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0. Introduction

Consider a first order ordinary differential equation

(1) $f(x, y, y^{\prime})=0$ ,

where $f$ is a $C^{\infty}$-function, $y$ is the unknown function of $x$ and $y^{\prime}=dyldx$ . We
know classically that if the equation (1) admits a general solution of the form

(2) $G(x, y;c)=0$

and if (1) has a singular solution, then the singular solution is the envelope of
the family of curves defined by the general solution (2) moving the parameter
$c$ , and the envelope is obtained by elimination of the variable $y^{\prime}$ from

(3) $f(x, y, y^{\prime})=0$ and $\partial f/\partial y^{\prime}(x, y, y^{\prime})=0$ .
On the other hand, we know by experience, generically equation (1) has no

singular solutions. Here, we are interested in how the solutions of (1) and the
discriminant set $D$ obtained by elimination of $y^{\prime}$ from (3) are geometrically
related.

In [9], Thom showed the following;

Theorem (R. Thom). Almost every equation (1) has no singular solutions
and the discriminant set $D$ is the ”pseudoenvelope” of the general solutions;

that is $D$ consists of the singular points of the general solutions.
Here we say a property holds generically or for almost every equation (1)

if it holds for every elements $f$ of some open and dense set of the space of all
$C^{\infty}$-functions with the Whitney $C^{\infty}$-topology.

The purpose of this paper is to show that we are exactly in a similar situa-
tion also for differential equations of arbitrary n-th order

(4) $f(x, y, y^{\prime}, y^{\prime\prime}, \cdots, y^{(n)})=0$ with $y^{(\ell)}=d^{\ell}y/dx$‘ ,

that is, almost every equation (4) has no singular solutions and the discri-
minant set $D$ obtained by elimination of $y^{(n)}$ from (4) and $\partial f/\partial y^{(n)}=0$ consists
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of the singular points of the general solutions.
For the precise definition of singular points of a general solution, see \S 1

Definition81.8 and 1.5.
Moreover, we can describe more precisely how the solutions of (4) and the

discriminant set $D$ are geometrically related. We state here a result only for
the simplest type called “fold type” of the equation (4). For the other cases,
the result is more complicated in its expression and it needs some new definitions,
so we do not state it here. (See the final section.)

Let

(5) $f(x, y_{0}, y_{1}, \cdots, y_{n-1}, z)=0$

be an ordinary differential equation, where $y_{0}=y$ is the unknown function of
$x,$ $y_{i}=dy/dx$‘ and $z=d^{n}y/dx^{n}$ . The hypersurface $f^{-1}(0)\subset R^{n+2}$ is denoted by $S$

and the canonical projection of $R^{n+2}$ onto $R^{n+1},$ $(x, y_{0}, y_{1}, \cdots, y_{n-1}, z)\rightarrow(x,$ $y_{0},$ $y_{1}$ ,
..., $y_{n-1}$), is denoted by $\pi$ . Let $D$ be the set of critical values of $\pi|S:S\rightarrow R^{n+1}$ .
Then for almost $C^{\infty}$ function $fD$ is obtained by elimination of $z$ from the
equations $f=0$ and $\partial f/\partial z=0$ (see \S 1 Proposition 1.6).

For a solution $y=\gamma(x)$ of equation (5), consider the curve in $R^{n+1}$ defined by

$\tilde{\gamma}(x)=(x,$ $\gamma(x),$ $\frac{d\gamma}{dx}(x),$
$\cdots,$

$\frac{d^{n-1}\gamma}{dx^{n-1}}(x))$ .

We call the curve $\tilde{\gamma}$ in $R^{n+1}$ also a solution of (5). Now we can state a part of
our results. Equation (5) is called of fold type if $\partial f/\partial z(O)=0,$ $\partial^{2}f/\partial z^{2}(0)\neq 0$ and
$0eS=f^{-1}(0)$ .

A special case of the main theorem.
For almost every equation (5) of fold
type, the following properties hold:

(i) $D$ is a submanifold of $R’+1$ of
codjmension1.

(ii) The set $D_{1}$ of points $q\in D$ such
that there is a solution of (5) which
passes through $q$ and is tangent to $D$ at
$q$ is a submanifold of $D$ of codimen-
sion 1.

(iii) Inductively, the set $D_{\ell}$ of $ point\epsilon$

$q\in D_{-1}$ such that there is a solution of (5)

Fig. (0) which passes through $q$ and tangent to
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$D_{\ell-1}$ at $q$ is a submanifold of $D_{-1}$ of condimension 1.
The following example will help for us to understand the situation mentioned

above.

Example. $y^{\prime 2}-x^{8}y^{\prime\prime}+y=0$ . (See Fig. (0))

Table of contents

1. General solutions and singular solutions.
2. Characterization of critical points.
3. Conditions necessary for a solution to be singular.

4. Thom’s observation on first order differential equations.
5. Fold type equations.
6. A decomposition of the jet space.
7. Main theorem.

1. General solutions and singular solutions.
In this section, ”general solutions”, ”singular solutions” and “singular

points of general solutions” are defined.
Definition 1.1. A family of solutions of n-th order differential equation (5)

is called a general solution of (5) if it is defined by an equation of the form

(6) $G(x, y, c_{1}, \cdots, c_{n})=0$ ,

$c=(c_{1}, \cdots, c_{n})$ being $n$ arbitrary constants and $G$ being a smooth function defined
on an open subset $U$ of $R^{2}\times R^{n}$ , and if it is never defined by any equation with
$(n-1)$ arbitrary constants.

Definition 1.2. A solution of (5) contained in a general solution is called a
regular (or a special) solution of (5). A solution of (5) which is never contained
in any general solution is called a singular solution. A singular solution $y=$

$\gamma(x)$ defined on an interval $(a, b)$ is called a singular solution in the strict sense
if for any subinterval $(c, d)$ of $(a, b)$ , the restriction $y=\gamma|_{(e.l)}(x)$ is not a regular
$8olution$ .

Definition 1.3. Let $y=\gamma(x)$ be a regular solution of (5) defined on an inter-
val $(a, b)$ , and let $\Gamma:(a, b)\rightarrow R\times R$ be the map defined by $\Gamma(x)=(x, \gamma(x))$ . A point

of $\overline{\Gamma([(a+b)/2.b}$)) $-\Gamma([(a+b)/2, b))$ (resp. a point of $\overline{\Gamma((a,(a+b)/2}]$ ) $-\Gamma((a, (a+b)/2$]))

is called a singular point of a regular (or a general) solution of (5) if $y=\gamma(x)$

cannot be extended to a regular solution defined on an interval $(a, b+\epsilon)$ (resp.

