$ is isomorphic to $\pi_1(F) \times Z$.

Q.E.D.

Next in the theory of groups we have Bear-Levi theorem [3], that is, if any groups are non-trivial direct products then they are not non-trivial free products and conversely. Then we have;

Lemma 2. If $\pi_1(M)$ is isomorphic to $\pi_1(F) \times Z$ then $\pi_1(M)$ is not a non-trivial free product.

Note that Lemma 2 is true geometrically; Let F be not a 2-sphere. Then by Stallings [6] $\pi_2(M)$ is trivial and so by Epstein [1] $\pi_1(M)$ is not a non-trivial free product.

Theorem. Let $\pi_1(M)$ be isomorphic to $\pi_1(F) \times Z$. Then if M has a Heegaard splitting of genus 2n+2, M is homeomorphic to $F \times S^1$.

Proof. Two cases happen since n is a non-negative integer.

Case (1). Suppose that n is positive. If M is irreducible, then M is homeomorphic to $F \times S^1$ by Neuwirth [5]. Hence we may assume that M is not irreducible. Let $(H_1, H_2; V)$ be a Heegaard splitting of genus 2n+2 of M. Then by Haken [4] it follows from the non-irreducibility of M that there is a simple closed curve c in V which is not homotopic to zero in V and bounds a 2-disk in H_1 , H_2 respectively. There are two cases in which c separates V into two components and otherwise.

At first, let V-c be connected, then M has a connected sum decomposition $M_1 \sharp S^1 \times S^2$ where M_1 has a Heegaard splitting of genus 2n+1, induced from that of M. By $van\ Kampen\ [2],\ \pi_1(M)=\pi_1(M_1)^*Z=\pi_1(F)\times Z$ and so $\pi_1(M_1)$ is trivial

by Lemma 2. But it is impossible that $Z=\pi_1(F)\times Z$ and $\pi_1(F)$ is non-trivial because of F being not a 2-sphere. Hence we have the only one case that cseparates V into two components. Then M has a connected sum decomposition $M_1 \sharp M_2$ such that $M_i(i=1,2)$ has a Heegaard splitting whose genus is less than 2n+2, induced from that of M, because c is not homotopic to zero in V and so D_1 , D_2 separate H_1 , H_2 respectively where $D_i(i=1,2)$ is a 2-disk in $H_i(i=1,2)$ such that $D_i \cap \partial H_i = \partial D_i = c$. By van Kampen [2], $\pi_1(M) = \pi_1(M_1) * \pi_1(M_2) = \pi_1(F) \times Z$, consequently which of $\pi_1(M_i)(i=1,2)$ is trivial by Lemma 2. We may assume that $\pi_1(M_1)$ is trivial. Then the Heegaard splitting of M_1 induced from that of M has genus one, otherwise M_2 has a Heegaard splitting whose genus is less than 2n+1, since the genus of the Heegaard splitting of M= (the genus of the one of M_1)+ (the genus of the one of M_2). But it is impossible by Lemma 1, since $\pi_1(M_2)$ is isomorphic to $\pi_1(F) \times Z$. Here M_1 is homeomorphic to a 3-sphere since M_1 has a Heegaard splitting of genus one and $\pi_1(M_1)$ is trivial. And so M_2 is homeomorphic to M. Hence M_2 is also not irreducible and $\pi_1(M_2)$ is isomorphic to $\pi_1(F) \times Z$ and M_2 has a Heegaard splitting of genus 2n+1.

To repeat the preceding argument of the connected sum decomposition, M_2 has a Heegaard splitting whose genus is less than 2n+1. But it is impossible by Lemma 1. Hence M is irreducible.

(2). Suppose that n equals zero. Then F is a 2-sphere and $\pi_1(M)$ is isomorphic to Z. By Stallings [6] M has a 2-sphere embedded in M which does not bound a 3-cell. Hence M is not irreducible.

To repeat the preceding argument of the connected sum decomposition, M is homeomorphic to $M_1 \sharp M_2$ such that $M_i (i=1,2)$ has a Heegaard splitting of genus one. By $van\ Kampen\ [2]$ and Nieisen-Schreier theorem [3], we may assume that $\pi_1(M_1)$ is trivial and $\pi_1(M_2)=Z$. Then M_1 is homeomorphic to a 3-sphere and M_2 is homeomorphic to $S^1\times S^2$.

Consequently M is homeomorphic to $S^1 \times S^2$.

Q.E.D.

REFERENCES

- [1] D. B. Epstein: Free products with amalgamation and 3-manifolds, Proc. Amer. Math. Soc., 12, 669-670 (1961).
- [2] E.R. van Kampen: On the collection between the fundamental groups of some related spaces, Am. Jour. Math., 55, 261-267 (1933).
- [3] K. A. Kurosch: The Theory of Groups, vol. 1, 2, Chelsea, New York, 1955.
- [4] W. Haken: Some results on surfaces in 3-manifold, Studies in modern topology, MAA Studies in Mathematics, vol. 5, 39-98 (1968).
- [5] L. Neuwirth: A topological classification of certain 3-manifolds, Bull. Amer. Math. Soc., vol. 69 (1963).

- [6] J. Stallings: On Fibering Certain 3-manifolds, Topology of 3-manifolds and related topics, Prentice-Hall INC., 1962.
- [7] F. Waudhausen: Heegaard-Zerlegungen der 3-sphere, Topology 7, 195-203 (1968).