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1. Introduction. This note is a supplement to the previous paper [4] and is
concerned with a renewal theorem for processes with stationary increments. Let
V be the reduced second moment measure of a stationary random measure P
on the real line and let P* be the shift of the Palm measure P° of P. The
main theorem of the above paper asserts that P‘ converges weakly at t—oo iff
the shift of V converges vaguely to a scalar multiple of the Lebesgue measure.
In the present note we apply this theorem to a process & with stationary incre-
ments and obtain a weak convergence result for ‘‘renewal process’’ induced
from ¢. This is a continuous time version of results in §6 of [4]. The result
is applied to transient nonarithmetic Lévy processes.

2. Lemmas. Let <2 denote the o-algebra of Borel sets of the real line R
and let 2 denote the Lebesgue measure on 2. The set of all locally finite nonne-
gative measures ¢ on <2 is denoted by M. Endowed with the vague topology
M is a Polish space. The s-algebra of Borel sets of M is denoted by -#. This
is the smallest o-algebra with respect to which every mapping o—p(A), Aec 2,
is measurable. Let T,, tc R, be an automorphism of M defined by

(Tp)(A)=p(A+t), Ac®, peM.

The mapping (¢, ¢)—T,p is FX A #-measurable. A measure Q on .# is called
stationary if QT,'=Q for te R.

Let X be the space of all right-continuous functions z: R—R having left
hand limits satisfying 2(0)=0 and Ax~'€ M, where Az~! is the measure induced
from 2 by the mapping . The smallest s-algebra of subsets of X with respect
to which every coordinate mapping x—x(¢), t€ R, is measurable is denoted by
Z. Let 6,, te R, be an automorphism of X defined by

Ox)(w)=2E+u)—2¢), zcX, uck.

A measure P on 2 ig called stationary if P§, =P for tc R.
Define 2 mapping r from X to M by r(z)=2Ax~!. Then r is 2°/-#-measura-
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ble. In fact the mapping x—ag Sx(uw))du is &2 measurable for every continuous

oo

function f having compact support.

Lemma 1. If P i8 a o-finite stationary measure on (X,2°) then there
exists a unique o-finite stationary measure Q on (M, #) such that Q{0})=0
and the Palm measure for Q coincides with Pr!.

Proof. By Satz 2.5 of Mecke [3] it suffices to show that for every .9?>< -
measurable v>0

(1) ng(—t, T,¢>so(dt>Pr-1(dso>=S§v<t, P)p(dt) Pe(dp) .
The integral on the left of (1) is written as
ng(—t, T,rx)zw‘l(dt)P(dx)zng(—w(s), T.cyvx)dsP(dx) .

For Aec 2 we have (T,tx)(A)=A(x"*(A+x(8)))=4((0,2)"(A)) . Hence
( 2 ) T,,(.)z'aa——-rﬁ.x .

Thus by putting y=0,x it is seen that the above integral is equal to
ng(—m), r0,x)P(dw)ds=SS'v(y(-—s), ) Pldy)ds
— S Sv(y(S), ey)dsP(dy) = S §v<t, )y~ (@) Pdy) .

Lemma 2. In Lemma 1 if P is ergodic with respect to 0, them Q is
ergodic with respect to T..

Proof. Suppose P is ergodic and A€ .# is T,-invariant. Then in view of
() 7 1A € Z is O,-invariant. Hence either P(r7'4)=0 or P(X\r7*4)=0. It follows
from and the definition of Palm measure [3] that

PG 1A)= S SX(O,13(8)XA(T.¢)¢(d8)Q(dso)=Lso(O, 11Q(do) ,

where X, is the indicater of A. The last equality follows from the T-invariance
of A. Suppose P(z"!A)=0. Then ¢(0,1]=0 Q-a.e. on A and therefore by the
stationarity of Q@ we have Q(A\{0})=0. Since Q({0})=0 we have Q(4)=0. Similar-
ly P(X\r"'A)=0 implies Q(M\A)=0. This shows that @ is ergodic.

