A RENEWAL THEOREM FOR PROCESSES WITH STATIONARY INCREMENTS

By

TOSHIO MORI

(Received April 13, 1976)

1. Introduction. This note is a supplement to the previous paper [4] and is concerned with a renewal theorem for processes with stationary increments. Let V be the reduced second moment measure of a stationary random measure Pon the real line and let P^t be the shift of the Palm measure P^0 of P. The main theorem of the above paper asserts that P^t converges weakly at $t \rightarrow \infty$ iff the shift of V converges vaguely to a scalar multiple of the Lebesgue measure. In the present note we apply this theorem to a process ξ with stationary increments and obtain a weak convergence result for "renewal process" induced from ξ . This is a continuous time version of results in §6 of [4]. The result is applied to transient nonarithmetic Lévy processes.

2. Lemmas. Let \mathscr{R} denote the σ -algebra of Borel sets of the real line Rand let λ denote the Lebesgue measure on \mathscr{R} . The set of all locally finite nonnegative measures φ on \mathscr{R} is denoted by M. Endowed with the vague topology M is a Polish space. The σ -algebra of Borel sets of M is denoted by \mathscr{M} . This is the smallest σ -algebra with respect to which every mapping $\varphi \rightarrow \varphi(A)$, $A \in \mathscr{R}$, is measurable. Let T_i , $t \in R$, be an automorphism of M defined by

$$(T_t \varphi)(A) = \varphi(A+t)$$
 , $A \in \mathscr{R}$, $\varphi \in M$.

The mapping $(t, \varphi) \to T_t \varphi$ is $\mathscr{R} \times \mathscr{M} | \mathscr{M}$ -measurable. A measure Q on \mathscr{M} is called stationary if $QT_t^{-1} = Q$ for $t \in R$.

Let X be the space of all right-continuous functions $x: R \to R$ having left hand limits satisfying x(0)=0 and $\lambda x^{-1} \in M$, where λx^{-1} is the measure induced from λ by the mapping x. The smallest σ -algebra of subsets of X with respect to which every coordinate mapping $x \to x(t)$, $t \in R$, is measurable is denoted by \mathscr{X} . Let θ_t , $t \in R$, be an automorphism of X defined by

$$(\theta_t x)(u) = x(t+u) - x(t)$$
, $x \in X$, $u \in R$.

A measure P on \mathscr{X} is called stationary if $P\theta_t^{-1}=P$ for $t \in R$.

Define a mapping τ from X to M by $\tau(x) = \lambda x^{-1}$. Then τ is $\mathscr{X} | \mathscr{M}$ -measura-

TOSHIO MORI

ble. In fact the mapping $x \to \int_{-\infty}^{\infty} f(x(u)) du$ is \mathscr{X} measurable for every continuous function f having compact support.

Lemma 1. If P is a σ -finite stationary measure on (X, \mathscr{X}) then there exists a unique σ -finite stationary measure Q on (M, \mathscr{M}) such that $Q(\{0\})=0$ and the Palm measure for Q coincides with $P\tau^{-1}$.

Proof. By Satz 2.5 of Mecke [3] it suffices to show that for every $\mathscr{R} \times \mathscr{M}$ -measurable $v \ge 0$

(1)
$$\iint v(-t, T_t\varphi)\varphi(dt)P\tau^{-1}(d\varphi) = \iint v(t,\varphi)\varphi(dt)P\tau^{-1}(d\varphi) .$$

The integral on the left of (1) is written as

$$\iint v(-t, T_t\tau x)\lambda x^{-1}(dt)P(dx) = \iint v(-x(s), T_{x(s)}\tau x)dsP(dx) .$$

For $A \in \mathscr{R}$ we have $(T_{x(s)}\tau x)(A) = \lambda(x^{-1}(A+x(s))) = \lambda((\theta_s x)^{-1}(A))$. Hence (2) $T_{x(s)}\tau x = \tau \theta_s x$.

Thus by putting $y=\theta_x x$ it is seen that the above integral is equal to

$$egin{aligned} &\iint v(-x(s), \ au heta_s x)P(dx)ds = \iint v(y(-s), \ au y)P(dy)ds \ &= \iint v(y(s), \ au y)dsP(dy) = \iint v(t, \ au y)\lambda y^{-1}(dt)P(dy) \ . \end{aligned}$$

Lemma 2. In Lemma 1 if P is ergodic with respect to θ_t then Q is ergodic with respect to T_t .

