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1. For each $i=1,2$ let $S_{i}$ be a set, $\mathfrak{J}_{i}$ a $\sigma$-ring of subsets of $S_{i},$ $X$ a topologi-
cal ring and $\mu$ : $\mathfrak{J}_{i}\rightarrow X$ a measure. If $\mu$ is the function defined on the measurable
rectangles $E\times F,$ $E\in \mathfrak{J}_{1},$ $F\in \mathfrak{J}_{2}$ , by $\mu(E\times F)=\mu_{1}(E)\mu_{2}(F)$ , it is well known that $\mu$

is generally not countably additive on the ring generated by the measurable
rectangles (R. M. Dudley [71 Proposition). In this paper we shall discuss the
countable additivity of $\mu$ .

2. In this section we shall consider the product of topological ring-valued
measures.

For each $i=1,2$ let $S_{i}$ be a set, $\mathfrak{J}_{l}$ a $\sigma$-ring of subsets of $S,$ $X$ a topological
ring (that is, a8sociative ring which is Hausdorff space such that the mappings
$(a, b)\rightarrow a-b$ and $(a, b)\rightarrow ab$ are continuous functions of a and b) and $\mathfrak{U}$ a base for
neighborhoods of $0$ in $X$, consisting of closed, symmetric sets. $N$ denotes the
set of all positive integers.

Deflnition 1. A set function $\mu_{i}:\mathfrak{J}_{i}\rightarrow X$ is called a measure if for every se-
quence $\{E_{n}\}$ of mutually disjoint sets of $\mathfrak{J}_{i}$ holds $\mu_{i}(\bigcup_{n=1}E_{n})=\sum_{n=1}^{\infty}\mu_{l}(E_{l})\infty$ .

For a set $V\subset X$ and $k\in N$ put $kV=\{\sum_{i=1}^{k}y_{i}:y_{i}\in Vi=1,2, \cdots, k\}$ .
Definition 2. A set $K\subset X$ is called bounded if for every $V$ in $\mathfrak{U}$ there exists

a $k\in N$ such that $K\subset kV$.
A set function $\mu_{i}$ is called bounded if its range is a bounded set. Let $\mu_{i}:\mathfrak{J}_{i}\rightarrow X$

be a measure $(i=1,2)$ .
Proposition 1. If singleton sets in $X$ are bounded, then $\mu_{i}$ is bounded.

Proof. See T. Traynor [12] Theorem 3.2.1.

Example. Let $X=N$ be the topological ring of all integers with the discrete
topology. Then singleton set {1} is not bounded and hence the point measure $\mu_{\{1\}}$

is not bounded.
For a set $F\in \mathfrak{J}_{2}$ put $\mu_{2}((F))=\{\mu_{2}(F^{J}):F^{\prime}\in \mathfrak{J}_{2}, F^{\prime}\subset F\}$ .
Proposition 2. If $\{F,\}$ is a decreasing sequence in $\mathfrak{J}_{2}$ with $\bigcap_{n=1}^{\infty}F_{n}=\phi$ , then

for every $V$ in $\mathfrak{U}$ there exists an $n\in N$ such that $\mu_{2}((F.))cV$.
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Proof. See M. Takahashi [111 Proposition 3.
For a set $A\in \mathfrak{J}_{1}$ and a set $B\subset X$ put $\mu_{1}((A))B=\{\sum_{l=1}^{n}\mu_{1}(A\cap A)b_{\ell}:A\in \mathfrak{J}_{1}$ and

$b_{\ell}\in B(i=1,2\ldots., n)$ and $A_{\ell}\cap A_{j}=\emptyset(i\neq j),$ $n\in N$}.

Definition 3. $\mu_{1}$ is called Daniell continuous (D-continuous) if for every

decreasing sequence $\{E_{n}\}$ in $\mathfrak{J}_{1}$ with $\cap\infty E_{n}=\emptyset$ , every $V$ in $\mathfrak{U}$ and every bounded
$\iota=1$

set $B\subset X$ there exists a $k\in N$ such that $\mu_{1}((E_{k}))B\subset V$.
Proposition 3. If $\mu_{1}$ is D-continuous, then for every sequence $\{E_{*}\}$ of

mutually disjoint sets in $\mathfrak{J}_{\ell}$ , every bounded set $B\subset X$ and every $V$ in $U$ there
exists a $k\in N$ such that $\mu_{1}((E_{n}))B\subset V$ for all $n\geqq k$ .

