ON LINKS WITH PROPERTY P^{*}

By

Kazuo Yokoyama
(Received August 24, 1976)

0. Introduction

We are interested in the following problem in piecewise-linear 3-dimensional topology.

Problem Is it possible to construct the counterexample to the Poincaré conjecture by removing a finite number of mutually disjoint solid tori from S^{3} and sewing them back in a different way?

To the purpose above, we will consider a problem as follows;
Let $C(l)$ be the closure of the complement in S^{s} of a regular neighborhood of a link l. If every homotopy 3 -sphere Σ^{3} obtained by refilling $C(l)$ by solid tori with suitable identification of the boundary surface is a 3 -sphere, then we say that l has Property P^{*}.

Conjecture. Every link has Property P^{*}.
It has been shown [12] that every closed, connected, orientable 3-manifold can be constructed by removing a finite number of mutually disjoint solid tori from S^{3} and sewing them back in a different way. In paticular, every homotopy 3 -sphere can be obtained by this way; thus this conjecture is equivalent to the Poincaré conjecture.

In [1][5][8] and [11], the problem above is discussed for a knot and it is obtained that some knots have Property P (stronger than Property P^{*}). We can show that there are many links without property P. So, considering a link with Property P^{*} will be meaningful.

In this paper we will prove the following theorem;
Theorem 1. If links l and l^{\prime} have Property P^{*}, then $l \cdot l^{\prime}$ is a link with Property P^{*}, where $l \cdot l^{\prime}$ means any product of links l and l^{\prime}, see [6].

As an immediate consequence, we have;
Corollary 2. Every link has Property P^{*} if every prime link [6] has Property P^{*}.

This implies that it is enough to decide whether the conjecture above is true for only prime links.

By Theorem 1, we will obtain that;
Theorem 3. Every torus link has Prorerty P^{*}.
In 1, we will show that some elementary links have Property P^{*}. In 2, Lemma 3 which plays a important role, and Theorem 1 will be obtained. In 3, some corollaries of Theorem 1 will be given, and some links with Property P^{*} will be obtained. The author is indebted to Professor T. Homma, F. Hosokawa and F. Gonzáles-Acuña for their kind suggestions.

1. Some elementary links with Property \mathbf{P}^{*}

Throughout this paper, let us denote the boundary, the interior and the closure of a manifold M by ∂M, int M and $\operatorname{cl} M$ respectively. A regular neighborhood of a submanifold A in a manifold M will be denoted by $N(A ; M)$. For two loops f and g on a surface, $S(f, g)$ denotes the absolute value of the homological intersection number of an oriented chains f and g.

Let l be a link $k_{1} \cup k_{2} \cup \cdots \cup k_{\mu}$ in S^{3}, and $N\left(k_{i} ; S^{3}\right)$ be a regular neighborhood of k_{i} in S^{3} such that $N\left(k_{i} ; S^{3}\right) \cap\left(l-k_{i}\right)=\phi$. Let m_{i} be a simple closed curve on $\partial N\left(k_{i} ; S^{3}\right)$ which bounds 2 -cell in $N\left(k_{i} ; S^{8}\right)$ and l be a simple closed curve on $\partial N\left(k_{i} ; S^{3}\right)$ which is homologous to 0 in $S^{3}-\operatorname{int} N\left(k_{i} ; S^{3}\right)$. We call m_{i} and l_{i} a meridan and a longitude of $N\left(k_{i} ; S^{3}\right)$, respectively.

Let $T_{1}, T_{2}, \cdots, T_{s}$ be mutually disjoint solid tori in the interior of a connected, orientable 3 -manifold M. We may then construct the 3 -manifold

$$
M^{\prime}=\operatorname{cl}\left\{M-\left(T_{1} \cup T_{2} \cup \cdots \cup T_{s}\right)\right\} \underset{h}{\cup}\left\{T_{1} \cup T_{2} \cup \cdots \cup T_{s}\right\}
$$

where h is a union of homeomorphisms $h_{i}: \partial T_{i} \rightarrow \partial T_{i}$. The manifold M^{\prime} is said to be the result of a surgery on $\left\{T_{1}, T_{2}, \cdots, T_{s}\right\}$ in M, and h is said to be a surgery homeomorphism. When $T_{1} \cup T_{2} \cup \cdots \cup T_{\mu}$ is a regular neighborhood of a link l of μ components in $\operatorname{int} M$, the manifold M is said to be the result of a surgery on a link l and $\left\{T_{\mu_{+1}}, \cdots, T_{s}\right\}$ in $M ; 1 \leq \mu \leq s$.

