RELATIVE K-THEORY AND SURGERY ON 7-ADS

By
GERALD A. ANDERSON

(Received September 28, 1976)

1. Introduction.

Wall [6] has algebraically defined functors L, of rings with involution
measuring the surgery obstruction of a map, relative to the boundary. The
groups L., are K, of a category of Hermitian forms and the L,x., are the
corresponding K,.

This has been extended to maps between rings in two seemingly different
ways. Wall defines the odd dimensional functors to be the relative K-theory
associated to L.x.,, and Sharpe [3] considers the K, analogue in the even
dimensional case. In either situation, the algebraic object is a (and hence the
only) surgery obstruction group for a map relative to a codimension 0 submani-
fold of the boundary.

In general, there is a geometrically defined surgery obstruction group for
n-ads. The purpose of this paper is to give an algebraic construction of these
groups.

The problems encountered are best illustrated by a well-known theorem of
Wall [5]. Suppose M*N N*=7V is a condimension 0 submanifold of M and oN.
Then Sign (M)+Sign (N)—Sign (M U N) is the signature of a symmetric bilinear
form associated to the intersection pairing of 3V (which is skew-symmetric). It
is precisely this type of difficulty that is encountered in the even dimensional
relative case: how to pass from a trivialization of an automorphism of an -
kernel to a quadratic form, which now must be (—7)-Hermition.

We define a generalized notion of relative K-theory which is the analogue
of the geometric situation—at each level, except the top, we have a specific
trivialization (i.e. null homotopy to BG)—and coincides with the usual relative
K-theory if there is only one stage.

Our result is that the algebraic L-groups of a ring of type 2" are given, as
in [6], by K, or K, of an appropriate relativized category.

2. Relative K-Theory.
We define here a ‘‘period 2’ K-theory.
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Define an n-system X to be given by the following data:

(i) a space X, for each ac2%,

(ii) an element a € F,, called the parity of X

(iii) maps f7,,: X.—Xp if acp,

lal+1=|8l=a mod (2)
and (iv) maps g7 ,: Xp—»02X, if acp,

[Bl—1=|al=a mod (2).
Here |a| denotes the cardinality of @. Any pair of spaces defines a 1-system of
parity 1. A basepoint for X is a collection of x,€ X, so that fZ s(@)=2s and
9% s(xs)(t)=2, for all teI.

If X is an m-system and A is a space, then XX A denotes the n-system
(X} A}, fEA=F% X 14, 9%'=9% pota, where o: QX , XQA->Q(X,XA) and 1,:A—
f2A are the obvious maps.

If X and Y are m-systems of the same parity, a morphism between X and
Y is a collection ¢,: X,—Y, so that

Sa 6°0a=0p°S .5

and
gg.e°¢a=9¢p°9&f,p .

This defines a category of n-systems of a given parity.
Let S* , denote the n-system with parity a defined by

S*  |a]#a mod (2)

(S’fz.n)az{
S**  la|=a mod (2),
where f,,s is the inclusion and g,,; is adjoint to 4 S"S"éS"“—1>S"“.

Let X be an n-system of parity @ with basepoint. Define #.(X) to be the
set of homotopy classes of basepoint-preserving maps S%,,—X. By compatibility
of the basepoints of X,, the usual construction inductively defines a group struec-
ture on m(X) for k>0.

We need to define a slightly more relative homotopy group, as the above
construction does not give null-homotopies for the maps g. This can be done
in the abstract way, as above, but we shall write down the explicit formula.

Consider the set of all maps @, (D**',S9)—>(M;, , Xo), Pap: (D**2 S*1)—
My, Xp3) so that the maps S*—>X,, S**'>X, define a map S%,,—»X and
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commutes. Let n;°(X) be the set of homotopy classes of such maps. This has
a natural group structure for >0, and we have a zero sequence

U X ) ——om (X )——> D711 (97, p) -

We have the following categorical analogue. An n-category % with parity
a is given by
(i) a category %, for each a€2®,
(ii) a functor 17 ;. ZF,—» %} if
la|+1=]Bl=a mod (2), and
(iii) a functor U7, Zp—Aut (&) if
|Bl—1=|al=a mod (2).
An n-category ¥ is exact if each %, is exact, and the TZ ; U7 s are exact
functors (with the induced exact sequences in Aut (Z&,)).
Let & be exact and Q<Z, the ‘‘subobject-quotient’’ category of [2] associated
to C,.

Lemma 1. < defines an n-system BQZ.

Proof: Since an exact functor %,— %3 induces a map BQ &,—>BQ%%, we need
only produce a2 map BQ (Aut (2))->2BQ<Z for an exact category Z.

- Define a functor Q(Aut (Z2))—Aut (QZ') by sending an object f:A—A of
Q(Aut (Z2)) to the automorphism A<—1—A —iA of Q<Z, and the morphism

A&—ici——»B
s I ] h I g
y 4

A«—C—B
¢ ¢
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¢

¢
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¢ 7

!
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This induces BQ (Aut (Z))—»B Aut (Q(Z)). Given a category Z’/, we define
B Aut (Z2)-0Q2BZ2’ by sending the k-simplex

Ar ;Al e >Ak
4 l J-
A Ao o3 4,

to the (simplicial) loop I—-B<Z whose l-simplex maps to the morphism defined
by the k-simplex. QED.

We define the higher K-groups of the exact n-category ¥ by

K(&)=r$1BQZ .

Examples: (1) If € is an exact category, regarded as a O-category of parity
1, then this is the usual definition.

(2 If ¥ is an exact l-category of parity 1 of projective modules, then
K,(¥) is the relative K, functor of [1].