3. Renewal theorem. Let &={&(t), t€ R} be a stochastic process with
stationary increments defined on a probability space (2, #,P). Suppose £(0)=0
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and almost every sample path of & is in X. Then ¢ is an X-valued random
element and the distribution P=P¢-! of ¢ is a stationary probability measure on
(X, 2°). Define M-valued random elements ¢ and &,, t€ R, by &=7(¢) and @,=
T.p. By definition @(A)=2{s; &(s)c A} and @, (A)=0(A+t), Aec Z#. By
1 the distribution Pg~'=Pz~* of @ is the Palm measure for a stationary proba-
bility measure @ on (M, -#). Let V denote the reduced second moment measure
of Q:

V(A)=E¢<A>=S°° n(A)dt

where A€ 2 and 1,(A)=P{é(t) € A} (see [4).
Let us define a measure Vj, >0, by

Va(A)=S°° ePelp(A)ds, Ae®.
Throughout the rest suppose VeM. Then V is a positive, positive definite

measure (see [6). Let V and V; denote the Fourier transforms of V and Vj
resp. Then 17,9 is a locally finite signed measure. In fact

V,(A):S pat)dt, Ae<®,
A

where

(8) Da(t)= r oi(t)eP 1 dg= 2§°° Re p,t)e~*ds ,

and

SD,(t) = Sw e““y,(du) .

— 00

Since Vngﬂ Vs vaguely we have V= pli‘E) 175 vaguely. Therefore if the family
of functions {0, >0} converges a.e. as f—+0 and if it is uniformly bounded
on every compact interval excluding the origin then V is absolutely continuous
except for a possible atom at the origin. Thus we have from Theorem 3.2 and

Theorem 4.1 of the following result which is a continuous time version of
Theorem 6.1 and Theorem 6.2 of [4].

Theorem 1. Let £={&(t), tc R} be a process with stationary increments
having right-continuous paths with left limits and satisfying £0)=0. Sup-
pose VeM. If the family of functions {0z >0} converges a.e. as f—+0
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and 18 uniformly bounded om every compact imterval excluding the origin
then

(4) lim EQ,()= lim V(I+t)= vdona)

t—o0

Jor every bounded interval I. Moreover @, comverges im distribution to a
stationary probability measure Q= as t—co. If in addition P is ergodic then
Q" 18 equal to either Q(M)'Q or é, according as E|&(1)| is finite or not, where
d, 18 the probability measure concentrated on 0€ M.

If ¢ is a transient Lévy process on R then ¢ satisfies preceding assumptions.
In particular Ve M. In this case

e (t)=e"® , 8>0,
where

1At
1422

g(t)=iat—922-t2—l-sw }l:e“‘—l— ]»(dz)
0

with a€ R, ¢*>0, and v being a Borel measure on R\{0} satisfying

2 dn<
oo,
SR\{O{ 1+2’v

Therefore (8) is written as

1

WBO=2Re 7o

A Lévy process ¢ is called nonarithmetic if either v is not arithmetic (i.e. is not
supported by a proper closed subgroup of R) or ¢2+#0 or a—S A+ 23)u(d2) 0.

If ¢ is nonarithmetic then the continuous function g satisil"::: g(t)+0 for t+0
and therefore {fs, S>0} satisfies the conditions in [Theorem 1. By [Lemma 2 the
ergodicity of P implies that of Q. Thus from the first part of we
have (4) for bounded interval I. This result is included in the well-known
renewal theorem for Lévy processes [1,5]. From the second part of Theorem 1
we have the following corollary.

Corollary 1. If {&(t), tc R} is a transient nonarithmetic Lévy process
then as t—oo @, converges in distribution to either (E|£(1)))~'Q or 8, according
as E|e(1)| 8 finite or not. :

A Lévy process £+ on [0, ) is obviously extended to a Lévy process £ on
R. Define &* and &; by 0*(A)=2{s; 8=>0, £*(s) € A} and D;(A)=0*(A+t). Then
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we have the following corollary. This is proved using the renewal theorem for
Lévy processes and the argument in the proof of Corollary 6.2 in [4]. In the
case of subordinators this result was essentially obtained by Horowitz [2] in a
different context.

Corollary 2. If {¢*(t), t>0} is a transient mnonarithmetic Lévy process
then as t—co @F converges in distribution to either (E£(1))'Q or 8, according
as 0<Ef(1)< oo or mot.
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