Proof. For every $n\in N$ put $E_{n}^{\prime}=\bigcup_{k=’\iota}^{\infty}E_{k}$ . Then $\{E_{n}^{\prime}\}$ is a decreasing sequence

with $\cap\infty E_{n}^{\prime}=\emptyset$ . Since $\mu_{1}$ is D-continuous, there exists a $k\in N$ such that
$n=1$

$\mu_{1}((E_{k}))B\subset V$. Since $E_{n}\subset E_{k}^{\prime}$ for all $n\geqq k$ , we have $\mu_{1}((E.))BcV$ for all $n\geqq k$ .
Corollary. If $\mu_{1}$ is D-continuous, then for every monotone sequence $\{E_{n}\}$

in $\mathfrak{J}_{1}$ , every bounded set $B\subset X$ and every $V\in \mathfrak{U}$ there exists a $k\in N$ such that
$\mu_{1}((E_{m}\triangle E_{n}))B\subset V$ holds for every $m,$ $n\in N(m, n\geqq k)$ .

Proof. It is obvious.

Let $X$ be a metric ring with the metric $||\cdot||$ . For every set $E\in \mathfrak{J}_{1}$ put

$||\mu_{1}||(E)=\sup\{||\sum_{\ell eI}\mu_{1}(E)x_{\ell}||$ , where the supremum is taken for all finite families
$\{E_{\ell}\}_{\ell\in I}$ of mutually disjoint sets of $\mathfrak{J}_{1}$ contained in $E$ and for all the finite families
$\{x\}_{\ell eI}$ of elements of $X$ such that $||x_{\ell}||\leqq 1$ for all $i\in I$. Then $||\mu_{1}||$ is a monotone
and $\sigma$-subadditive set function on $\mathfrak{J}_{1}$ . We say that $\mu_{1}$ has Bartle property $((B)-$

property) if for every decreasing sequence $\{E_{n}\}$ in $\mathfrak{J}_{1}$ with $\bigcap_{n=1}^{\infty}E_{n}=\emptyset$ hold8
$\lim_{n\rightarrow\infty}||\mu_{1}||(E_{n})=0$ .

Proposition 4. If $X$ is a metric ring and if $\mu_{1}$ has $(B)$-property, then $\mu_{1}$

is D-continuous.

Proof. Since $V=\{x;||x||\leqq 1\}$ is a neighborhood of $0$ in $X$, there exists a $k\in N$

such that $B\subset kV$. For every $e>0$ there exists an $n\in N$ such that $||\mu_{1}||(E_{n})<e/k$ .
Let $\{E_{n}\}_{\ell eI}$ be any finite family of mutually disjoint sets in $\mathfrak{J}_{1}$ contained in $E_{\mathfrak{n}}$ and
$\{b\}_{\ell eI}$ any finite family $o_{k}f$ elements of $B$ . Since $b=\sum_{j=1}^{k}x_{j},$ $x_{j}\in V(i\in I, j=1,2,\cdots, k)$ ,

holds $||\sum_{\ell eI}\mu_{1}(E_{n\ell})b||\leqq\sum_{j=1}||\sum_{\ell eI}\mu_{1}(E_{n})x_{tj}||\leqq k||\mu_{1}||(E_{n})<e$.
Corollary. If $X$ is a normed ring, then the D-continuity implies $(B)-$

property.
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Proof. Since $B\subset X$ is a bounded set, $sup\{||x||:x\in B\}<\infty$ (see S. Berberian
[21 Lemma (26.3)). The proof follows.

Proposition 5. If $X$ is a metric ring, then the following statements are
equivalent.

(1) $\mu_{1}$ has $(B)- property$ .
(2) $||\mu_{1}||$ is s-bounded, that is, if $E_{\ell}\cap E_{j}=\emptyset(i\neq j)$ , then $\lim_{n\rightarrow\infty}||\mu_{1}||(E_{n})=0$ .
(3) For every monotone sequence $\{E_{n}\}$ in $\mathfrak{J}_{1}$ follows $\lim_{m,n\rightarrow\infty}||\mu_{1}||(E_{m}\triangle E_{n})=0$ .
Proof. See L. Drewnowski [4] Theorem 5.3.

Deflnition 4. $\mu_{1}$ is called D-bounded if for every $E\in \mathfrak{J}_{1}$ and every $V\in U$

there existI a We $\mathfrak{U}$ such that $\mu_{1}((E))W\subset V$.
Proposition 6. If $\mu_{1}$ is D-bounded, then for every $E\in \mathfrak{J}_{1}$ and every bounded

set BcX $\mu_{1}((E))B$ is bounded.