Proof. Suppose P is ergodic and $A \in \mathscr{M}$ is T_t -invariant. Then in view of (2) $\tau^{-1}A \in \mathscr{X}$ is θ_t -invariant. Hence either $P(\tau^{-1}A)=0$ or $P(X \setminus \tau^{-1}A)=0$. It follows from Lemma 1 and the definition of Palm measure [3] that

$$P(\tau^{-1}A) = \int \int \chi_{(0,1]}(s) \chi_A(T_s \varphi) \varphi(ds) Q(d\varphi) = \int_A \varphi(0,1] Q(d\varphi) ,$$

where χ_A is the indicater of A. The last equality follows from the T_t -invariance of A. Suppose $P(\tau^{-1}A)=0$. Then $\varphi(0,1]=0$ Q-a.e. on A and therefore by the stationarity of Q we have $Q(A \setminus \{0\})=0$. Since $Q(\{0\})=0$ we have Q(A)=0. Similarly $P(X \setminus \tau^{-1}A)=0$ implies $Q(M \setminus A)=0$. This shows that Q is ergodic.

3. Renewal theorem. Let $\xi = \{\xi(t), t \in R\}$ be a stochastic process with stationary increments defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$. Suppose $\xi(0)=0$

RENEWAL THEOREM

and almost every sample path of ξ is in X. Then ξ is an X-valued random element and the distribution $P=P\xi^{-1}$ of ξ is a stationary probability measure on (X, \mathscr{H}) . Define M-valued random elements φ and φ_i , $t \in R$, by $\varphi = \tau(\xi)$ and $\varphi_i =$ $T_i \varphi$. By definition $\varphi(A) = \lambda\{s; \xi(s) \in A\}$ and $\varphi_i(A) = \varphi(A+t)$, $A \in \mathscr{H}$. By Lemma 1 the distribution $P\varphi^{-1} = P\tau^{-1}$ of φ is the Palm measure for a stationary probability measure Q on (M, \mathscr{H}) . Let V denote the reduced second moment measure of Q:

$$V(A) = \mathbf{E} \Phi(A) = \int_{-\infty}^{\infty} \mu_t(A) dt$$

where $A \in \mathscr{R}$ and $\mu_t(A) = \mathbf{P}\{\xi(t) \in A\}$ (see [4]).

Let us define a measure V_{β} , $\beta > 0$, by

$$V_{\boldsymbol{\beta}}(A) = \int_{-\infty}^{\infty} e^{-\boldsymbol{\beta} |\boldsymbol{s}|} \mu_{\boldsymbol{s}}(A) d\boldsymbol{s} , \quad A \in \mathscr{R}.$$

Throughout the rest suppose $V \in M$. Then V is a positive, positive definite measure (see [6]). Let \hat{V} and \hat{V}_{β} denote the Fourier transforms of V and V_{β} resp. Then \hat{V}_{β} is a locally finite signed measure. In fact

$$\hat{V}_{\boldsymbol{\beta}}(A) = \int_{A} \hat{v}_{\boldsymbol{\beta}}(t) dt , \quad A \in \mathscr{R},$$

where

(3)
$$\hat{v}_{\beta}(t) = \int_{-\infty}^{\infty} \varphi_{s}(t) e^{-\beta |s|} ds = 2 \int_{0}^{\infty} \operatorname{Re} \varphi_{s}(t) e^{-\beta s} ds$$

and

$$\varphi_{s}(t) = \int_{-\infty}^{\infty} e^{itu} \mu_{s}(du)$$
.

Since $V = \lim_{\beta \to +0} V_{\beta}$ vaguely we have $\hat{V} = \lim_{\beta \to +0} \hat{V}_{\beta}$ vaguely. Therefore if the family of functions $\{\hat{v}_{\beta}, \beta > 0\}$ converges a.e. as $\beta \to +0$ and if it is uniformly bounded on every compact interval excluding the origin then \hat{V} is absolutely continuous except for a possible atom at the origin. Thus we have from Theorem 3.2 and Theorem 4.1 of [4] the following result which is a continuous time version of Theorem 6.1 and Theorem 6.2 of [4].

