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1. Introduction.
In the formulation of electrical circuit theory given by S. Smale ([1]) and

its generalization by T. Matsumoto ([2]), the transversality condition of the
characteristic submanifold and the Kirchhoff space is a standing hypothesis. Ac-
cording to Thom’s transversality theorem we can make them transverse by an
arbitrarily small perturbation of the characteristic submanifold. But, in effect
of the drift of the temperature or of the pressure and so on, the characteristic
submanifold is always perturbed and hence the transversality may be destroyed.

Therefore, the following problem proposed by T. Matsumoto is of importance.

Problem. By adding small capacitances in parallel to the given circuit
and smau inductances in series, can we make the characteristic manifold
and the Kirchhoff space transverse?

In this note, we will give an affirmative answer to the above problem. The
author thanks T. Matsumoto, H. Kawakami and S. Matsumoto for thir enlighten-
ing discussions.

2. Statement of result.
As in [1], we assume that the electrical circuit is represented by an oriented

graph $G$ . Let $C_{j}=C_{j}(G)(C^{J}=C^{j}(G))$ be the real 3-chains (j-cochains) of $G,$ $j=0,1$ .
Then the currents and the voltages in the branches of the circuit can be thought
as elements of $C_{\iota}$ and of $C^{1}$ respectively.

The characteristic submanifold $\Lambda=\Lambda(G)$ representing the characteristics of
the elements (possibly including non-linear coupled resistors and so on (see [2]))

is a $(2b-\rho)$-dimensional smooth submanifold of $C_{1}\times C^{1}$ , where $b$ is the number
of the branches and $\rho$ corresponds to the number of the resistors. The currents
(voltages) of the branches are denoted by $i=(i_{\iota}, i_{2}, \cdots, i_{b})\in C_{1},$ $(v=(v_{1}, v_{2}, \cdots v_{b})\in$

$C^{1})$ .
The Kirchhoff’s law restricts the possible states to a b-dimensional linear

subspace of $C_{1}\times C^{1}$ called the Kirchhoff space, $K=Ker\partial\times{\rm Im}\partial^{*}$ , where $\partial(\partial^{*})$ is
the boundary (coboundary) operator $\partial;C_{1}\rightarrow C_{0},$ $(\partial^{*}:C^{0}\rightarrow C^{1})$ .
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The result of this paper is the following.

Theorem. By adding (small) capacitances in parallel and (smau) induc-
taces in series to appropriate branches of $G$ , we can get a new circuit $G^{\prime}$

for which the characteristic submanifold $A(G^{\prime})$ and the Kirchhoff space $K(G^{\prime})$

are transverse. Furthermore, any perturbation of the characteristic sub-

manifold does not affect the transversality.

3. Preliminaries from circuit theory.

We recall what we need from the circuit theory (c.f. Rohrer [3]). Let $G$ be
the (oriented) graph of the given circuit. For simplicity, we assume that $G$ is
connected. We take a (maximal) tree $T$ of $G$ , and put $G=T\cup L$ . Here $L$

denotes the subcomplex of $G$ consisting of branches which are not contained in
$T$ and we call $L$ the link of $T$. Now, we get the following natural direct sum
decompositions.

$C_{1}(G)=C_{1}(T)+C_{1}(L)$ , $C^{1}(G)=C^{1}(T)+C^{1}(L)$ .
Since $T$ is a (maximal) tree, the following properties hold.
(1) Each node of $G$ is a node of $T$.
(2) $T$ is connected.
(3) $T$ contains no loop.

If we remove a branch of $T,$ $T$ is disconnected into two parts, and hence the
8et of nodes of $G$ is also partitioned into two disjoint sets. (This makes a
fundamental cut-set.) Note that each pair of nodes of $G$ is connected uniquely
through only branches of $T$. Therefore a branch $\beta$ of $L$ determines a $1\ovalbox{\tt\small REJECT} pl$,
of $G$ which contains no branch of $L$ other than $\beta$ and the direction of $l$, is
consistent with $\beta$ . By this correspondence, we define the following injective

linear map,
$f;C_{1}(L)\rightarrow C_{1}(G)$ .

In fact, $\ell$ is an isomorphism into Ker $\partial$ . Let $\ell^{*};C^{1}(G)\rightarrow C^{1}(L)$ be the dual map of
$t$ . Then the matrix $B$ which represents the map $\ell^{*}$ with respect to the natural
basis of $C^{\iota}(G)$ is called “the fundamental loop matrix”.