(8) If ¥ is a certain pull-back of a ‘‘Steinberg category’’ by the automor-
phisms of a Hermitian form category, regarded as a l-category with parity O,

then K, (%) is the group constructed by Sharpe [3]. This will be discussed in
more detail later.

3. A Review of Algebraic L-Theory.

Let 4 be a ring with involution *. Define 5#*(4) to be the category with
objects non-singular (=)-Hermitian forms on a free 4-module and morphisms

?

where aFa*=a*y, bFb*=0*%p if a*y, %8 are of this form and @ and b zero
otherwise. Composition is defined in [4], §3.

Define the exact sequences of 5#°*(4) to be generated by

(i) split exact sequences,

(ii) 0—»K—0 if K is a kernel,

and (iii) 0K —1>K4>K—~>0 where A is of the form

o (3) pero (€ 5)e () o

or
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(a) ()

Proposition 2. LA(A)=K,[S£*4))
L} (=K, [57D"4)].

If A is a self-dual subgroup of K,(4), then we can similarly construct L{(A4).
The following is essentially Sharpe’s unitary Steinberg construction [3]:

Let “#*(4) be the category with objects (u, P, @), u € St(4), P, Q (x)-Her-
mitian forms over 4, and morphisms defined as above on P and @, and from
Aut (St(4)) on u, regarding St(4) as a category. We make “2*(4) into an exact
category, using the relations (iii)-(vi) on pg. 456 of [4], as above. Inclusion to
the second factor defines a functor S#*(A)—»>2*(4), and the construction

I 0V/ 0 I\/I O
w0 p )10 )la 1)
pi/\zro)\q I

defines a functor Z*(4)—Aut S£7(4). It is this functor which provides an
algebraic stepping stone between 7- and (—»)-Hermitian forms.

4. Surgery Groups for m-ads.

In this section we construct an m-category whose relative K-groups define
obstruction groups for relative surgery.

Let 4 be a ring of type 2™ with involution. Thus, for a€2™, we have a
ring A(a) with involution, together with morphisms 4,,5: A(a)—>A4(8) for ac}B.

For acp, let P; s be the pull-back of

Z(A)(B))

Aut (FH(A)(a)——Aut (F7(A(P))) .

Define, for »=+1 and a € F,, an m-category S#2(A) by
(i) SE*(A(a))>*(AP)) if m—|Bl=a mod (2)
(ii) SZ*(AP)—>P; p—>Aut (£ (A()) if
m—|Bl=a mod (2), |Bl#m
(iii) P3z,—Aut (F7(A(a))) if |fl=m and a=0, starting at Z"(4($)). We
define :
K, (5#5Y%(4)) n even

L.(4)=
K.(2£H4) n odd
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where k=[(n—m)/2]. These are the algebraic relative L-groups.

In the geometric situation, these groups contain too much information.
Suppose « is a group of type 2™ and Z[x] its integral group ring. If » is odd,
let L.(z)=L.(Z[z]). If n is even and |a|=m—1, then =(a) acts on L.(Z[x]).
Define inductively

LS (x)=L,(Z[x])
L (m)=(En(a) X L% (7)) [[n(a), m(a)]
as in [8], where a=({l, ey by oo, m}.

Finally, for f={1, «--, m}, let
L, (x)=coker (Wh.(x(8))—L7(x)/(x=(f)[L7(x), L7(x)]).

Proposition 8. There is an exact sequence
«++—>L,(0;r) > L,(m)—>L(7)—>Ly-,(0m)— - -

Proof: This is defined inductively by the sequences of [6], [3], and exact-
ness is an easy consequence. QED.

Theorem 4. Let K be a CW m-ad. Then, for n—m>4, there 13 an iso-
morphism

Ln(K)'ﬁLn(ﬂﬁK) .

Proof: Let ¢: M"—>X" be a normal map between manifold (m+1)-abs,
' with a map 0,X—K inducing an isomorphism on z,. Then ¢ represents its
geometric surgery obstruction in L,(K).

Define its algebraic obstruction in L,(z,K) as follows. Let acCg, |8l=lal+1,
a,fe2™. Then we have a normal map of pairs '

$(@): (GaM) (@), 30nM)(@))>((02X)(a), ¥0nX)(a))

defined by ¢ which is a homotopy equivalence when restricted to the boundary.
This map is bounded by the corresponding restriction for 8, and thus we have
a trivialization of the classifying map for the surgery obstruction of ¢(a). If
|8l=m, we simply get the classifying map for (M|, oM)—(1X|,0X). Induc-
tively, this defines, by [6] and [3], an element of L.(zx,K). By Propositions 2, 3
and the five-lemma, we have an isomorphism.

References

[1] H. Bass, Topics in algebraic K-theory, Tata Institute, Bombay (1967).
[2] D. Quillen, Higher algebraic K-theory I, in Algebraic K-Theory I, Lecture Notes



RELATIVE K-THEORY AND SURGERY ON 7n-ADS 107

in Math. #3841, Springer-Verlag (1973).
[3] R. W. Sharpe, Surgery on compact mani folds: the bounded even dimensional case,
Ann. of Math. 98 (1973), 187-209.

[4] ———, On the structure of the unitary Steinberg group, Ann. of Math. 96 (1972),
444-479.

[5] C. T. C. Wall, Non-additivity of the signature, Inv. Math. 7 (1969), 269-274.
[6] ———, Surgery on Compact Manifolds, Acad. Press (1970).

The Pennsylvannia State University




	1. Introduction.
	2. Relative K-Theory.
	3. A Review of Algebraic ...
	4. Surgery Groups for ...
	Theorem 4. ...

	References