$(a-\epsilon, b))$ for any $\epsilon>0$ .
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Example 1.4. Consider the following two equations;

(i) y–xy’ $+\frac{1}{2}y^{\prime 2}=0$ (Fig. (1.1))

and

(ii) $x-y^{\prime 8}/3+yy^{\prime}=0$ . (Fig. (1.2))

The first equation is known as of Clairaut type and its general solution is given
by $y=cx-(1/2)c^{2}$ . It has a singular solution in the strict sense which is given

Fig. (1.2)

by elimination of $y^{\prime}$ from y–xy’ $+(1/2)y^{\prime 2}=$

$0$ and $-x+y^{\prime}=0$ : the singular solution i8
$y=(1/2)x^{2}$ . And the equation (i) has no

Fig. (1.1)
singular points of the general solution.

On the other hand, the equation (ii) has no singular solutions and has many
singular points of regular solutions. The set of singular points of the regular

solutions is the discriminant set $D$ given by elimination of $y^{\prime}$ from $x-y^{\prime 8}/3+yy^{\prime}=$

$0$ and $-y^{\prime 2}+y=0:D=\{9x^{2}=4y^{8}\}$ .
It is convenient to define for a curve in $(x, y_{0}, y_{1}, \cdots, y_{n-1})$-plane to be a

solution of (5).

Definition 1.5. A curve 7 in $R^{n+1}$ is called a solution of (5) if $\tilde{\gamma}$ has the
form

(7) $\tilde{\gamma}(x)=(x,$ $\gamma(x),\frac{d\gamma}{d^{\text{}}x}(x),$ $\cdots’\frac{d^{n-1}\gamma}{dx^{n-1}}(x))$
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for some solution $y=\gamma(x)$ of (5).

A family of solutions of (5) in $(x, y_{0}, y_{1}, \cdots, y_{n-1})$-plane is called a general
solution of (5) if the corresponding family of solutions in $(x, y)$-plane is a general
solution of (5).

For solutions of (5) in $(x, y_{0}, y_{1}, \cdots, y_{n-1})$-plane, regular solutions and sin-
gular solutions are similarly defined. Let $\tilde{\gamma}(x)=(x, \gamma(x),$ $d\gamma/dx(x),$ $\cdots,$ $d^{n-1}\gamma/dx^{n-1}(x))$

be a regular solution of (5) defined on an interval $(a, b)$ . A point of $\overline{\gamma(a,b}$) is
a singular point of the regular solution 7 if the corresponding point in $(x, y)-$

plane is a singular point of the corresponding regular solution $y=\gamma(x)$ .
Let $S=f^{-1}(0)$ be the hypersurface of zeros of the function $f$ in (5). We

may assume $f(O)=0$ without loss of generality. By Thom’s transversality theo-
rem, for almost every equation, $S$ is a smooth hypersurface. Let $\pi;R^{n+2}\rightarrow R^{n+1}$

be the canonical projection defined by $\pi(x, y_{0}, \cdots, y_{n-1}, z)=(x, y_{0}, y_{1}, \cdots, y_{n-1})$ . Let
$C$ be the set of critical points of $z|S:S\rightarrow R^{n+1}$ and $D=\pi(C)$ .

Then generically we may assume that for some $k>0$ , we have $\partial f/\partial z(O)=\cdots=$

$\partial^{k-1}f/\partial z^{k-1}(0)=0$ and $\partial^{k}f/\partial z^{k}(0)\neq 0$ . Then by the Malgrange preparation $f$ is of
the form

$f(x, y, z)=(z^{k}+a_{1}(x, y)z^{k-1}+\cdots+a_{k}(x, y))Q(x, y, z)$ with $Q(O)\neq 0$ . Then $D$ is
obtained by elimination of $z$ from the equations $f=0$ and $\partial f/\partial z=0$ , where $y$ is an
abbreviation of $(y_{0}, y_{1},\cdots, y_{n-1})$ . And from the fact that the roots of

$z^{k}+a_{1}(x, y)z^{k-1}+\cdots+a_{k}(x, y)=0$

are continuous functions of the coefficients, therefore of variables $x$ and $y$ , we
know that $\pi|S:S\rightarrow R^{n+1}$ is a proper mapping.

Consequently, we have;

Proposition 1.6. For almost every $C^{\infty}$-function $f$, the $f_{0}uowing$ properties
hold:

(i) $S=f^{-1}(0)$ is a smooth submanifold,
(ii) $D$ is obtained by ehmination of $z$ from the equations $f=0$ and $\partial f/$

$\partial z=0$ ,
(iii) $\pi|S:S\rightarrow R^{n+1}$ is a proper mapping,
(iv) $\pi|(S-\pi^{-1}(D)):(S-\pi^{-1}(D))\rightarrow\pi(S)-D$ is a covering map.
Since $\pi|S:S\rightarrow R^{n+1}$ is proper, $f^{-1}(y)$ is a finite set for each point $y\in R^{n+1}$ .

Note that the degree of the covering may be different according to connected
component8 of $\pi(S)-D$.

Proposition 1.7. Let $q_{0}=(x^{0}, y_{0}^{0}, y_{1}^{0}, \cdots, y_{n-1}^{0})\in R^{*+1}$ be a point of one of the
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connected components of $\pi(S)-D$, say U. Then there exist the same number

of solutions of (5) passing through $q_{0}$ as the degree of the covering $\pi|S\cap\pi^{-1}(U)$ ;

$S\cap\pi^{-1}(U)\rightarrow U$. Such solutions are au regular solutions.

Proof. Since the covering map $\pi|S\cap\pi^{-1}(U):S\cap\pi^{-1}(U)\rightarrow U$ is trivial, the
$re8tricted$ map $\pi|V:V\rightarrow U$ is a diffeomorphism for each connected component $V$

of $S\cap\pi^{-1}(U)$ . Therefore, for such a component $V$ we can define a $C^{\infty}$ vector
field $\xi_{V}$ on $U$ by

(8) $\xi_{r}(p)=\partial/\partial x+\sum_{i=1}^{n--1}y\partial/\partial y_{\ell-1}+z((\pi|V)^{-1}(p))\partial/\partial y_{n-1}$ ,

$p=(x, y_{0}, y_{1}, \cdots, y_{n-1})eU$ .
By the fundamental theorem of ordinary differential equations, there is unique

integral curve of $\xi_{V}$ passing through $q_{0}$ , which $is$ easily checked to be a regular

solution of (5). So there exist a greater or equal number of regular solutions
passing through $q_{0}$ than the number of the coverings of $\pi|S\cap\pi^{-1}(U):S\cap\pi^{-1}(U)\rightarrow$

$U$.
On the other hand, solutions of (5) passing through $q_{0}$ are all integral curves

of one of such $\xi_{V}s$ . For, consider a solution $\tilde{\gamma}(x)=(x, \gamma(x),$ $d\gamma/dx(x),$ $\cdots,$
$d^{-1}\gamma/dx^{n-1}(x))$

of (5) passing through $q_{0}$ . Then the curve $\tilde{\gamma}(x)=(x, \gamma(x),$ $d\gamma/dx(x),$ $\cdots,$
$d^{n-1}\gamma/dx^{n-1}(x)$ ,

$d^{n}r/dx^{n}(x))$ is contained in some connected component $V$ of $S\cap\pi^{-1}(U)$ . We have
$\pi(\gamma)=\tilde{\gamma}\approx$ and we see that $\tilde{\gamma}$ is an integral curve of $\xi_{\gamma}$ . So it is a regular solution
of (5). Q.E.D.