As a consequence of definition, we have;
Proposition 1. If a link $l=k_{1} \cup k_{2} \cdots \cup k_{\mu}$ has Property P^{*}, then every sublink $l^{\prime}=k_{i_{1}} \cup k_{i_{2}} \cup \cdots \cup k_{i_{\nu}}$ of l has Property P^{*}, where $\left\{i_{1}, i_{2}, \cdots, i_{\nu}\right\} \subset\{1,2, \cdots$, $\mu\}$ and $i_{k} \neq i_{l}(k \neq l)$.

Suppose that for a link l, there is a 3 -cell B^{3} such that $\partial B^{3} \cap l=\varnothing$. Let l_{1} be a link $l \cap B^{3}$ and l_{2} be a link $l \cap \operatorname{cl}\left(S^{3}-B^{3}\right)$. Then, we easily have;

Proposition 2. If l_{1} and l_{2} have Property P^{*}, then a link l has Property P^{*}.

We will show that the following links O_{1}, O_{2} and O_{3}, described in Fig. 1, have Property P^{*}. For the components of O_{i}, we write k_{j} as described in Fig. 1.

Lemma 1. The links O_{1} and O_{2} have Property P^{*}.
Proof. By Proposition 1, if the link O_{2} has Property P^{*}, then the link O_{1} has Property P^{*}. So it is enough to prove that the link O_{2} has Property P^{*}.

Let Σ be a homotopy 3 -sphere obtained by doing surgery on the link O_{2} in S^{3}, F be the boundary of a regular neighborhood of a component k_{1} of the link O_{2} in S^{3}, and M, N be two components of $\Sigma-F$, see Fig. 2. Both $\operatorname{cl} M$ and $\operatorname{cl} N$ are solid tori. Since $\Sigma=\operatorname{cl} M \cup \mathrm{cl} N, \Sigma$ is homeomorphic to one of $S^{3}, S^{2} \times S^{1}$ and lens space. Hence Σ is homeomorphic to S^{3}, for $\pi_{1}(\Sigma)=\{1\}$.

O_{1}

Fig. 1.

Fig. 2.

Lemma 2. The link O_{s} has Property P^{*}.
Proof. Let C be the closure of the complement of a regular neighborhood of the link O_{3} in S^{3}. Let m_{i} be a meridian of $N\left(k_{i} ; S^{3}\right)$, and l_{i} be a longitude of $N\left(k_{i} ; S^{3}\right), i=1,2,3$, see Fig. 3.

Fig. 3.
Suppose that Σ^{3} is a homotopy 3 -sphere obtained by doing surgery on the link O_{3} in S^{3} and h is a surgery homeomorphism $\bigcup_{i=1}^{3}\left\{h_{i}: \partial\left(D^{2} \times S^{1}\right)_{i} \rightarrow \partial N\left(k_{i} ; S^{3}\right)\right\}$. Let overpasses a_{i} represent generators and crossingpoints give the relators, see Fig. 3. There is a presentation of $\pi_{1}(C)$;

$$
\left\{a_{1}, a_{2}, a_{3} ; a_{2} a_{1}=a_{1} a_{2}, a_{1} a_{3}=a_{3} a_{1}\right\}
$$

Since $h_{i}\left(\partial D_{i}^{2}\right)=h_{i}\left(\partial\left(D^{2} \times\{p\}_{i}\right)\right.$, where p is a point in S^{1}, is a simple closed curve on $\partial N\left(k_{i} ; S^{3}\right), h_{i}\left(\partial D_{i}^{2}\right)$ is represented by m_{i} and l_{i} on $\partial N\left(k_{i} ; S^{3}\right), i=1,2,3$.

So $h_{i}\left(\partial D_{i}^{2}\right)$ is represented as an element having the form $m_{i}^{p_{i}} l_{i}^{q_{i}}, i=1,2,3$. Let x_{i} be an arc joining a base point of C to arbitrary one point in $h_{i}\left(\partial D_{i}^{2}\right)$ and γ_{i} be a closed curve represented as $x_{i} m_{i}^{p} l_{i}^{q_{i}} x_{i}^{-1} . \pi_{1}\left(\Sigma^{3}\right)$ is obtained from $\pi_{1}(C)$ by
 $\varepsilon_{i}, \varepsilon_{i}^{\prime}= \pm 1$. This yields the following;