Proof. By the hypotheses for every $V\in \mathfrak{U}$ there exists a $W\in U$ such that
$\mu_{1}((E))W\subset V$. Since $B$ is bounded, there exists a $k\in N$ such that $B\subset kW$. For
every $E_{\ell}\in \mathfrak{J}_{1}$ and every $kb_{\ell}\in B$

$i=1,2,$ $\cdots,$ $n$ and $ E_{\ell}\cap E_{\dot{f}}=\emptyset$ $(i\neq J)$ holds
$\sum_{\ell=1}\mu_{1}(E_{\ell})b_{\ell}=\sum_{\ell=1}\mu_{1}(E_{\ell})\sum_{g=1}^{k}b_{l\dot{f}}=\sum_{j=1}\sum_{i=1}\mu_{1}(E_{\ell})b_{\dot{u}}\subset kV$, as $b_{\ell}=\sum_{j=1}^{k}b_{j},$ $b_{lj}\in W,$ $i=1,2\ldots.,$ $n$ ,
$j=1,2,$ $\cdots,$

$k$ . Hence $\mu_{1}((E))B$ is bounded.
Let $R$ be the ring generated by the measurable rectangles $\{E\times F:E\in \mathfrak{J}_{1}$ ,

$Fe3_{2}I$ Then it is well known that
(1) $R$ coincides with the class of all finite disjoint unions $K=\bigcup_{i=1}^{n}E_{l}\times F_{\ell}$ , where

$E\in \mathfrak{J}_{1}$ and $F\in \mathfrak{J}_{2}(i=1,2, \cdots, n)$ .
(2) for every set $K=\cup nE_{\ell}\times F_{\ell}\in R$ there exist two families $\{E_{1}, E_{2}, \cdots, E.\}$

$i=1$

$(E_{\ell}e\mathfrak{J}_{1})$ and $\{F_{1}, F_{2}, \cdots, F_{n}\}(F_{\ell}\in \mathfrak{J}_{2})$ of sets with $E\cap E_{j}=\emptyset(i\neq j)$ .
$k_{\hslash}$

(3) for every decreasing sequence $\{K_{n}\}(K_{n}=\cup E_{n\ell}\times F_{n})$ in $R$ and every $n\in N$
$t=1$

there exist $E_{n\ell}\in \mathfrak{J}_{1}$ and $F_{n\ell}\in \mathfrak{J}_{2}$ such that $E_{n\ell}\cap E_{nj}=\emptyset(i\neq J)$ and any each $E_{n}$ is
contained in some $E_{n-r.k}$ .

Lemma. Let $\{K_{n}\}$ be a decreasing sequence in R. For some We $\mathfrak{U}$ put
$J_{n}=$ {$j_{n}$ : for some set $F\in \mathfrak{J}_{2}$ with $F\subset F_{n}j_{n}$ holds $\mu_{2}(F)\not\in W$} and $E_{n}^{\prime}=\bigcup_{\dot{g}_{*}eJ_{\hslash}}E_{nj_{1}}$,
$(n=1,2_{1}\cdots)$ . Then $\{E_{n}^{\prime}\}$ is a decreasjng sequence in $\mathfrak{J}_{1}$ .

Proof. Let $E_{nj_{n}}\times F_{nj_{\hslash}}$ be any measurable rectangle with $j_{n}\in J_{n}$ . Since
$E_{nj_{*}}\times F_{nj_{n}}\subset K_{n}\subset K_{n-1}=\cup E_{n-1.l}\times F_{n-1.\ell}$ , there exists a $k\in N$ such that $ E_{nj_{l}}\times F_{nj_{\iota}},\subset$

$E_{n-1}.k\times F_{n-1}.k$ . Hence $F_{nj_{\hslash}}\subset F_{n-1}.k$ and $k\in J_{n-1}$ and consequently $E_{nj_{n}}\subset E_{n-1}.{}_{k}CE_{n-1}^{\prime}$

and $E_{n}^{\prime}\subset E_{u-1}^{\prime}$ .
For every set $K=\bigcup_{\ell=1}^{n}E_{t}\times F_{i}\in R$ ( $\{E_{\ell}\times F_{i}\}$ is mutually disjoint) we put $\mu(K)=$
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$\sum_{\ell=1}^{n}\mu_{1}(E_{\ell})\mu_{2}(F_{l})$ . Then $\mu(K)$ is well defined and $\mu:R\rightarrow X$ is finitely additive.
Theorem 1. Let $X$ be a topological ring such that singleton sets in $X$ are

bounded. If $\mu_{1}$ has the $f_{0}uowing$ properties (1) and (2), then $\mu$ is countably

additive on $R$ .
(1) $\mu_{1}$ is D-continuous.
(2) $\mu_{1}$ is D-bounded.

