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1. Introduction. This note is a supplement to the previous paper [4] and is
concerned with a renewal theorem for processes with stationary increments. Let
$V$ be the reduced second moment measure of a stationary random measure $P$

on the real line and let $P^{\iota}$ be the shift of the Palm measure $P^{0}$ of $P$. The
main theorem of the above paper asserts that $P$ ‘ converges weakly at $ t\rightarrow\infty$ iff
the shift of $V$ converges vaguely to a 8calar multiple of the Lebesgue measure.
In the Present note we apply this theorem to a process $\xi$ with stationary incre-
ments and obtain a weak convergence result for “ renewal process ” induced
from $\xi$ . This is a continuous time version of results in \S 6 of [41 The result
is applied to transient nonarithmetic L\’evy processes.

2. Lemmas. Let $\mathcal{R}$ denote the $\sigma$-algebra of Borel sets of the real line $R$

and let $\lambda$ denote the Lebesgue measure on $\mathcal{R}$. The set of all locally finite nonne-
gative measures $\varphi$ on re is denoted by $M$. Endowed with the vague topology
$M$ is a Polish space. The a-algebra of Borel sets of $M$ is denoted by X This
is the smallest $\sigma$-algebra with respect to which every mapping $\varphi\rightarrow\varphi(A),$ $A\in \mathcal{R}$,
is measurable. Let $T,$ $t\in R$ , be an automorphism of $M$ defined by

$(T_{t}\varphi)(A)=\varphi(A+t)$ , $A\in \mathcal{R}$ , $\varphi\in M$ .
The mapping $(t, \varphi)\rightarrow T_{t}\varphi$ is sux $\mathscr{M}/\mathscr{M}$-measurable. A measure $Q$ on X is called
stationary if $QT^{-1}=Q$ for $t\in R$ .

Let $X$ be the space of all right-continuous functions $x:R\rightarrow R$ having left
hand limits satisfying $x(O)=0$ and $\lambda x^{-1}\in M$, where $\lambda x^{-1}$ is the measure induced
from $\lambda$ by the mapping $x$ . The smallest a-algebra of subsets of $X$ with respect
to which every $crdinate$ mapping $x\rightarrow x(t),$ $t\in R$ , is measurable is denoted by
$\mathcal{H}$. Let $\theta_{t},$ $t\in R$ , be an automorphism of $X$ defined by

$(\theta x)(u)=x(t+u)-x\langle t)$ , $x\in X$ , $u\in R$ .
A measure $P$ on $\mathcal{H}$ is called stationary if $P\theta_{\iota^{-1}}=P$ for $teR$.

Define a mapping $\tau$ from $X$ to $M$ by $\tau(x)=\lambda x^{-1}$ . Then $\tau$ is $\mathcal{H}/\mathscr{M}_{-}measura-$



60 T0SHI0 M0RI

ble. In fact the mapping $x\rightarrow\int_{-\infty}^{\infty}f(x(u))du$ is $\mathcal{H}$ measurable for every continuous
function $f$ having compact support.

Lemma 1. If $P$ is a $\sigma- finite$ stationary measure on (X, $\mathcal{H}$) then there
exists a unique a-finite stationary measure $Q$ on $(M, \rightarrow\ovalbox{\tt\small REJECT})$ such that $Q(\{0\})=0$

and the Palm measure for $Q$ coincides with $P\tau^{-1}$ .
Proof. By Satz 2.5 of Mecke [31 it suffices to show that for every $\mathcal{R}\times \mathscr{M}-$

measurable $v\geq 0$

(1) $\int\int v(-t, T_{t}\varphi)\varphi(dt)P_{T}^{-1}(d\varphi)=\int\int v(t, \varphi)\varphi(dt)P\tau^{-1}(d\varphi)$ .
The integral on the left of (1) is written as

$\int\int v(-t, T_{t}\tau x)\lambda x^{-1}(dt)P(dx)=\int\int v(-x(\epsilon), T_{x(\cdot)}\tau x)dsP(dx)$ .

For $A\in \mathcal{R}$ we have $(T_{x(\cdot)}\tau x)(A)=\lambda(x^{-1}(A+x(s)))=\lambda((\theta.x)^{-1}(A))$ . Hence

(2) $T_{x(\cdot)}\tau x=\tau\theta.x$ .
Thus by putting $y=\theta.x$ it is seen that the above integral is equal to

$\int\int v(-x(s), \tau\theta.x)P(dx)ds=\int\int v(y(-s), \tau y)P(dy)d\epsilon$

$=\int\int v(y(s), \tau y)dsP(dy)=\int\int v(t, \tau y)\lambda y^{-1}(dt)P(dy)$ .