$$
\begin{aligned}
\pi_{1}\left(\Sigma^{s}\right)= & \left\{a_{1}, a_{2}, a_{3} ; a_{2} a_{1}=a_{1} a_{2}, a_{3} a_{1}=a_{1} a_{3}, a_{1}^{\varepsilon_{1} p_{1}}\left(a_{2} a_{3}\right)^{\iota^{\prime}{ }_{1} q_{1}}\right. \\
& =a_{2}^{\left.\varepsilon_{2} p_{2} a_{1}^{\varepsilon_{2}^{\prime \prime} q_{2} q_{2}}=a_{8}^{\varepsilon_{8} p_{3}} a_{1}^{a_{3}^{\prime \prime} q_{3}}=1\right\}}
\end{aligned}
$$

Consider the group $G=\left\{R, S ; R^{\varepsilon_{2}} p_{2}=S^{\varepsilon_{3}} p_{3}=(S R)^{-\varepsilon^{\prime} q_{1} q_{1}}=1\right\}$. If $p_{2}, p_{3}, q_{1} \neq \pm 1$, this group is nontrivial [2]. A nontrivial representation η of $\pi_{1}\left(\Sigma^{3}\right)$ onto G is given by $\eta\left(a_{1}\right)=1, \eta\left(a_{2}\right)=R, \eta\left(a_{3}\right)=S$. Note that $\eta\left(a_{2} a_{1}\right)=R=\eta\left(a_{1} a_{2}\right), \eta\left(a_{3} a_{1}\right)=S=$
 $S^{s_{3} p_{3}}=1$. Hence η is a homomorphism. This gives the contradiction that $\pi_{1}\left(\Sigma^{3}\right)$ is trivial. We have that $p_{2}= \pm 1, p_{3}= \pm 1$ or $q_{1}= \pm 1$. We will prove Lemma 2 in respective cases.

Case $1 p_{2}= \pm 1$. Since $\partial N\left(k_{1} ; S^{3}\right)$ is a surface of genus 1 , there is an embedding f of $S^{1} \times S^{1} \times I$ in S^{8} such that $f\left(S^{1} \times S^{1} \times I\right) \cap N\left(k_{1} ; S^{3}\right)=f\left(S^{1} \times S^{1} \times I\right) \cap$ $\partial N\left(k_{1} ; S^{3}\right)=f\left(S^{1} \times S^{1} \times\{0\}\right)$ and $f\left(S^{1} \times S^{1} \times I\right) \cap N\left(k_{2} ; S^{3}\right)=\varnothing=f\left(S^{1} \times S^{1} \times I\right) \cap N\left(k_{3} ; S^{3}\right)$. Let M be a solid torus cl $\left[S^{8}-\left\{N\left(k_{1} ; S^{3}\right) \cup f\left(S^{1} \times S^{1} \times I\right)\right\}\right]$ and M^{\prime} be the result of a surgery on a link $k_{2} \cup k_{8}$ in M by surgery homeomorphism $h_{2} \cup h_{8}$, see Fig. 4.

Fig. 4.
If M^{\prime} is a solid torus, then Σ^{3} is regarded as a homotopy 3 -sphere obtained by removing solid tori $N\left(k_{1} ; S^{3}\right)$ and M from S^{3}, and refilling solid tori $\left(D^{2} \times S^{1}\right)_{1}$ and M^{\prime} with suitable identification of boundary surface. Hence Σ^{8} is the result of a surgery on the link O_{2} in S^{3}. Since the link O_{2} has Property P^{*} by Lemma $1, \Sigma^{8}$ is homeomorphic to 3 -sphere.

We will show that M^{\prime} is a solid torus. Let A be an annulus properly embedded
in M such that A separates $N\left(k_{1} ; S^{3}\right)$ and $N\left(k_{2} ; S^{3}\right)$ in M. Since an annulus A is properly embedded in M^{\prime}, A divides M^{\prime} into two parts, say V and W, see Fig. 5. Note that $\mathrm{cl} V$ and $\mathrm{cl} W$ are solid tori. There are simple closed curves v on ∂V, and w on ∂W, respeetively, such that M^{\prime} is homeomorphic to a 3-manifold obtained by pasting $\mathrm{cl} V$ and $\mathrm{cl} W$ along $N(v ; \partial V)$ and $N(w ; \partial W)$. Since $\mathrm{cl}\left\{V-\left(D^{2} \times S^{1}\right)_{2}\right\}$ is homeomorphic to $S^{1} \times S^{1} \times I$ and there are level preserving isotopies $H_{i}: S^{1} \times I \rightarrow S^{1} \times S^{1} \times I, i=1,2$; such that $H_{1}\left(S^{1} \times\{0\}\right)=g(v), H_{1}\left(S^{1} \times\{1\}\right)=$ $g\left(l_{2}\right), H_{2}\left(S^{1} \times\{0\}\right)=g(\mu)$ and $H_{2}\left(S^{1} \times\{1\}\right)=g h_{2}\left(\partial D_{2}^{2}\right)$, then $S(v, \mu)=S\left(l_{2}, h_{2}\left(\partial D_{2}^{2}\right)\right)=\left|p_{2}\right|=$ 1 , where μ is a meridian of $\mathrm{cl} V$, and g is a homeomorphism of $\mathrm{cl}\left\{V-\left(D^{2} \times S^{1}\right)_{2}\right\}$ onto $S^{1} \times S^{1} \times I$. Hence M^{\prime} is a solid torus, see Fig. 6.