Proof. We shall prove that if $\{K_{n}\}(K_{n}=\bigcup_{t=1}^{k_{\hslash}}E_{n}\times F_{n\ell})$ is a decreasing sequence

in $R$ such that $\mu(K_{n})\not\in V(n=1,2, \cdots)$ for some $V\in U$ , then holds $\cap\infty K_{n}\neq\emptyset$ , Let
$’*=\iota$

$V_{1}\in \mathfrak{U}$ be a neighborhood of $0$ in $X$ such that $V_{1}+V_{1}cV$ and let $W\in U$ be a
neighborhood which satisfies the condition (2) for $V_{1}$ . Put $J_{n}=\{j_{n}$ : for $8omeF\in \mathfrak{J}_{2}$

with $FcF_{j}$. holds $\mu_{2}(F)\not\in W$}, $J_{n}^{\prime}=\{otherj_{n}’ s\}$ for all $n\in N$ and $E_{n}^{\prime}=\bigcup_{j_{\hslash}eJ}E_{nj_{l}}$ .
Then $\{E_{n}^{\prime}\}$ is a decreasing sequence. We shall show that $\cap\infty E_{n}^{\prime}\neq\emptyset$ . If it were
false, then there would exist an $n\in N$ such that $\mu_{1}((E_{n}))B\subset^{n=1}V,$ $B$ being the range

of $\mu_{2}$ . Since in the equality $\mu(K_{n})=\sum_{j_{l}eJ}\mu_{1}(E_{*j_{\hslash}})\mu_{2}(F_{nj_{n}})+\sum_{\dot{g}_{\hslash}eJ_{\hslash}},\mu_{1}(E_{nJ_{\hslash}})\mu’(F_{nj_{*}},)$

holds $\Sigma$ $\mu_{1}(E_{nj_{n}})\mu_{2}(F_{nj_{n}})\in V_{1}$ and $\mu_{2}(F_{nj_{n}})\in W$ for all $j_{n}\in J_{n}^{\prime}$ , holds $\mu(K_{n})\in$

$V_{1}+V_{1}^{\dot{g}eJ_{\hslash}}cV$, which is a contradiction. Consequently there exists a point $x_{0}\in S_{1}$

such that $x_{0}e\cap\infty E_{n}^{\prime}$ . Let $j_{n}$ be positive integer with $x_{0}\in E_{nj_{n}}$ . Since $\{K_{n}\}$ is

decreasing, $\{E_{nj_{n}}\}alson=1$ is decreasing. We shall show that $\bigcap_{\#=\iota}^{\infty}F_{n}j_{n}\neq\emptyset$ . If it were
false, then by Proposition 2 there would exist an $n\in N$ such that $\mu_{2}((F_{n}))\subset W$ and

hence $j_{n}\not\in J_{n}$ , which is a contradiction. Let $y_{0}$ be a point in $S_{2}$ with $y_{0}\in\bigcap_{n=1}^{\infty}F_{nj_{\iota}},$ ,

Then we have $(x_{0}, y_{0})\in K_{n}$ for all $n$ . The $pr\ovalbox{\tt\small REJECT} f$ is complete.

We say that $X$ has $(G)$-property if $\{a_{n}\}$ is any sequence in $X$ such that $a_{n}\not\in V$

$(n=1,2, \cdots)$ for some $V\in U$ , then the set { $\sum_{i}a_{n\ell}:\{a_{n\ell}\}$ is a finite subsequence of
$\{a_{n}\}\}$ is not bounded.

For example, any $H^{*}$-algebra and the convolution algebra $l^{1}$ have $(G)-property$ .
Theorem 2. Under the hypotheses of Theorem 1 suppose $X$ has $(G)$-property,

then $\mu$ is s-bounded.

Proof. It is easy to show that $\mu$ is bounded. Since $X$ has $(G)$-property by

S. Ohba [14] Theorem 3 $\mu$ is s-bounded.

Let $\mathfrak{J}_{1}\times \mathfrak{J}_{2}$ be the $\sigma$-ring generated $R$ .
Corollary. Under the hypothesis of Theorem 2 $\mu$ has the countably additive

extension to $\mathfrak{J}_{1}\otimes \mathfrak{J}_{2}$ provided that $X$ be complete metric ring.