As Corollary of Proposition 1.7, we have;

Corollary 1.8. If (5) has a singular solution (in $R^{n+1}$ ) in the strict sense,

then it is contained in $D$.
Proof. Let $\tilde{\gamma};(a, b)\rightarrow R^{n+1}$ be a singular solution in the strict sense, and sup-

pose that $\tilde{\gamma}(a, b)\not\subset D$. Then for some $x_{0}\in(a, b)q_{0}=\tilde{\gamma}(x_{0})\oplus D$, and so for some $\epsilon>0$ ,
$\tilde{\gamma}((x_{0}-\epsilon, x_{0}+\epsilon))\subset\pi(S)-D$. Then by Proposition 1.7, $\tilde{\gamma}(x_{0}-\epsilon, x_{0}+e)$ is a regular

solution. Therefore, by definition, 7 is not a singular solution in the strict
sense, which contradicts the hypotheses.

2. Characterizations of critical points.

Notation 2.1. Let $J^{k}(M, N)$ denote the k-jet space from a $smth$ manifold
$M$ to another manifold $N$. For a $C^{\infty}$ map $g:M\rightarrow N$, let $j^{k}(g):M\rightarrow J^{k}(M, N)$

denote the k-extension of $g$ . For a non-negative integer $i$ , let $\Sigma\subset J^{k}(M, N)$

denote the set of k-jets having rank exactly $m-i$ , where $m=dim$ . $M$. More
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generally for a sequence $I=(i_{1}, \cdots, i_{r})$ of non-negative integers, $\Sigma I$ denotes the
Thom-Boardman singularity subset of type $I$ in $J:(M, N),$ $k\geq r$ .

For simplicity, we abbreviate the symbol $\Sigma\overline{1\cdots.1}$ to $\Sigma 1^{f}$ and
$\Sigma^{\frac{r}{1}}1\cdots..0$

to $\Sigma 1r0$

Similarly, for a map $g:M\rightarrow N$, we abbreviate $j^{k}(g)^{-1}(\Sigma 1‘)$ to $\Sigma^{1^{f}}(g)$ and $j^{k}(g)^{-1}(\Sigma 1^{f}0)$

to $\Sigma^{1^{r},0}(g)$ .
Definition 2.2. Define subsets $T_{1^{r}}$ and $T_{1^{r}.0}$ in $J^{k}(R^{n+2}, R),$ $k>r\geq 0$ , as

follows: For a function $g:R^{n+2}\rightarrow R$ and a point $p\in R^{n+2},$ $j^{k}(g)(p)eT_{1^{t}}$ if and
only if $g(p)=\partial g/\partial z(p)=\cdots=\partial^{r}g/\partial z^{r}(p)=0;j^{k}(g)(p)\in T_{1^{r}.0}$ if and only if $ j^{k}(g)(p)\in$

$T_{1^{f}}$ and $\partial^{r+1}g/\partial z^{r+1}(p)\neq 0$ .
By Definition, $T_{1^{t}.0}\subset T_{\iota^{r}}$ .
Now let us return to equation (5). Let $F:R^{n+2}\rightarrow R^{n+2}$ be the map defined by

$F(x, y, z)=(x, y,f(x, y, z))$ ,

where $f$ is the function in (5) and $y$ is an abbreviation of $(y_{0}, \cdots, y_{n-1})$ . Note
that, by the definition of $F$, every singular point of $F$ is of type $\Sigma 1$

Proposition 2.3. For a point $p$ in $R^{n+2}$ , the following conditions are
equivalent;

(2.3.1) $p\in\Sigma 1^{r}.0(F)\cap S$ and $j^{k}(F)$ is transversal to $\Sigma 1^{f}.0\cap\pi_{2}^{-1}(R^{n+1}\times 0)$ , where
$\pi_{2};J^{k}(R^{n+2}, R^{n+2})\rightarrow R^{n+2}$ is the projection to the target space and $k>r$ .

(2.3.2) $f(p)=\partial f/\partial z(p)=\cdots=\partial^{r}f/\partial z^{r}(p)=0,$ $\partial^{r+1}f/\partial z^{r+1}(p)\neq 0$ and $(f,$ $\partial f/\partial z,$ $\cdots$ ,
$\partial^{r}f/\partial z^{r}):R^{n+2}\rightarrow R^{r+1}$ has rank $(r+1)$ at $p$ .

(2.3.3) $p\in(j^{k}f)^{-1}(T_{1^{r},0})$ and $j^{k}f$ is transversal to $T_{1^{\prime}.0}$ at $p$ for $k>r$ .
Proof. The equivalence of (2.3.2) and (2.3.3) is obvious by definition 2.2.

For the equivalence of (2.8.1) and (2.3.2), see for instance Morin [8].

Proposition 2.4. If the k-extension $j^{k}f$ of a function $f:R^{n+2}\rightarrow R$ is trans-
versal to every $T_{1.0}i0\leqq i\leqq k$ , then we have $\Sigma^{\iota^{i}.0}(\pi|S)=\Sigma 1^{i}.0(F)\cap S=(j^{k}f)^{-1}(T_{1}\ell+1_{0})$ .

Proof. We see first that $\Sigma^{1^{\{}}(\pi|S)=(j^{k}f)^{-1}(T_{1}\ell)$ for each $i\leqq k$ . We do it by
induction. Since $j^{k}f$ is transversal to every $T_{1}i_{0}(j^{k}f)^{-1}(T_{1}i)$ is a submanifold
of $S$ of condimension $i$ . As the first step of the induction, we have $\Sigma^{\iota}(\pi|S)=$

{$p\in S|$ rank $(\pi|S)=dim$ . $S-1$} $=\{p\in S|\partial f/\partial z(p)=0\}$ . Supposing $\Sigma^{1^{i}}(\pi|S)=(j^{k}f)^{-1}(T_{1^{i}})$ ,
we show next that $\Sigma 1^{i+1}(\pi|S)=(j^{k}f)^{-1}(T_{1}\ell+1)$ . Since $\Sigma^{\iota 9}(\pi|S)=(j^{k}f)^{-1}(T_{1})$ is a
submanifold by the hypotheses of the induction, we have $\Sigma^{\iota+1}:(\pi|S)=\{p\in\Sigma^{\iota i}(\pi|S)|$

corank $\pi|\Sigma^{\iota}:(\pi|S)=1$} by the definition of the Thom-Boardman $8ingularities$ . So,
we have
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$\Sigma^{\iota^{i+1}}(\pi|S)=\{peS|\partial f/\partial z(p)=\partial^{2}f/\partial z^{2}(p)=\cdots=\partial^{i}f/\partial z^{\ell}(p)=\partial^{i+1}f/\partial z^{i+1}(p)=0\}$