Fig. 5.

Fig. 6.
Case $2 p_{8}= \pm 1$. In this case, Lemma 2 is obtained by the same way as those in the case 1.

Case $3 q= \pm 1$. We convert k_{1} into k_{2}, and apply the same argument for $N\left(k_{2} ; S^{3}\right)$ as those in the case 1 . Then, we show that Σ^{3} is homeomorphic to 3 -sphere see Fig. 7.
2. Proof of the main theorem

Let l be a link $k_{1} \cup k_{2} \cup \cdots \cup k_{\mu}$ in S^{8}, and $N\left(k_{1} ; S^{8}\right)$ be a regular neighbor-

Fig. 7.

Fig. 8.
hood of k_{1} in S^{3} such that $N\left(k_{1} ; S^{3} \cap\left(k_{2} \cup k_{3} \cup \cdots \cup k_{\mu}\right)=\varnothing\right.$. Suppose that m is a meridian curve of a solid torus $N\left(k_{1} ; S^{3}\right)$. We may then construct a new link $m \cup k_{1} \cup k_{2} \cup \cdots \cup k_{\mu}$, which is said to be a *-link of l (in respect to k_{1}) and denoted by l^{*}, see Fig. 8.

We will show the following lemma, which will play an important role in the proof of Theorem 1 .

Lemma 3. Let l^{*} be a^{*}-link of a link l. If l has Property P^{*}, then l^{*} has Property P^{*}.

Proof. Let Σ^{3} be a homotopy 3 -sphere obtained by doing surgery on a link l^{*} in S^{3}. Let N be a regular neighborhood of k_{1} in S^{3} such that $m \subset N$ and $N \cap\left\{N\left(k_{2} ; S^{3}\right) \cup N\left(k_{3} ; S^{3}\right) \cup \cdots \cup N\left(k_{\mu} ; S^{8}\right)\right\}=\varnothing$, and F be the boundary of N, see Fig. 9. Since the intersection of F and $N\left(l^{*} ; S^{s}\right)$ is empty, F may be embedded in Σ^{3}. Let M^{\prime}, N^{\prime} be the closure of components of $\Sigma^{3}-F . \quad N^{\prime}$ may be a 3 -manifold obtained by doing surgery on $m \cup k_{1}$ in N, M^{\prime} be the others. By [4][9][10], one of M^{\prime} and N^{\prime} is a homotopy solid torus. We will prove Lemma 3 in respective cases.

Case 1 Suppose that N^{\prime} is a homotopy solid torus.
In respect of a homotopy solid torus N^{\prime}, we apply the following operation (4).

Operation (4) Since N^{\prime} is a homotopy solid torus, there is a 2 -cell \tilde{D}^{2} in N^{\prime} such that $\tilde{D}^{2} \cap \partial N^{\prime}=\tilde{D}^{2} \cap F=\partial \tilde{D}^{2}$ is a simple closed curve which is not homolo-

Fig. 9.

Fig. 10.
gous to 0 on F. Let a be a simple closed curve on F such that $a \cap \partial \tilde{D}^{2}$ is one point. Let h : $\partial D^{2} \times S^{1} \rightarrow F$ be a homeomorphism of the boundary of a solid torus $D^{2} \times S^{1}$ onto F, such that $h\left(\partial D^{2} \times\{p\}\right)=a$, where p is a point in S^{1}. We may then construct the 3 -manifold $\tilde{\Sigma}^{3}=N^{\prime} \bigcup_{h} D^{2} \times S^{1}$, see Fig. 10.