Proof. Since $\mu$ is s-bounded, the proof is obvious from G. Fox and $P$.
Morales [8] Theorem 2.11.
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3. In this section we shall consider the product of Banach-algebra-valued

measures.
For each $i=1,2$ let $\mathfrak{J}_{\ell}$ be a $\sigma$-ring of a set $S_{l},$ $X$ a Banach algebra and

$\mu;\mathfrak{J}_{\ell}\rightarrow X$ a vector measure.
For every set $F\in \mathfrak{J}_{2}$ put $\tilde{\mu}_{2}(F)=\sup$ { $||\mu_{2}(A)||:A\subset F,$ A $e\mathfrak{J}_{2}$ }. Then sup { $\tilde{\mu}_{2}(F)$ :

$ F\in \mathfrak{J}_{2}\}<\infty$ , because $\mu_{2}$ is s-bounded. It is well known that if $\{F_{n}\}$ is a decreasing

sequence in $\mathfrak{J}_{2}$ with $\cap F_{n}=\emptyset$ , then $\lim\tilde{\mu}_{2}(F_{n})=0$ holds (cf. Proposition 2).

For every set $E\in^{n=1}\mathfrak{J}_{1}$ we put $||\mu_{1}||(E)=\sup\#\rightarrow\infty\{||\sum_{\ell eI}\mu_{1}(E)x_{\ell}||\}$ , where the supremum
is taken for all the finite families $\{E_{\ell}\}_{\ell eI}$ of mutually disjoint sets of $\mathfrak{J}_{1}$ contained
in $E$ and for all the finite families $\{x_{\ell}\}_{l\in I}$ of elements of $Xsuch$ that $||x_{\ell}||\leqq 1$

for all $i\in I$.
Proposition 7. The following statements are equivalent.
(1) $\mu_{1}$ is D-continuous.
(2) $\mu_{1}$ has $(B)$-property.
(3) There exists a bounded, non-negative measure $\nu_{1}$ on $\mathfrak{J}_{1}$ such that

$\lim_{\nu_{1}(E)\rightarrow 0}||\mu_{1}||(E)=0$ .
(4) There exists a bounded, non-negative measure $\nu_{1}$ on $\mathfrak{J}_{1}$ such that

$\nu_{1}(E)\rightarrow 0$ if and only if $||\mu_{1}||(E)\rightarrow 0$ .
Proof. See M. Ducho\v{n} [6] Theorem 8 and Theorem 6.

Proposition 8. If $\mu_{1}$ is D-continuous, then $sup\{||\mu_{1}||(E):E\in \mathfrak{J}_{1}\}<\infty$ .
Proof. See M. Ducho\v{n} [6] Theorem 2.

Corollary. If $\mu_{1}$ is D-continuous, then $\mu_{1}$ is D-bounded.

Proof. It $i_{s}$ obvious.
For every set $K=\bigcup_{i=1}^{l}E_{\ell}\times F_{\ell}\in R$ put $\mu(K)=\sum_{\ell=1}^{\iota}\mu_{1}(E)\mu_{2}(F)$ . Then holds the

followings.

Theorem 3. If $\mu_{1}$ is D-continuous, then $\mu$ has the countable additive ex-
tension to $\mathfrak{J}_{1}\otimes \mathfrak{J}_{2}$

Proof. By Proposition 7 there exists a bounded, non-negative measure $\nu_{1}$ on
$\mathfrak{J}_{1}$ such that $\lim_{\nu_{1}(B)\rightarrow 0}||\mu_{1}(E)||=0$ . Since $\mu_{2}$ is s-bounded, there exists a bounded,
non-negative measure $\nu_{2}$ on $\mathfrak{J}_{2}$ such that $\lim_{\nu_{2}tF)\rightarrow 0}||\mu_{2}||(F)=0$. Let $\nu_{1}\times\nu_{2}$ be the
product measure of $\nu_{1}$ and $\nu_{2}$ . Then $\lim_{\nu_{1}\times\nu_{2}(K)\rightarrow 0}||\mu(K)||=0$ (see, for example, the
proof of I. Kluvanek [9] Theorem). Consequently by S. Ohba [13] Theorem 3 $\mu$

has the countable additive extension to $\mathfrak{J}_{1}\otimes \mathfrak{J}_{2}$ .
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