Lemma 2. In Lemma 1 if $P$ is ergodic with respect to $\theta_{\iota}$ then $Q$ is
ergodic with respect to $T_{t}$ .

Proof. Suppose $P$ is ergodic and $A\in \mathscr{M}$ is $T_{t}$-invariant. Then in view of
(2) $\tau^{-1}A\in \mathcal{H}$ is $\theta_{t}$-invariant. Hence either $P(\tau^{-1}A)=0$ or $P(X\backslash \tau^{-1}A)=0$ . It follows

from Lemma 1 and the definition of Palm measure [31 that

$P(\tau^{-1}A)=\int\int\chi_{(0.11}(s)\chi_{A}(T.\varphi)\varphi(ds)Q(d\varphi)=\int_{A}\varphi(0,1|Q(d\varphi),$

where $\chi_{A}$ is the indicater of $A$ . The last equality follows from the $T_{t}$-invariance
of $A$ . Suppose $P(\tau^{-1}A)=0$ . Then $\varphi(0,1$] $=0$ Q-a.e. on $A$ and therefore by the
stationarity of $Q$ we have $Q(A\backslash \{0\})=0$ . Since $Q(\{0\})=0$ we have $Q(A)=0$ . Similar-
$1yP(X\backslash \tau^{-1}A)=0$ implies $Q(M\backslash A)=0$ . This shows that $Q$ is ergodic.

3. Renewal theorem. Let $\xi=\{\xi(t), t\in R\}$ be a stochastic process with
stationary increments defined on a probability space $(\Omega, \mathscr{F}, P)$ . Suppose $\xi(0)=0$
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and almost every sample path of $\xi$ is in $X$. Then $\xi$ is an X-valued random
element and the distribution $P=P\xi^{-1}$ of $\xi$ is a stationary probability measure on
(X, $\mathcal{H}$). Define M-valued random elements $\Phi$ and $\Phi,$ $t\in R$ , by $\Phi=\tau(\xi)$ and $\Phi=$

$ T_{\iota}\Phi$ . By definition $\Phi(A)=\lambda\{s;\xi(s)\in A\}$ and $\Phi_{t}(A)=\Phi(A+t),$ $A\in \mathcal{R}$. By Lemma
1 the distribution $P\Phi^{-1}=P\tau^{-1}$ of $\Phi$ is the Palm measure for a stationary proba-
bility measure $Q$ on $(M, \mathscr{M})$ . Let $V$ denote the reduced second moment measure
of $Q$ :

$V(A)=E\Phi(A)=\int_{-\infty}^{\infty}\mu_{t}(A)dt$

where $A\in \mathcal{R}$ and $\mu_{t}(A)=P\{\xi(t)\in A\}$ (see [4]).

Let us define a measure $V_{\beta},$ $\beta>0$ , by

$V_{\beta}(A)=\int_{-\infty}^{\infty}e^{-\prime|\cdot|}\mu.(A)ds$ , $A\in \mathcal{R}$ .

Throughout the rest suppose $V\in M$. Then $V$ is a positive, positive definite
measure (see [6]). Let $\hat{V}$ and $\hat{V}_{l}$ denote the Fourier tran8forms of $V$ and $V$,
resp. Then $\hat{V}_{\beta}$ is a locally finite signed measure. In fact

$\hat{V},(A)=\int_{\Delta}\theta_{\beta}(t)dt$ , $A\in \mathcal{R}$ ,

where

(3) $\hat{v}_{\beta}(t)=\int_{-\infty}^{\infty}\varphi.(t)e^{-l|\cdot|}ds=2\int_{0}^{\infty}{\rm Re}\varphi.(t)e^{-\prime}d\epsilon$ ,

and

$\varphi.(t)=\int_{-\infty}^{\infty}e^{tu}\mu_{\iota}(du)$ .
Since $V=\lim_{\beta\rightarrow+0}V_{\beta}$ vaguely we have $\hat{V}=\lim_{\beta\rightarrow+0}\hat{V}_{\beta}$ vaguely. Therefore if the family

of functions $\{\hat{v}_{\beta}, \beta>0\}$ converges a.e. as $\beta\rightarrow+0$ and if it is uniformly bounded
on every compact interval excluding the origin then $\hat{V}$ is absolutely continuous
except for a possible atom at the origin. Thus we have from Theorem 3.2 and
Theorem 4.1 of [4] the following result which is a continuous time version of
Theorem 6.1 and Theorem 6.2 of [4].