Note $\tilde{\Sigma}^{3}$ is a homotopy 3 -sphere obtained by doing surgery on the link O_{3} in S^{3}. Since the link O_{3} has Property $P^{*}, \tilde{\Sigma}^{s}$ is homeomorphic to 3 -sphere. Hence N^{\prime} is a solid torus. Σ^{3} is regarded as a homotopy 3 -sphere obtained by doing surgery on a link $k_{2} \cup k_{3} \cup \cdots \cup k_{\mu}$ and a solid torus N in S^{3}. Hence Σ^{3} is the result of a surgery on a link l in S^{3}. Since a link l has Property P^{*}, Σ^{3} is homeomorphic to 3 -sphere.

Case 2 Suppose that M^{\prime} is a homotopy solid torus.
In respect of a homotopy solid torus M^{\prime}, we apply the operation (4) and we may then construct a homotopy 3 -sphere $\tilde{\tilde{\Sigma}}=M^{\prime} \bigcup_{h^{\prime}} D^{2} \times S^{1}$. Note $\tilde{\tilde{\Sigma}}$ is the result of a surgery on a link $k_{2} \cup k_{3} \cup \cdots \cup k_{\mu}$ and a solid torus N in S^{3}, hence a surgery on a link l in $S^{\mathbf{s}}$, see Fig. 11. Since a link l has Property P^{*}, $\tilde{\tilde{\Sigma}}$ is homeomorphic to 3 -sphere. Hence M^{\prime} is a solid torus.

Fig. 11.
A homotopy 3 -sphere Σ^{3} is a union of N^{\prime} and M^{\prime}, where N^{\prime} is the result of a surgery on a link $m \cup k_{1}$ in $N . \Sigma^{8}$ is the result of a surgery on the link O_{3} in S^{3}. Hence Σ^{8} is homeomorphic to 3 -sphere.

Let Q be a 3-cell in S^{8} and $l=k_{1} \cup k_{2} \cup \cdots \cup k_{\mu}$ be a link which has an arc v of k_{i} in common with ∂Q, the remaining $l-v$ lying wholly within Q except for v. Simillary, let Q^{\prime} be a 3 -cell in S^{s} such that $Q \cap Q^{\prime}=\varnothing$, and $l^{\prime}=k_{1}^{\prime} \cup k_{2}^{\prime} \cup \cdots \cup$
k_{2}^{\prime} be a link which has an arc v^{\prime} of k_{j}^{\prime} in common with ∂Q^{\prime}, the remaining $l^{\prime}-v^{\prime}$ lying wholly within Q^{\prime} except for v^{\prime}.

Let B be a 2 -cell in $\operatorname{cl}\left(S^{3}-Q \cup Q^{\prime}\right)$ such that $B \cap \partial Q=\partial B \cap \partial Q=v$ and $B \cap \partial Q^{\prime}=$ $\partial B \cap \partial Q^{\prime}=v^{\prime}$. We may then construct a new link $\tilde{l}=(l-v) \cup\left(\partial B-v \cup v^{\prime}\right) \cup\left(l^{\prime}-v^{\prime}\right)$ and \tilde{l} is said to be a product of l and l^{\prime} associated with (k_{i}, k_{j}^{\prime}), see [6]. Since we take no notice of the locality of product in this paper, we say merely that i is a product of l and l^{\prime} and denote l by $l \cdot l^{\prime}$. Let us denote a component $\left(k_{i}-v\right) \cup\left(\partial B-v \cup v^{\prime}\right) \cup\left(k_{j}^{\prime}-v^{\prime}\right)$ of a link \tilde{l} by $k_{i} \# k_{j}^{\prime}$.

Theorem 1. Suppose that l and l^{\prime} are links with Property P^{*}. Then, a product $l \cdot l^{\prime}$ of l and l^{\prime} is a link with Property P^{*}.

Proof.. By renumbering the k_{i} 's and k_{j}^{\prime} 's, we may assume that $l \cdot l^{\prime}$ is a product associated with (k_{1}, k_{1}^{\prime}).