$=(j^{k}f)^{-1}(T_{1^{\ell+1}})$ .
On the other hand, by Proposition 2.3 we have

$(j^{k}f)^{-1}(T_{1^{\ell+1_{0}}}.)=\Sigma 1^{i}.0(F)\cap S$ . Hence $\Sigma^{1^{i}.0}(\pi|S)=(J^{Y}f)^{-1}(T_{1}\ell+1_{0})=\Sigma^{\iota^{i}.0}(F)\cap S$ .
Q.E.D.

By the transversality theorem, for almost every map $f:R^{n+2}\rightarrow R,$ $j^{k}f$ is
transversal to every $T_{1}\ell_{0}(k>i\geqq 0)$ . Taking $k>n+1$ , we have the following.

Proposition 2.5. For almost every ordinary differential equation (5), there
exist Thom-Boardman stratifications $\{S_{\ell,0}\}$ of $Csatisfy\dot{j}ng$ the following con-
ditions;

(2.5.1) $C=\bigcup_{\ell=\iota}^{n+\iota}S_{\ell.0}$ ($dis$joint sum), where $S_{\ell.0}=\Sigma^{\iota^{i}.0}(\pi|S)=\Sigma^{\iota^{i}.0}(F)\cap S$ ,

(2.5.2) $\pi|S_{\ell.0}:S.0\rightarrow R^{n+1}$ is an immersion.

Remark 2.6.1 In general, for a map $f:M\rightarrow N$ the decomposition of $M$ into
the Thom-Boardman singularities $\Sigma I(f)$ does not give a Whitney stratification
of $M$. However, the decomposition of $C$ into $S_{\ell.0}$ is a Whitney stratification (see

the Morin’s canonical forms [$8|$ ).

Remark 2.6.2 For a point $P$ of $S_{1.0}$ it is known that there is a neighbor-

$hdU$ of $p$ such that $\pi|S\cap U:S\cap U\rightarrow R^{n+1}$ is of the form

$\left\{\begin{array}{l}v_{j}=u_{j} 1\leq j\leq n\\v_{n+1}=u_{n+1}^{2}\end{array}\right.$

under some local $crdinate$ system $(u_{1}, \cdots, u_{n+1})$ on $S\cap U$ and some local $crdi-$

nate system $(v_{1}, \cdots, v_{n+1})$ on a neighborhood of $\pi(p)$ (see for instance Morin [8]).

Hence $\pi|S_{1.0}\cap U$ is an immersion, $\pi(S\cap U, S_{1.0}\cap U)$ is diffeomorphic to $(R^{n}x[0, \infty)$ ,
$R^{n})$ and as a consequence, the image $\pi(p)$ can not be an interior point of $\pi(S\cap U)$

3. Conditions necessary for a solution to be singular.

Let $C^{+1}S$ . be the Thom-Boardman stratification of $C$ obtained by Pro-

position 2.5. Set $S=\Sigma^{\iota^{i}}(\pi|S)$ . Then $S_{\ell}=F_{0}^{-}j^{k}f(S.0)\subset T_{1.0}$ and $S.0$ is a sub-
manifold of $S_{-1}$ of codimension 1, where as a convention we set $S_{0}=S$ .

Let $p_{0}$ be a point of $S.0$ . Since $\pi|S.0:S_{\ell.0}\rightarrow R^{n+1}$ is an immersion, there i8
a $neighborhdU$ of $p_{0}$ in $R^{n+2}$ such that $\pi|U\cap S_{\ell.0}$ is an embedding. Then
$\pi(U\cap S.0)$ is a submanifold of $R^{n+1}$ .
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Definition 3.1. Let $\xi\approx$ be the vector field on $R^{n+2}$ defined by

(9) $\xi(x, y_{0}, y_{1}, \cdots, y_{n-1}, z)=\partial/\partial x+y_{1}\partial/\partial y_{0}+\cdots+y_{n-1}\partial/\partial y_{n-2}+z\partial/\partial y_{n-1}\approx$ .
And let $\tilde{\xi}$ be the vector field on $\pi(S_{i.0}\cap U)$ defined by

(10) $\tilde{\xi}(\pi(p))=(d\pi)_{p}(\xi(p))=\partial/\partial x+y_{1}\partial/\partial y_{0}+\cdots+y_{n-1}\partial/\partial y_{n-2}+z\partial/\partial y_{n-1}\approx$

where $p=(x, y_{0}, \ldots, y_{n-1}, z)\in S_{i.0}\cap U$.
Remark 3.2. In general $\tilde{\xi}$ is not tangent to $\pi(S.0\cap U)$ .
Since $\pi|S_{\ell,0}:S.0\rightarrow R^{n+1}i_{8}$ an immersion, we have $(\partial/\partial z)_{p}\oplus T_{p}(S.0)$ for each

point $p\in S.0$ . On the other hand, since $\pi|S_{-1}:S_{\ell-1}\rightarrow R^{n+1}$ is not regular at every
point of $S.0$

’ we have $(\partial/\partial z)_{p}\in T_{p}(S_{-1})$ for every point $p$ of $S_{i.0}$ . From these
facts and the fact that $S.0$ is a submanifold of $S_{-1}$ , there is a normal bundle

$\nu;N\cap S_{-1}\rightarrow S.0$

such that each fibre contains the z-direction, that is $(\partial/\partial z)_{p}\in T_{p}(\nu^{-1}(p))$ for each
point $peS_{i.0}$ , where $N$ is a $neighborhd$ of $S.0$ in $R^{n+2}$ .

Proposition 3.3. Let $V$ be a submanifold of $S_{\ell.0}\cap U$. Then for a point
$p$ of $V$, the $f_{0}uowing$ conditions are equivalent:

(8.3.1) $\tilde{\xi}$ is tangent to $\pi(V)$ at $(p)$ .
(3.3.2) $\xi is\approx$ tangent to $\nu^{-1}(V)$ at $p$ .
Proof. From the fact that $\pi|V:V\rightarrow\pi(V)$ is a diffeomorphism and $\tilde{\xi}(\pi(p))=$

$(d\pi)_{p}(\xi(p))\approx,$
$(3.3.1)$ is obviously equivalent to the following condition:

(3.3.3) $\tilde{\xi}+\alpha\cdot\partial/\partial z$ is tangent to $V$ at $p$ for some real number $\alpha$ .
On the other hand, since $(\partial/\partial z)_{p}\in T_{p}(S_{-1})-T_{p}(S_{i.0}),$ $T_{p}(\nu^{-1}(V))$ is spanned by

$T_{p}(V)$ and $(\partial/\partial z)_{p}$ , from which the equivalence between (3.3.2) and (3.3.3) follows.
Q.E.D.