Theorem 1. Let $\xi=\{\xi(t), t\in R\}$ be a process with stationary increments
having right-continuous paths with left limits and satisfying $\xi(0)=0$ . SuP-
pose $V\in M.$ If the family of functions $\{\theta_{\beta}, \beta>0\}$ converges $a.e$ . as $\beta\rightarrow+0$
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and is uniformly bounded on every compact intervad excluding the origin
then

$(4\rangle$ $t\rightarrow\infty IimE\Phi_{t}(I)=\varliminf_{\ell}V(I+t)=\hat{V}(\{0\})\lambda(I)$

for every beunded intervai I. Moreover $\Phi_{t}$ converges in distribution to a
stationary probability measure $Q^{\infty}$ as $ t\rightarrow\infty$ . If in addition $P$ is ergodic then
$Q^{\infty}$ is equal to either $Q(M)^{-1}Q$ or $\delta_{0}$ according as $E|\xi(1)|$ is finite or not, where
$\delta_{0}$ is the probability measure concentrated on $0\in M$.

If $\xi$ is a transient L\’evy process on $R$ then $\xi$ satisfies preceding assumptions.
In particular $V\in M$. In this case

$\varphi.(t)=e^{q(t)}$ , $s\geq 0$ ,

where

$g(t)=i\alpha t-\frac{\sigma^{2}}{2}t^{2}+\int_{R\backslash \{0\}}[e^{i\lambda t}-1-\frac{i\lambda t}{1+\lambda^{2}}]\nu(d\lambda)$

with $\alpha\in R,$ $\sigma^{2}\geq 0$ , and $\nu$ being a Borel measure on $R\backslash \{0\}$ satisfying

$\int_{R\backslash \{0\{}\frac{\lambda^{2}}{1+\lambda^{2}}\nu(d\lambda)<\infty$ .

Therefore (8) is written as

$\hat{v}_{\beta}(t)=2{\rm Re}\frac{1}{\beta+g(t)}$ .

A L\’evy process $\xi$ is called nonarithmetic if either $\nu$ is not arithmetic (i.e. is not
supported by a proper closed subgroup of $R$) or $\sigma^{2}\neq 0$ or $\alpha-\int_{R\backslash \{0\}}\lambda/(1+\lambda^{2})\nu(d\lambda)\neq 0$ .
If $\xi$ is nonarithmetic then the continuous function $g$ satisfies $g(t)\neq 0$ for $t\neq 0$

and therefore $\{\theta,, \beta>0\}$ satisfies the conditions in Theorem 1. By Lemma 2 the
ergodicity of $P$ implies that of $Q$ . Thus from the first part of Theorem 1 we
have (4) for bounded interval $I$. This result is included in the well-known
renewal theorem for L\’evy processes [1, 51 From the second part of Theorem 1
we have the following corollary.

CoroIlary 1. If $\{\xi(t), t\in R\}$ is a transient nonarithmetic L\’evy process
then as $ t\rightarrow\infty\Phi$ converges in djstribution to either $(E|\xi(1)[)^{-1}Q$ or $\delta_{0}$ according
as $E|\xi(1\rangle$ $|$ is finite or not.

A L\’evy proeess $\xi^{+}$ on $[0, \infty$ ) is obviously extended to a L\’evy process \’e on
$R$ . Define $\Phi^{+}$ and $\Phi_{t}^{+}$ by $\Phi^{+}(A)=\lambda\{s;s\geq 0, \xi^{+}(s)\in A\}$ and $\Phi_{t}^{+}(A)=\Phi^{+}(A+t)$ . Then
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we have the following corollary. This is proved using the renewal theorem for
L\’evy processes and the argument in the proof of Corollary 6.2 in [4]. In the
case of subordinators this result was essentially obtained by Horowitz [2] in a
different context.

Corollary 2. If $\{\xi^{+}(t), t\geq 0\}$ is a transient nonarithmetic L\’evy process
then as $t\rightarrow\infty\Phi_{t}^{+}$ converges in distribution to either $(E\xi(1))^{-1}Q$ or $\delta_{0}$ according
as $ 0<E\xi(1)<\infty$ or not.
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