Let Σ^{3} be a homotopy 3 -sphere obtained by doing surgery on a link $l \cdot l^{\prime}$ in S^{8}. Let C be a component of $N\left(l \cdot l^{\prime} ; S^{8}\right)$ containing $k_{1} \# \not c_{1}^{\prime}$ and C^{\prime} be a regular neighborhood of C such that $C^{\prime} \cap N\left(l \cdot l^{\prime} ; S^{3}\right)=C . \quad M=Q \cup C^{\prime}$ is a solid torus and $F=\partial M$ is a closed surface of genus 1. F may be embedded in Σ^{3}. Let M^{\prime}, N^{\prime} be the closure of components of $\Sigma^{3}-F . M^{\prime}$ may be a 3 -manifold obtained by doing surgery on a link $\left(k_{1} \# k_{1}^{\prime}\right) \cup k_{2} \cup \cdots \cup k_{\mu}$ in M and N^{\prime} be the others, see Fig. 12. By [4][9][10], one of M^{\prime} and N^{\prime} is a homotopy solid torus. We will prove Theorem 1 in respective cases.

Fig. 12.
Case 1. Suppose that M^{\prime} is a homotopy solid torus.
Apply an operation ((4) in respect of a homotopy solid torus M^{\prime}, and let $\tilde{\Sigma}=$ $M^{\prime} \cup D^{2} \times S^{1}$ be the result. Note $\tilde{\Sigma}$ is a homotopy 3 -sphere obtained by doing surgery on a link $\left(k_{1} \# k_{1}^{\prime}\right) \cup k_{2} \cup \cdots \cup k_{\mu}$ and a solid torus in S^{3}, see Fig. 13. Hence there is a *-link l^{*} of l such that $\tilde{\Sigma}$ is the result of a surgery on a link l^{*} in S^{3}. By Lemma 3, a link l^{*} has Property P^{*}. Hence $\tilde{\Sigma}$ is homeomorphic to 3 -sphere, and M^{\prime} is a solid torus.

A homotopy 3 -sphere Σ^{3} may be a union of a solid torus M^{\prime} and a 3 -manifold N^{\prime} obtained by doing surgery on a link $k_{2}^{\prime} \cup k_{3}^{\prime} \cup \cdots \cup k_{\lambda}^{\prime}$ in $S^{8}-M$. Hence Σ^{3} is the result of a surgery on a link l^{\prime} in S^{3}. Since a link l^{\prime} has Property P^{*}, Σ^{3} is homeomorphic to 3 -sphere.

Case 2. Suppose that N^{\prime} is a homotopy solid torus.
Apply an operation (Δ) in respect of a homotopy solid torus N^{\prime}, we construct a homotopy 3 -sphere $\tilde{\tilde{\Sigma}}=N^{\prime} \bigcup_{h^{\prime}} D^{2} \times S^{1}$. Note $\tilde{\tilde{\Sigma}}$ is the result of a surgery on a link $k_{2}^{\prime} \cup k_{3}^{\prime} \cup \cdots \cup k_{\lambda}^{\prime}$ and a solid torus M in S^{3}, hence a surgery on a link l^{\prime} in S^{3}, see Fig. 14. Since a link l^{\prime} has Property $P^{*}, \tilde{\tilde{\Sigma}}$ is homeomorphic to 3sphere. Hence N^{\prime} is a solid torus.

A homotopy 3 -sphere Σ^{3} may be a union of a solid torus N^{\prime} and a 3 -manifold M^{\prime} obtained by doing surgery on a link ($k_{1} \# k_{1}^{\prime}$) $\cup k_{2} \cup \cdots \cup k_{\mu}$ in M. Hence, there is a ${ }^{*}$-link l^{*} of a link l such that Σ^{3} is the result of a surgery on a link l^{*} in S^{3}. By Lemma 3, a link l^{*} has Property P^{*}. Hence Σ^{3} is homeomorphic to 3 -sphere.

Since every link has a factorization into links called prime link [6], we obtain the following corollary of Theorem 1;

Corollary 2. Every link has Property P^{*} if every prime link has Property P^{*}.

3. Some links with Property P^{*}

By Theorem 1, we will obtain that;
Theorem 3. Every torus link has Property P*
Proof. Let l be a torus link of type (p, q), $p, q \geq 0$. If $p q=0$, by Lemma 1 and Proposition 2, Theorem 3 is obvious. Suppose $p q>0$. Let α be the greatest common divisor of p, q. Since l is a torus link, there is a unknotted solid torus R in S^{3}, such that l is contained on a boundary ∂R of R. Let a be a core of the solid torus R and b be a core of the solid torus $\mathrm{cl}\left(S^{3}-R\right)$, see Fig. 15. We
will show that a link $\tilde{l}=l \cup a \cup b$ has Property P^{*}. Clearly there is a torus link l_{0} of type ($0, \alpha$) or ($\alpha, 0$) on ∂R such that the complement of \tilde{l} is homeomorphic to the complement of a link $\tilde{l}_{0}=l_{0} \cup a \cup b$, see Fig. 15 and 16.