For a solution $\tilde{\gamma}(x)=(x, \gamma(x),$ $d\gamma/dx(x),$ $\cdots,$ $d^{n-1}\gamma/dx^{n-1}(x))$ of (5) in $R^{n+1}$ , $\gamma\approx$

denotes the curve in $R^{n+g}$ defined by

$\gamma\approx(x)=(x,$ $\gamma(x),$ $\frac{d\gamma}{dx}(x),$ $\cdots’\frac{d^{n}\gamma}{dx^{n}}(x))$ .

Corollary 3.4. If $\gamma(x)\approx$ is a solution of (5) such that the curve $\gamma\approx$ is con-
tained in $U\cap S.0$

’ then the restricted vector field $\tilde{\xi}|\tilde{\gamma}$ and $\xi|\gamma\approx\approx$ are tangent to
$\tilde{\gamma}$ and to $\nu^{-1}(\gamma)\approx$ respectively.

Proof. Since $\tilde{\gamma}$ is a solution such that $\gamma\approx$ is in $U\cap S.0$
’ for each point
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$q=\tilde{\gamma}(x)=(x, y_{0}, \cdots, y_{n-1})$ of $\tilde{\gamma}$ $\xi(q)$ is tangent to $\tilde{\gamma}$ . Hence the $rollary$ follows
from Proposition 3.2.

Remark 3.5. If $\tilde{\gamma}(x)$ is a singular solution of (5) in the strict sense, then $\gamma\approx$

is contained in $C$ (see Corollary 1.8). So some non-void open subset of 7 must
be contained in $S_{\ell.0}$ for some $i>0$ , and this is the case of the corollary.

4. Thom’s observation on first order differential equations.
In this section, we recall Thom’s observation on first order differential equa-

tions. Consider a first order differential equation

(1) $f(x, y, y^{\prime})=0$ .
We may assume $f(O)=0$ without loss of generality. We observe the gener$ic$

behaviour of (1) near the origin. By the transversality theorem, generically we
have only two types: they are

fold type, i.e. $\Sigma^{1.0}$-type: $f(O)=\partial f/\partial y^{\prime}(O)=0$ ,
$\partial^{2}f/\partial y^{\prime 2}\neq 0$ ,

cusp type, i.e. $\Sigma^{1.1.0}$-type: $f(O)=\partial f/\partial y^{\prime}(O)=\partial^{2}f/\partial y^{\prime 2}(0)=0$ ,
$\partial^{8}f/\partial y^{\prime 8}(0)\neq 0$ .

By means of the transversality theorem, as fold types, we have the follow-
ing two types:

fold type A. $f(O)=\partial f/\partial y^{\prime}(O)=0,$ $\partial f/\partial x(O)\neq 0$ ,
$\partial^{2}f/\partial y^{\prime 2}(0)\neq 0$ ,

fold type B. $f(O)=\partial f/\partial y^{\prime}(O)=\partial f/\partial x(O)=0$ ,
$\partial^{2}\beta/\partial y^{\prime 2}(0)\neq 0,$ $\partial f/\partial y(0)\neq 0$ .

4.1. Fold type A.
Since $\partial f/\partial x(O)\neq 0$ , by the Malgrange-preparation theorem, $f$ has the following

form:

(11) $f(x, y, y^{\prime})=(x+a(y, y^{\prime}))Q(x, y, y^{\prime})$

where $a$ and $Q$ are $C^{\infty}$-functions with $Q(O)\neq 0,$ $\partial a/\partial y^{\prime}(O)=0$ and $\partial^{2}a/\partial y^{J2}(0)\neq 0$ .
Hence, we may assume $f$ has the following form:

\langle 12) $f(x, y, y^{\prime})=x+a(y, y^{\prime})$

with $a(O)=\partial a/\partial y^{\prime}(O)=0$ and $\partial^{2}a/\partial y^{\prime 2}(0)\neq 0$ .
Note that in the ease of fold types, the discriminant set $D=\pi(C)$ is a $smth$
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curve in $R^{2}(x, y)$ . Now consider the vector
field $\xi$ and $\xi\approx$ defined by (9) and (10) in \S 3.
Then we have, by Proposition 3.2, that
for a point $p\in C,\tilde{\xi}$ is tangent to $D$ at $\pi(p)$

if and only if $\xi\approx$ is tangent to $S$ at $p\in C$,
hence, if and only if $\xi(p)(f)=(\partial/\partial x+y^{\prime}\partial/\partial y)\approx$

$(x+a)=1+y^{\prime}\partial a/\partial y(y, y^{\prime})=0$. But this equa-
tion does not hold near $O\in R^{2}$ . That is to
say, the vector field $\xi$ is transversal to $D$

near $0$ . Hence, from this fact and Remark
2.6.2, any solution $\tilde{\gamma}$ reaching to $D$ can not
be extended beyond $D$.

Moreover, since $\xi$ is transversal to $D$,
equation$s$ of fold type A have no singular

solutions by Corollary 3.4 and Remark 3.5.
Hence $D=\pi(C)$ consists of singular points

Fig. (4.1)
of general solutions.

Examples. The local model of fold type A is given by the equation

$x-y^{J2}=0$ . (Fig. (4.1))

4.2. Fold type B.
In this case, since $\partial f/\partial y(O)\neq 0$ , using the Malgrange preparation theorem, we

may assume $f$ has the following form:

(13) $f(x, y, y^{\prime})=y+a(x, y^{\prime})$

with $a(O)=\partial a/\partial y^{\prime}(O)=\partial a/\partial x(0)=0$ and $\partial^{2}a/\partial y^{\prime 2}(0)\neq 0$ .
Consider the vector field $\xi$ and $\approx\xi$ . By proposition 3.2, we have that $\tilde{\xi}$ is

tangent to $D$ at a point $\pi(p),$ $p\in C$, if and only if $\xi\approx$ is tangent to $S$ at $p\in C$,
hence if and only if

$\xi(p)(f)=y^{\prime}+\partial a/\partial x(x, y^{\prime})=0\approx$ .
On the other hand, by the transversality theorem, near the origin, $thi_{8}$ equation
holds at no point$s$ of $C$ but the origin. Consequently, near the origin, $\tilde{\xi}$ is
tangent to $D$ at the origin and is transversal to $D$ at other points of $D$. So,
from Corollary 3.3 and Remark 3.4, equations of fold type $B$ have no singular
solutions. Moreover, from Remark 2.6.2 and the fact that $\tilde{\xi}$ is transversal to $D$

except at the origin, any special solution cannot be extended beyond $D$ as a
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Fig. (4.2) Fig. (4.3)

special solution. Hence $D$ consists of singu- lar points of general solutions.