Each chain $c\in C_{1}(G)$ is decomposed into

$c=c_{T}+c_{L},$ $c_{r}\in C_{1}(T),$ $c_{L}\in C_{1}(L)$ .
Then, it is easily seen that the chain $c-\ell(c_{L})$ belongs to $C_{\iota}(T)$ . Therefore

$c$ is decomposed into

$c=c_{\iota}+c_{2},$ $ c_{1}=\ell(c_{L})\in$ Ker $\partial,$ $c_{2}=c-\ell(c_{L})\in C_{\iota}(T)$ .
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In fact, this gives the following direct sum decomposition,

$C_{1}(G)=Ker\partial+C_{1}(T)$ .
Let $p:C_{1}(G)\rightarrow C_{1}(T)$ be the projection along Ker $\partial$ , (i.e. $p(Ker\partial)=0$) or $p(c)=c_{g}$ .
Then the matrix $Q$ which represents the map $P$ with respect to the natural basis
of $C_{1}(G)$ is called “the fundamental cut-set matrix”.

Now, we get the following sequences of maps.

$0\rightarrow C_{1}(L)\rightarrow\iota C_{1}(G)\rightarrow pC_{1}(T)\rightarrow 0||||Q$

$0\rightarrow C_{1}(L)\rightarrow tC_{1}(G)\rightarrow\partial C_{0}(G)$ ,

$0\leftarrow C^{1}(L)r_{B}\leftarrow C^{1}(G)p\leftarrow C^{1}(T)\leftarrow 0$

11 11
$ 0\leftarrow C^{1}(L)\leftarrow C^{1}(G)^{\underline{\partial}}6C^{0}(G)t*\cdot$

Since the row of the above diagrams are exact, Kirchhoff’s law can be
represented as follows,

(KCL) $ i\in$ Ker $p$ , (KVL) $ v\in$ Ker $\iota^{*}$ ,

or

(KCL) $Qi=0$ , (KVL) $Bv=0$ .
By the way, $QB^{\iota}=0$ and $BQ^{t}=0$ , because $p\circ t=0$ and $t^{*}\circ p^{*}=0$ .

The Kirchhoff space $K$ is

Ker $Q\times KerB(=Ker\ell^{*}\times Kerp)$ ,

and the map

$\ell\times p^{*}:C_{1}(L)\times C^{1}(T)\rightarrow K$

is an isomorphism. Therefore, the currents of link branches and the voltages
of tree branches $(i_{L}, v_{T})\in C_{1}(L)\times C^{1}(T)$ can be thought as coordinates of $K$.

3. Proof of Theorem.
Let $T$ be a tree of $G$ and $L$ denote the link of $T$. Add a small capacitor

in parallel to each branch of $T$ and a small inductor in series to each branch of
$L$ , and we obtain the new circuit $G^{\prime}$ .

Put $G^{\prime}=G\cup\overline{T}\cup\overline{L}$ , where $\overline{T}(\overline{L})$ is the subset of the branches of $G^{\prime}$ consisting
of the small capacitance8 (inductances) added. Since the nodes of $\overline{T}\cup L$ include
all the nodes of $G^{\prime}$ and $\overline{T}\cup L$ has no $1\ovalbox{\tt\small REJECT} p,$

$T^{\prime}=\overline{T}\cup L$ is a tree of $G^{\prime}$ and $L^{\prime}=$

$T\cup\overline{L}$ is the link of $T^{\prime}$ . (See Example.) Let $B=[A;I]$ be the fundamental $1\ovalbox{\tt\small REJECT} p$

matrix for $G$ . Then it is easily verified that the fundamental loop matrix $B^{j}$
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for $G^{\prime}$ has the following form.

$T^{\prime}L^{\prime}$

$B^{\prime}=[A^{\prime};I]L^{j}$

T L $T\overline{L}$

$=\left\{\begin{array}{lll}I & O & \\A & I & I\end{array}\right\}$

Since we added only independent capacitors and inductors, the charactristic
submanifold for $G^{j}$ is essentially unchanged.