Fig. 15.

Fig. 16.
Let Σ^{8} be the result of a surgery on a link \tilde{l}. Since $\mathrm{cl}\left(S^{s}-\tilde{l}\right)$ is homeomorphic to $\mathrm{cl}\left(S^{8}-\tilde{l}_{0}\right), \Sigma^{8}$ is the result of a surgery on a link \tilde{l}_{0}.

By induction on α, we will prove that a link \tilde{l}_{0} has Property P^{*}. If $\alpha=1$, then \tilde{l}_{0} is ambient isotopic to the link O_{3}. Hence \tilde{l}_{0} has Property P^{*}. Suppose $\alpha>1$. Let i_{0}^{\prime} be a link $l_{0}^{\prime} \cup a \cup b$, where l_{0}^{\prime} is a torus link of type ($0, \alpha-1$) or ($\alpha-1,0$) on ∂R. By induction, \tilde{l}_{0}^{\prime} has Property P^{*}. A link \tilde{l}_{0} is a product of the link O_{2} and a link \tilde{l}_{0}^{\prime}. By Theorem 1, a link \tilde{l}_{0} has Property P^{*}. Hence Σ^{3} is homeomorphic to 3 -sphere, and \tilde{l} has Property P^{*}. By Proposition 1, a torus link l of type (p, q) has Property P^{*}.

Let $B_{1}^{8}, B_{2}^{8}, \cdots, B_{n}^{3}$ be mutually disjoint 3 -cells in S^{8} and $H_{1}=\left(D^{2} \times I\right)_{1}, H_{2}=$ $\left(D^{2} \times I\right)_{2}, \cdots, H_{m}=\left(D^{2} \times I\right)_{m}$ be mutually disjoint 1-handles of $B_{1}^{8} \cup B_{2}^{8} \cup \cdots \cup B_{n}^{8}$ in
S^{3} satisfying the following condition;
${ }^{*}$) For any $i, 1 \leq i \leq m$, there are exactly two numbers $p(i), q(i)$ such that a 1-handle H_{i} joins $B_{p(i)}^{s}$ and $B_{g(i)}^{s}$.

Let M be a 3 -manifold obtained by attaching 1 -handles $H_{1}, H_{2}, \cdots, H_{m}$ to $B_{1}^{s} \cup B_{2}^{3} \cup \cdots \cup B_{n}^{3}$ in S^{8}; and for each 3 -cell $B_{2}^{3}, B_{\lambda}^{3} \cap \cup_{i=1}^{m} H_{i}$ are 2 -cells on ∂B_{2}^{8}, say $C_{\lambda, 1}, C_{\lambda, 2}, \cdots, C_{\lambda r(\lambda)}$.

Let l_{λ} be a link in B_{λ}^{8} which has arcs $v_{\lambda 1}, v_{\lambda 2}, \cdots, v_{\lambda, r(\lambda)}$ of l_{λ} in $C_{\lambda_{1}}, C_{\lambda 2}, \cdots$, $C_{\lambda, r(\lambda)}$, respectively, the remaining $l_{\lambda}-\left(v_{\lambda, 1} \cup v_{\lambda, 2} \cup \cdots \cup v_{\lambda, r(\lambda)}\right)$ lying wholly within B_{λ}^{s} except for $v_{\lambda, 1} \cup v_{\lambda, 2} \cup \cdots \cup v_{\lambda, r(\lambda)}$. Let $C_{p, t}, C_{q, t}$ be 2-cells $H_{i} \cap\left(B_{1}^{3} \cup B_{2}^{8} \cup \cdots \cup\right.$ B_{n}^{3}); and β_{i} and β_{i}^{\prime} be disjoint arcs in H_{i} satisfying the following conditions;
(1) an arc β_{i} joins two points $\partial v_{p, r}$.
(2) an arc β_{i}^{\prime} joins two points $\partial v_{q, t}$.
(3) $v_{p, s} \cup \beta_{i}$ and $v_{q, t} \cup \beta_{i}^{\prime}$ make together a torus link of type (2, p_{i}) where p_{i} is even positive number for $i=1,2, \cdots, m$.