Examples. The local model of fold type $B$ is given by the equation
$y-x^{2}+y^{\prime 2}=0$ . (Fig. (4.2))

4.3. Cusp type.
In this case, we have $\beta(0)=\partial f/\partial y^{\prime}(0)=\partial^{2}f/\partial y^{\prime 2}(0)=0$ and $\partial f/\partial y^{\prime 8}(O)\neq 0$ . By the

transversality theorem, we have generically $\partial f/\partial x(O)\neq 0$ . Hence, using the Malgrange-

preparation theorem, we may assume that $f$ is of the form

(14) $f(x, y, y^{\prime})=x+a(y, y^{\prime})$

with $a(O)=\partial a/\partial y^{\prime}(O)=\partial^{2}a/\partial y^{\prime 2}(0)=0$ and $\partial^{8}a/\partial y^{\prime}(0)\neq 0$ .
By the same argument as in 4.2, we see that the vector field $\tilde{\xi}$ does not

tangent to $D-\{0\}$ at any point of $D-\{0\}$ , and that equations of cusp types have

no singular solutions and $D$ consists of singular points of general solutions. The
following example gives a picture of the generic situation for the cusp type.

Example.

$x-y^{\prime 8}/3+yy^{\prime}=0$ . (Fig. (4.3))

5. Fold type equations.
In this section, we consider equations (5) of fold types, that is, equations

(15) $f(x, y_{0}, y_{1}, \cdots, y_{n-1}, z)=0$

with $f(O)=\partial f/\partial z(O)=0$ and $\partial f/\partial z^{2}(0)\neq 0$ , which make clear what our theorem,

stated in \S 7, asserts.
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Since $\partial f/\partial z(O)=0$ and $\partial^{2}f/\partial z^{2}(0)\neq 0$ , we can assume by the preparation theorem
that $f$ is of the form

(16) $f(x, y, z)=z^{2}+a(x, y)z+b(x, y)$

with $a(O)=b(0)=0$ and $db(O)\neq 0$ , where $y=(y_{0}, y_{1}, \cdots, y_{n-1})$ .
From (16), we have

$C=$ {$(x,$ $y,$ $z)|\beta(x,$ $y,$ $z)=0$ and $z=-1/2\cdot a(x,$ $y)$}.

Eliminating the variable $z$ from

(17) $f(x, y, z)=0$ and $\partial f/\partial z(x, y, z)=0$ .
we have

$D=\pi(C)=\{(x, y)\in R^{n+1}|4b(x, y)-a^{2}(x, y)=0\}$ .
We define inductively a sequence of submanifolds of $J^{k}(R^{n+1}, R^{2})$

$ J^{k}(R^{n+1}, R^{2})\supset T_{1}\supset T_{2}\supset\cdots\supset T_{\ell}\supset\cdots$

as follows:

Definition 5.1. For a map $f=(f_{1}, f_{2}):R^{n+1}\rightarrow R^{2}$ and a point $p\in R^{n+1},$ $j^{k}(f_{1}, f_{2})$

$(p)\in T_{1}$ if and only if $(4\beta_{2}-f_{1}^{2})(p)=0$ and $\tilde{\xi}_{f}(4f_{2}-f_{1}^{2})(p)=0$ , where $\tilde{\xi}_{f}$ is the vector
field of $R^{n+1}$ defined by

(18) $\tilde{\xi}_{f}(x, y)=\partial/\partial x+y_{1}\partial/\partial y_{0}+\cdots+y_{n-1}\partial/\partial y_{n-2}-1/2\cdot f_{1}(x, y)\partial/\partial y_{n-1}$

Then $T_{1}$ is a submanifold of $J^{k}(R^{n+1}, R^{2})$ of codimension 2.

Deflnition 5.2. Suppose that we have already defined the submanifold $T$ ,
then we define $T_{+1}$ by $j^{k}f(p)=j^{k}(f_{1},f_{2})(p)\in T_{\ell+1}$ if and only if

(19) $j^{k}(f_{1},f_{2})(p)\in T_{\ell}$

$\tilde{\xi}_{f}^{\ell+1}(4f_{2}-f_{1}^{2})(p)=\cdots(\tilde{\xi}_{f}(4f_{2}-f_{1}^{2}))\cdots)(p)=0\frac{l+1}{\xi_{f}\tilde\tilde{\xi}_{f}(}$

Then $T_{+1}$ is a submanifold of $T$ of codimension 1.

Now assume that the k-extension of $(f_{1},f_{2})$ is transversal to all $T$ . Set
$D_{1}=(j^{k}(f_{1},f_{2}))^{-1}(T_{1})$ , then by the definition of $T_{1}$ , we have $ D_{1}=\emptyset$ or

(1) $D_{1}$ is a submanifold of $D=\pi(C)$ of codimension 1,
(2) $D_{1}$ coincides with the set of points of $D$ at which the vector field $\tilde{\xi}_{f}$ is

tangent to $D$.
Inductively, set $D_{\ell}=(j^{k}(f_{1},f_{2}))^{-1}(T)$ , then we have $ D_{\ell}=\emptyset$ or

(1) $D_{\ell}$ is a submanifold of $D_{\ell-1}$ of codimension 1,
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(2) $D$ coincides with the set of points of $D_{i-1}$ at which the vector field $\tilde{\xi}_{f}$

is tangent to $D_{\ell-1}$ .
By the preparation theorem and the transversality theorem, we see that

almost every function $f$ defining a fold type eqnation (5) has the form

(16) $f(x, y, z)=z^{2}+a(x, y)z+b(x, y)$ ,

and for almost every function $f$, the pair $(a, b)$ of the functions $a$ and $b$ in (16)

is transversal to all $T$ . Then from the above argument we have:

Proposition 5.3. (A special case of our theorem). For almost every equa-

tion (5) of fold type, the following properties hold:
(i) The discriminant set $D$ is a submanifold of $R^{n+1}$ of codimension 1.
(ii) The set $D_{1}$ of points $q$ of $D$ such that there is a solution passing

through $q$ and tangent to $D$ at $q$ is a submanifold of $D$ of codimension 1, $or$

$ D_{1}=\emptyset$ .
(iii) Inductively, the set $D_{\ell}$ of points $qo\beta D_{-1}$ such that there is a

solution of (5) passing through $q$ and tangent to $D_{\ell-1}$ at $q$ is a submanifold
of $D_{-1}$ of codimension 1, or $ D_{\ell}=\emptyset$ .