For $x^{\prime}=(x, y)\in\Lambda(G^{\prime})=\Lambda(G)\times R^{b}$ , there exist a neighborhood $U$ of $x$ in $R^{2b}$

and a smooth map $F:U\rightarrow R^{\rho}$ such that the rank of $F$ at $x$ is $\rho$ and $U\cap\Lambda=F^{-1}(0)$ .
Let $F^{\prime}:U\times R^{2b}\rightarrow R^{\rho}$ be the smooth map defined by $F^{\prime}(x, y)=F(x)$ for $(x, y)\in$

$U\times R^{2b}$ . Then clearly the rank of $F^{\prime}$ at $(x, y)$ is $\rho$ and $U\times R^{2b}\cap\Lambda(G^{\prime})=F^{\prime-1}(0)$ .
Corresponding to the decomposition $G^{\prime}=T^{\prime}\cup L^{\prime}=\overline{T}\cup L\cup T\cup\overline{L}$, we can write

$(i^{j}, v^{\prime})\in C_{1}(G^{\prime})\times C^{1}(G^{\prime})$

$=(i(T^{j}), i(L^{j}),$ $v(T^{\prime}),$ $v(L^{j}))\in C_{1}(T^{j})\times C_{1}(L^{\prime})\times C^{1}(T^{j})\times C^{1}(L^{j})$

$=(i(\overline{T}), i(L),$ $i(T),$ $i(\overline{L}),$ $v(\overline{T}),$ $v(L),$ $v(T),$ $v(\overline{L}))$

$\in C_{1}(\overline{T})\times C_{1}(L)\times C_{1}(T)\times C_{1}(\overline{L})\times C^{1}(\overline{T})\times C^{1}(L)\times C^{1}(T)\times C^{1}(\overline{L})$ ,

and the Jacobian matrix $JF^{\prime}$ of $F^{j}$ is also partitioned as follows.

$JF^{j}=[J_{\ell^{\prime}}F^{j}, J_{v^{\prime}}F^{\prime}]$

$=[J_{\ell(\overline{T})}F^{j}, J_{i(L)}F^{j}, J_{\ell(T)}F^{\prime}, J_{i(L)}^{-}F^{\prime}, J_{v(\overline{T})}F^{j}, J_{v(L)}F^{j},J_{v(T)}F^{\prime}, J_{v(\overline{L})}F^{j}]$

$=[0, J_{\ell(L)}F, J_{\ell(T)}F, 0,0, J_{v(L)}F, J_{v(T)}F, 0]$ .
Noting that the map

$C^{\prime}\times p^{\prime*}:C_{1}(L^{j})\times C^{1}(T^{\prime})\rightarrow K^{j}$

is a linear isomorphism, we get the following;

rank $(F^{j}|_{K^{\prime}})=rank(F^{j}\circ(f^{\prime}\times p^{\prime*}))$

$=rank(JF^{\prime}\circ J(\ell^{\prime}\times p^{\prime*}))$

$=rank([J_{\ell^{\prime}}F^{j}, J_{v^{\prime}}F^{j}]\left\{\begin{array}{ll}B^{\prime\ell} & 0\\0 & Q^{\prime t}\end{array}\right\})$

$=rank([J_{\ell(T^{\prime})}F^{j}, J_{\ell(L^{\prime})}F^{j}, J_{v(T^{\prime})}F^{\prime}, J_{v(L^{\prime})}F^{j}]\left\{\begin{array}{ll}I & 0\\A^{l} & 0\\-0A & \\I0 & \end{array}\right\}$

$=rank[J_{1(T^{\prime})}F^{\prime}+(J_{1(L^{\prime})}F^{j})A^{j}‘, -(J_{v(T^{\prime})}F^{\prime})A+J_{(L^{\prime})}F^{j}]$
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$=rank[(0, J_{\ell(L)}F)+(J_{\ell(T)}F, 0)\left\{\begin{array}{ll}I & 0\\A^{t} & I\end{array}\right\}$ ,

$-(0, J_{(L)}F)\left\{\begin{array}{ll}I & A^{l}\\0 & I\end{array}\right\}$

$=rank[J_{\ell(T)}F, J_{\ell(L)}F, J_{v(T)}F, -J_{(L)}F)]$

$=rank[J_{l}F, J,F]$

$=rankJF$

$=\rho$ .
This proves the theorem.

Example.

$G=\{R_{0}, L_{0}, C_{0}\}$

$T=\{R_{0}, C_{0}\}$

$L=\{L_{0}\}$

$G^{\prime}=\{R_{0}, L_{0}, L_{1}, C_{0}, C_{1}, C_{2}\}$

$\overline{T}=\{C_{1}, C_{2}\},\overline{L}=\{L_{1}\}$

$T^{\prime}=?^{-}\ovalbox{\tt\small REJECT}\cup L$

$L^{\prime}=T\cup\overline{L}$
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