We may construct a new link $l=\cup_{\lambda=1}^{n}\left\{l_{\lambda}-\left(v_{\lambda, 1} \cup v_{\lambda, 2} \cup \cdots \cup v_{\lambda, r(\lambda)}\right)\right\} \cup \cup_{i=1}^{m}\left(\beta_{i} \cup\right.$ β_{i}^{\prime}) and l is said to be a union of l_{λ} winded along $v_{p, s}$ and $v_{q, t}$ with the winding number p_{i}. We will consider the following graph G;
(a) Take a point corresponding to a 3-cell B_{λ}^{3}, say $b_{\lambda}, \lambda=1,2, \cdots n$. Let $\left\{b_{\lambda}\right\}$ be the set of vertices of G.
(b) Take a line corresponding to a 1-handle H_{i}, say $a_{i}, i=1,2, \cdots, m$, such

Fig. 17.
that a_{i} joins $b_{p(i)}$ and $b_{q(i)}$, where $p(i)$ and $q(i)$ are two numbers for i by a condition (*) above. Let $\left\{a_{i}\right\}$ be the set of lines of G, see Fig. 17.

A graph G is said to be a corresponding graph of a union of a link l.
Corollary 4. If every link l_{λ} has Property P^{*} for $\lambda=1,2, \cdots, n$, and the corresponding graph of a union of a link l_{λ} is tree, then a union l of l_{λ} is a link with Property P^{*}.

Proof.. By induction on n, the number of the vertices of G. If $n=1$, this consequence is obvious. So we assume that $n \geq 2$. Suppose Corollary 4 is true for $n \leq k$. Then we will prove Corollary 4 for $n=k+1$.

Since the corresponding graph G is tree, there are a 3 -cell B_{λ}^{3} and a 1 -handle H_{i} such that $B_{\lambda}^{s} \cap \cup_{i=1}^{m} H_{i}=B_{\lambda}^{3} \cap H_{i}$. By renumbering the B_{λ}^{3} 's, the H_{i}^{\prime} 's and $C_{\lambda, \mu}$'s, we may assume $i=1, \lambda=p=1, s=1, q=2$ and $t=1$. Let D^{s} be a 3 -cell such that $D^{3} \cap M=D^{3} \cap\left(B_{\lambda}^{3} \cup H_{i}\right)=B_{\lambda}^{3} \cup H_{i}$. Then l is a product $\operatorname{link}\left[l_{1} \cdot\left(\left\{v_{1,1} \cup \beta_{1}\right\} \cup\right.\right.$ $\left.\left.\left\{v_{2,1} \cup \beta_{1}\right\}\right)\right] \cdot \tilde{l}$, where \tilde{l} is a sublink $l \cap\left(S^{3}-D^{3}\right)$ of l, see Fig. 18. By induction, i is a link with Property P^{*}.

Fig. 18.
$v_{1,1} \cup \beta_{1}$ and $v_{2,1} \cup \beta_{1}^{\prime}$ make together a torus link in H_{1}, hence, by Theorem 3, this is a link with Property P^{*}. By assumption, a link l_{1} has Property P^{*}. Hence by Theorem 1, a link l has Property P^{*}.

REFERENCES

[1] R. H. Bing and J. M. Martin; Cubes with knotted holes, Trans. Amer. Math. Soc., 155 (1971) 217-237.
[2] H.S.M. Coxeter and W.O. Moser; Generators and relations for discrete groups, Springer, Berlin, 1957.
[3] R. H. Crowell and R. H. Fox; Knot theory, Ginn, 1963.
[4] R. H. Fox; On the imbedding of polyhedra in 3-space, Ann. of Math., 49 (1948) 462470.
[5] F. González-Acuna; Dehn's construction of knots, Bol. Soc. Mat. Mexicana, 15 (1970) 58-79.
[6] Y. Hashizume; On the uniqueness of the decomposition of a link, Osaka Math. Jour., 10 (1958) 283-300.
[7] J. Hempel; Construction of orientable 3-manifolds, Topology of 3-manifolds, PrenticeHall, 1962.
[8] -; A simple connected 3-manifold is S^{s} if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc., 15 (1964) 154-158.
[9] T. Homma; On the existence of unknotted polygons on 2-manifolds in E^{3}, Osaka Math. Jour., 6 (1954) 129-134.
[10] S. Kinoshita; On Fox's property of a surface in a 3-manifold, Duke Math. Jour., 33 (1966) 791-794.
[11] J. Simon; Some classes of knots with property P, Topology of Manifolds' 1970, Markham, 195-199.
[12] A. H. Wallace; Modifications and cobounding manifolds, Canad. Jour. Math., 12 (1960) 503-528.

Sophia University
Kioi-cho, Chiyoda-ku, Tokyo