Proof. The set $C$ and $D$ are nothing but $S_{1.0}$ and $\pi(S_{1.0})$ observed in \S 2 and

\S 3. And the vector field $\tilde{\xi}_{f}|D$ is nothing but the vector field $\tilde{\xi}$ defined in Defini-
tion 3.1. Let $\tilde{\gamma}$ be a solution of (5) passing through a point $q$ of $D_{\ell-1}$ , that is
$\tilde{\gamma}(x_{0})=q$ for some $x_{0}\in R$ , then we have $d\tilde{\gamma}/dt(x_{0})=\xi(q)$ . So $\tilde{\gamma}$ is tangent to $D_{\ell-1}$

at $q$ if and only if $\tilde{\xi}$ is tangent to $D_{\ell-1}$ at $q$ . Hence the proposition follows from

the above arguments. Q.E.D.

Remark. In the above proposition, by ‘solution passing through a point
$q’$ , we mean a solution $\tilde{\gamma}$ from an interval $I$ (not necessarily an open interval)

into $R^{n-1}$ satisfying $q=\tilde{\gamma}(x_{0})$ for some point $x_{0}\in I$.
Proposition 5.4. $Generi_{Ca}u_{y}$ , ordinary differential equations (5) of fold

type have no singular solutions in the strict sense, and its diseriminant set
$D$ consists of singular points of general solutions.

Proof. If (5) $ha8$ a singular $8olution\tilde{\gamma}$ , then $\tilde{\gamma}\subset D$ and $\tilde{\xi}=\tilde{\xi}_{f}$ must be tan-
gent to $\tilde{\gamma}$ at every point $q=\tilde{r}(x)$ (see Corollary 1.8 and Remark 8.4). But Pro-
position 5.3 asserts that generically there exist no curves in $D$ to which $\tilde{\xi}_{f}=\tilde{\xi}$ is
tangent. Hence, generically (5) has no singular solutions.

It remains to show that $Dconsi_{8}ts$ of singular points of regular $solution8$ .
Consider the vector field
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$\tilde{\eta}(x, y_{0}, \cdots, y_{n-1})=\partial/\partial x+y_{1}\partial/\partial y_{0}+\cdots+y_{n-1}\partial/\partial y_{n-2}$

$+1/2\cdot(-a(x, y)+a^{2}(x, y)-4b(x, y))\partial/\partial y_{n-1}$ .
$\tilde{\eta}$ is defined on $\pi(S)$ and of $C^{\infty}$ . And we have $\eta|D=\tilde{\xi}_{f}|D$. Therefore, for any
point $q=(x^{0}, y_{0}^{0}, \cdots, y_{n-1}^{0})$ of $D$, there is an integral curve $\tilde{\gamma}$ passing through or
reaching to $q$ and it is a solution of (5). We may $as8ume$ without $1os8$ of
generality that $\tilde{\gamma}(x)=(x, \gamma(x),$

$\cdots,$ $d^{n-1}\gamma/dx^{n-1}(x))$ is defined on a half open interval
$(x_{0}-e, x_{0}]$ . Since no solutions of (5) are contained in $D$ as seen above, we may as-
sume that $\tilde{\gamma}((x_{0}-\epsilon, x_{0}))\subset\pi(S)-D$. Consequently, $\tilde{\gamma}|(x_{0}-\epsilon, x_{0})$ is a regular solution
of (5), as seen in the proof of Proposition 1.7.

So, to see that $q$ is a singular point of a regular solution, it is sufficient to
see that $\tilde{\gamma}$ can not be extended to a regular solution defined on an open interval
containing $(x_{0}-\epsilon, x_{0}$].

Suppose $q\in D-D_{1}$ . Then $\tilde{\gamma}$ is not
tangent to $D$ at $q$ , hence if we have an
extension of the curve $\tilde{\gamma}$ , it must go beyond
$D$ and go out of $\pi(S)$ , but it is impossible
for a solution of (5). So $q$ is a singular
point of $\tilde{\gamma}(x_{0}-\epsilon, x_{0})$ .

Consider now the case $q\in D_{1}$ . The
general solution containing $\tilde{\gamma}|(x_{0}-\epsilon_{1}x_{0})$ con-
sists of integral curves of $\tilde{\eta}$ . Now, arbitra-
rily near $q$ there $exi_{8}t$ many points of $D-D_{\iota}$ ,
which are singular points of regular solution $s$

contained in this regular solution. Therefore

Fig. (5.1)

ining $(x_{0}-\epsilon, x_{0}$].

$\tilde{\gamma}|(x_{0}-\epsilon, x_{0})$ can not be extended to a regular
solution defined on an open interval conta-

Q.E.D.

Example.
$y^{\prime 2}-x^{8}y^{\prime\prime}+y=0$ . (Fig. (5.1))

6. A decomposition of the jet space
Corollary 3.4 in \S 3 and the argument in the previou$s$ section motivate to

decompose $T_{1^{\ell}.0}$ into
$ J^{\infty}(R^{n+2}, R)\supset T_{1^{\ell}.0}\supset T_{1.1}\supset T_{1}\ell_{2}\supset\cdots$

where $T_{\iota^{\ell}.;}$ are defined inductively as follows:

Definition 6.1. Let $g:R^{n+2}\rightarrow R$ be a $C^{\infty}$-function, and $p$ be a point in $R^{+1}$ .
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Let $j(\xi)$ be the tangent vector field on $J^{\infty}(R^{n+2}, R)$ , defined by $j(\xi)(j^{\infty}(g)(p))=$

$ d(J^{\infty}(g))_{p}(\xi(p))\approx$ , where $\xi\approx$ si the vector field on $R^{n+2}$ defined in \S 3. Define $ J^{\infty}(g)(p)\in$

$T_{1^{\ell}.1}$ if and only if $J^{\infty}(g)(p)\in T_{1.0}$ and the vector field $j(\xi)$ on $J^{\infty}(R’+2R)$ is tan-
gent to $T_{1^{i-1}}$ at $J^{\infty}(g)(p)$ .

Remark 6.2. By definition 2.2,

$T_{1^{i-1}}=\{J^{\infty}g(p)\in J^{\infty}(R^{n}, R)|g(p)=\partial g/\partial z(p)=\cdots=\partial^{t\leftarrow 1}g/\partial z^{-1}(p)=0\}$

and

$T_{\iota^{\ell}.0}=$ {$j^{\infty}g(p)\in T_{1^{i-1}}|\partial^{\ell}g/\partial z^{\ell}(p)=0$ and $\partial^{\ell+1}g/\partial z^{\ell+1}(p)\neq 0$}.