Theorem 1. Let $\xi = \{\xi(t), t \in R\}$ be a process with stationary increments having right-continuous paths with left limits and satisfying $\xi(0)=0$. Suppose $V \in M$. If the family of functions $\{\hat{v}_{\beta}, \beta > 0\}$ converges a.e. as $\beta \rightarrow +0$

TOSHIO MORI

and is uniformly bounded on every compact interval excluding the origin then

(4)
$$\lim_{t \to \infty} \mathbf{E} \Phi_t(I) = \lim_{t \to \infty} V(I+t) = \hat{V}(\{0\})\lambda(I)$$

for every bounded interval I. Moreover Φ_t converges in distribution to a stationary probability measure Q^{∞} as $t \to \infty$. If in addition P is ergodic then Q^{∞} is equal to either $Q(M)^{-1}Q$ or δ_0 according as $\mathbf{E}|\xi(1)|$ is finite or not, where δ_0 is the probability measure concentrated on $0 \in M$.

If ξ is a transient Lévy process on R then ξ satisfies preceding assumptions. In particular $V \in M$. In this case

$$\varphi_s(t) = e^{sg(t)}, s \ge 0$$
,

where

$$g(t) = i\alpha t - \frac{\sigma^2}{2} t^2 + \int_{R \setminus \{0\}} \left[e^{i\lambda t} - 1 - \frac{i\lambda t}{1 + \lambda^2} \right] \nu(d\lambda)$$

with $\alpha \in R$, $\sigma^2 \ge 0$, and ν being a Borel measure on $R \setminus \{0\}$ satisfying

$$\int_{R\setminus\{0\}}\frac{\lambda^2}{1+\lambda^2}\nu(d\lambda)<\infty.$$

Therefore (3) is written as

$$\hat{v}_{\boldsymbol{\beta}}(t) = 2 \operatorname{Re} \frac{1}{\beta + g(t)}$$
.

A Lévy process ξ is called nonarithmetic if either ν is not arithmetic (i.e. is not supported by a proper closed subgroup of R) or $\sigma^2 \neq 0$ or $\alpha - \int_{R \setminus \{0\}} \lambda/(1+\lambda^2)\nu(d\lambda) \neq 0$. If ξ is nonarithmetic then the continuous function g satisfies $g(t) \neq 0$ for $t \neq 0$ and therefore $\{\hat{v}_{\boldsymbol{\beta}}, \boldsymbol{\beta} > 0\}$ satisfies the conditions in Theorem 1. By Lemma 2 the ergodicity of P implies that of Q. Thus from the first part of Theorem 1 we have (4) for bounded interval I. This result is included in the well-known renewal theorem for Lévy processes [1, 5]. From the second part of Theorem 1 we have the following corollary.

Corollary 1. If $\{\xi(t), t \in R\}$ is a transient nonarithmetic Lévy process then as $t \to \infty$ Φ_t converges in distribution to either $(\mathbf{E}|\xi(1)|)^{-1}Q$ or δ_0 according as $\mathbf{E}|\xi(1)|$ is finite or not.

A Lévy process ξ^+ on $[0, \infty)$ is obviously extended to a Lévy process ξ on R. Define Φ^+ and Φ_t^+ by $\Phi^+(A) = \lambda \{s; s \ge 0, \xi^+(s) \in A\}$ and $\Phi_t^+(A) = \Phi^+(A+t)$. Then

62

RENEWAL THEOREM

we have the following corollary. This is proved using the renewal theorem for Lévy processes and the argument in the proof of Corollary 6.2 in [4]. In the case of subordinators this result was essentially obtained by Horowitz [2] in a different context.

Corollary 2. If $\{\xi^+(t), t \ge 0\}$ is a transient nonarithmetic Lévy process then as $t \to \infty \Phi_t^+$ converges in distribution to either $(\mathbf{E}\xi(1))^{-1}Q$ or δ_0 according as $0 < \mathbf{E}\xi(1) < \infty$ or not.

References

- [1] Herz, O. S.: Les théorèmes de renouvellement. Ann. Inst. Fourier (Grenoble) 15 (1), 169-188 (1965).
- [2] Horowitz, J.: Semilinear Markov Processes, subordinators and renewal theory. Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 167-193 (1972).
- [3] Mecke, J.: Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 36-58 (1967).
- [4] Mori, T.: Stationary random measures and renewal theory. Yokohama Math. J. 23, 31-54 (1975).
- [5] Port, S. C., Stone, C. J.: Infinitely divisible processes and their potential theory, I. Ann. Inst. Fourier (Grenoble) 21 (2), 157-275 (1971).
- [6] Vere-Jones, D.: An elementary approach to the spectral theory of stationary random measures. In: E. F. Harding and D. G. Kendall, eds., Stochastic Geometry. New York: Wiley 1974.

Department of Mathematics Yokohama City University 4646 Mutsuura-cho, Kanazawa-ku Yokohama 236, Japan