So, we have a canonical tubular neighborhood $T_{1.0}\times(-1,1)$ of $T_{1^{\ell}.0}$ in $T_{1^{\ell-1}}$ .
The condition that ‘

$j(\xi)$ is tangent to $T_{\iota^{i-1}}$ at $j^{\infty}g(p)$ is equivalent to the con-
dition that ‘

$j(\xi)$ is tangent to the tubular neighborhood $T_{1^{\ell}.0}\times(-1,1)$ of $T_{1.0}$

in $T_{1^{\ell-1}}$ . Let $\tau;T_{1^{\ell}.0}\times(-1,1)\rightarrow T_{1^{i},0}$ denote the projection of the tubular neigh-

borhood.
Since $T_{1^{l-1}}$ has codimension $i$ in $J^{\infty}(R^{n+2}, R)$ , we have the following:

Proposition 6.3. $T_{1^{\ell}.1}$ is a submanifold of $T_{1,0}$ of condimension $i$ .
Definition 6.4. Suppose we have defined $T_{1.0}\supset T_{1,1}\supset\cdots\supset T_{1.j-1}$ such that

$T_{1^{\ell}.k}$ is a submanifold of $T_{1^{\ell}.k-1}$ with codimension $i,$ $1\leq k\leq j-1$ . We define $T_{1.j}$

so that $J^{\infty}(g)(p)\in T_{1.j}$ if and only if $J^{\infty}(g)(p)\in T_{1^{\ell}.f-1}$ and $j(\xi)$ is tangent to
$\tau^{-1}(T_{1}\ell_{j-1})$ at $j^{\infty}(g)(p)$ .

By Definition, if $j^{\infty}(g)(p)\in T_{\iota^{\ell}.j-1}$ , then $j(\xi)$ is tangent to $\tau^{-1}(T_{\iota}\ell_{j-2})$ at
$J^{\infty}(g)(p)$ and the codimension of $\tau^{-1}(T_{1^{\ell}’ j-1})$ in $\tau^{-1}(T_{1}\ell_{j-2})$ is $i$ , we have the follow-
ing:

Proposition 6.5. $T_{\iota^{\ell}.j}$ is a submanifold of $T_{1^{\ell}.j-1}$ of codimension $i$ .

7. Main Theorem
By the transversality theorem, for almost every differentiable map $\beta;R^{n+2}\rightarrow$

$R,$ $J^{\infty}(f)$ is transversal to every $T_{1.j}\subset J^{\infty}(R^{n+2}, R),$ $i\geqq 1,$ $j\geqq 0$ . For such a map
$f$, we have a stratification $\{S_{\ell.0}\}$ of $C$ as in Proposition 2.5. We set $S_{\ell.j}=$

$J^{\infty}(f)^{-1}(T_{1^{\ell}.j})$ , then $S_{\ell.j}$ is a submanifold of S. $j-1$ of codimension $i$ .
Let $p_{0}$ be a point of $S_{\ell.0}$ and $U$ be a neighborhood of $p_{0}$ such that $\pi|U\cap S.0$

is an embedding. Denote $\pi(S_{\ell,j}\cap U)=D_{\ell.j}$ . Then $S_{\ell,j}\cap U$ and $D_{\ell,j}$ are submani-

folds of S. $j-1\cap U$ and of $D_{\ell.j-1}$ respectively or $ S_{\ell.j}\cap U=D_{\ell.j}=\emptyset$ .
By the definition of $S_{\ell.f}$ and the transversality theorem, a point $p$ of $S_{\ell.j-1}$

$js$ in $S_{\ell.j}$ if and only if $\xi is\approx$ tangent to $\nu^{-1}(S_{\ell.j-1})$ at $p$ , where $\nu:U\cap S_{i-\iota^{\rightarrow s},0}$ is
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the projection of the normal bundle of $S.0$ in $S_{\ell-1}$ defined in \S 3.
Hence by Proposition 3.2, a point $q$ of $D_{\ell.j-1}$ is in $D_{\ell.j}$ if and only if the

vector field $\xi$ is tangent to $D_{\ell.j-1}$ at $q$ .
Remark. $ S_{\ell.j}=D_{\ell.j}=\emptyset$ for $0>n-i+1-ji$ , that is, for $j>(n-i+1)/i$ .
By the above construction, we have:

Main Theorem I. For almost every ordinary differential equation

(5) $f(x, y_{0}, y_{1}, \cdots, y_{n-1}, z)=0$

the following properties hold:
(1) The discriminant set $D$ is decomposed into a sum

$D=\bigcup_{\ell=1}^{n+1}\pi(S_{\ell.0})$ ,

which is not necessarily a disjoint sum.
(2) For each $i,$ $1\leqq i\leqq n+1$ , and for a point $p_{0}\in S_{\ell.0}$ , there is a neighbor-

hood $U$ of $p_{0}$ such that $\pi|S_{\ell.0}\cap U:S.0\cap U\rightarrow R^{n+1}$ is an embedding.
(8) The set $D_{\ell.1}$ of the points $q$ of $D.0=\pi(S.0\cap U)$ such that there is a

solution passing through $q$ and tangent to $D$ at $q$ is a submanifold of $D.0$

$0\beta$ codimension $i$ , or $ D_{l,1}=\emptyset$ .
(4) Inductively, the set $D_{\ell,j}$ of points $q$ of $D_{i.j-1}$ such that there is a

solution of (5) passing through $q$ and tangent to $D_{\ell.j-1}$ at $q$ is a submanifold
of $D_{\ell.j-1}$ of codimension $i$ , or $ D_{\ell.j}=\emptyset$ .

Proof. Let $q$ be a point of $D_{l.j-1}$ such that there is a solution 7 of (5)

passing through $q$ , that is $\tilde{\gamma}(x_{0})=q$ for some $x_{0}\in R$ (for the definition “solutions
passing through $p’$ , see Remark under Proposition 5.3). Then, we have $d\tilde{\gamma}/$

$dt(x_{0})=\xi(q)$ . So, $\tilde{r}$ is tangent to $D_{\ell.j-1}$ at $q$ . Hence the theorem follows from
the above argument. Q.E.D.

We can prove the following theorem similarly to Proposition 5.4.

Main Theorem II. $Generi_{Ca}u_{y}$ , ordinary differential equations (5) have
no singular solutions in the strict sense, and its discriminant set $D$ consists
of singular points of general solutions.

Bibliographical notes. We have used, without explaining so much, many
notions, e.g. (multi)-jet spaces, the transversality theorem, the Thom-Boardman
singularities, the Malgrange-preparation theorem, and stratifications, which are
very familiar to those who work on the singularities of differential mappings.
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For jet $spaoe8$ and the $transver8ality$ theorem, refer, for instance [3], [1] or
[6], for the Thom-Boardman singularities, refer [1] and for the Malgrange-pre-

paration theorem, refer [4], [5] or the many articles in the “Proceedings of
Liverpool Singularities-Symposium”, Lecture Notes in Math. 1972, Springer.

For stratified sets, refer [7], [10] or [2].
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