ON THE PRODUCT OF MEASURES

By

SACHIO OHBA

(Received January 19, 1976)

1. For each i=1, 2 let S_i be a set, \mathfrak{Z}_i a σ -ring of subsets of S_i, X a topological ring and $\mu_i: \mathfrak{I}_i \to X$ a measure. If μ is the function defined on the measurable rectangles $E \times F$, $E \in \mathfrak{Z}_1$, $F \in \mathfrak{Z}_2$, by $\mu(E \times F) = \mu_1(E)\mu_2(F)$, it is well known that μ is generally not countably additive on the ring generated by the measurable rectangles (R. M. Dudley [7] Proposition). In this paper we shall discuss the countable additivity of μ .

2. In this section we shall consider the product of topological ring-valued measures.

For each i=1, 2 let S_i be a set, \mathfrak{Z}_i a σ -ring of subsets of S_i , X a topological ring (that is, associative ring which is Hausdorff space such that the mappings $(a, b) \rightarrow a - b$ and $(a, b) \rightarrow ab$ are continuous functions of a and b) and \mathfrak{U} a base for neighborhoods of 0 in X, consisting of closed, symmetric sets. N denotes the set of all positive integers.

Definition 1. A set function $\mu_i: \mathfrak{I}_i \to X$ is called a measure if for every sequence $\{E_n\}$ of mutually disjoint sets of \mathfrak{I}_i holds $\mu_i(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu_i(E_i)$. For a set $V \subset X$ and $k \in N$ put $kV = \{\sum_{i=1}^{k} y_i : y_i \in V \ i = 1, 2, \cdots, k\}$.

Definition 2. A set $K \subset X$ is called bounded if for every V in \mathfrak{U} there exists a $k \in N$ such that $K \subset kV$.

A set function μ_i is called bounded if its range is a bounded set. Let $\mu_i: \mathfrak{I}_i \to X$ be a measure (i=1, 2).

Proposition 1. If singleton sets in X are bounded, then μ_i is bounded.

Proof. See T. Traynor [12] Theorem 3.2.1.

Example. Let X=N be the topological ring of all integers with the discrete topology. Then singleton set {1} is not bounded and hence the point measure $\mu_{(1)}$ is not bounded.

For a set $F \in \mathfrak{Z}_2$ put $\mu_2((F)) = \{\mu_2(F'): F' \in \mathfrak{Z}_2, F' \subset F\}$.

Proposition 2. If $\{F_n\}$ is a decreasing sequence in \Im_2 with $\bigcap_{n=1}^{\infty} F_n = \phi$, then for every V in \mathfrak{l} there exists an $n \in N$ such that $\mu_2((F_n)) \subset V$.

SACHIO OHBA

Proof. See M. Takahashi [11] Proposition 3.

For a set $A \in \mathfrak{J}_1$ and a set $B \subset X$ put $\mu_1((A))B = \{\sum_{i=1}^n \mu_i(A \cap A_i)b_i: A_i \in \mathfrak{J}_1 \text{ and } b_i \in B(i=1, 2, \dots, n) \text{ and } A_i \cap A_j = \emptyset \ (i \neq j), n \in N\}.$

Definition 3. μ_1 is called Daniell continuous (*D*-continuous) if for every decreasing sequence $\{E_n\}$ in \mathfrak{I}_1 with $\bigcap_{n=1}^{\infty} E_n = \emptyset$, every V in \mathfrak{U} and every bounded set $B \subset X$ there exists a $k \in N$ such that $\mu_1((E_k))B \subset V$.

Proposition 3. If μ_1 is D-continuous, then for every sequence $\{E_n\}$ of mutually disjoint sets in \mathfrak{I}_i , every bounded set $B \subset X$ and every V in \mathfrak{U} there exists a $k \in N$ such that $\mu_1((E_n))B \subset V$ for all $n \geq k$.

Proof. For every $n \in N$ put $E'_n = \bigcup_{k=n}^{\infty} E_k$. Then $\{E'_n\}$ is a decreasing sequence with $\bigcap_{n=1}^{\infty} E'_n = \emptyset$. Since μ_1 is *D*-continuous, there exists a $k \in N$ such that $\mu_1((E_k))B \subset V$. Since $E_n \subset E'_k$ for all $n \ge k$, we have $\mu_1((E_n))B \subset V$ for all $n \ge k$.

Corollary. If μ_1 is D-continuous, then for every monotone sequence $\{E_n\}$ in \mathfrak{Z}_1 , every bounded set $B \subset X$ and every $V \in \mathfrak{U}$ there exists a $k \in N$ such that $\mu_1((E_m \triangle E_n))B \subset V$ holds for every $m, n \in N$ $(m, n \ge k)$.

Proof. It is obvious.

Let X be a metric ring with the metric $||\cdot||$. For every set $E \in \mathfrak{Z}_1$ put $||\mu_1||(E) = \sup\{|\sum_{i \in I} \mu_1(E_i)x_i||$, where the supremum is taken for all finite families $\{E_i\}_{i \in I}$ of mutually disjoint sets of \mathfrak{Z}_1 contained in E and for all the finite families $\{x_i\}_{i \in I}$ of elements of X such that $||x_i|| \leq 1$ for all $i \in I$. Then $||\mu_1||$ is a monotone and σ -subadditive set function on \mathfrak{Z}_1 . We say that μ_1 has Bartle property ((B)-property) if for every decreasing sequence $\{E_n\}$ in \mathfrak{Z}_1 with $\bigcap_{n=1}^{\infty} E_n = \emptyset$ holds $\lim ||\mu_1|| (E_n) = 0$.

Proposition 4. If X is a metric ring and if μ_1 has (B)-property, then μ_1 is D-continuous.

Proof. Since $V = \{x: ||x|| \le 1\}$ is a neighborhood of 0 in X, there exists a $k \in N$ such that $B \subset kV$. For every $\varepsilon > 0$ there exists an $n \in N$ such that $||\mu_1||(E_n) < \varepsilon/k$. Let $\{E_{ni}\}_{i \in I}$ be any finite family of mutually disjoint sets in \mathfrak{I}_1 contained in E_n and $\{b_i\}_{i \in I}$ any finite family of elements of B. Since $b_i = \sum_{j=1}^k x_{ij}, x_{ij} \in V \ (i \in I, j=1, 2, \cdots, k),$ holds $||\sum_{i \in I} \mu_1(E_{ni})b_i|| \le \sum_{j=1}^k ||\sum_{i \in I} \mu_1(E_{ni})x_{ij}|| \le k ||\mu_1||(E_n) < \varepsilon.$

Corollary. If X is a normed ring, then the D-continuity implies (B)-property.

36

Proof. Since $B \subset X$ is a bounded set, $\sup \{||x||: x \in B\} < \infty$ (see S. Berberian [2] Lemma (26.3)). The proof follows.

Proposition 5. If X is a metric ring, then the following statements are equivalent.

(1) μ_1 has (B)-property.

(2) $||\mu_1||$ is s-bounded, that is, if $E_i \cap E_j = \emptyset$ $(i \neq j)$, then $\lim ||\mu_1||(E_n) = 0$.

(3) For every monotone sequence $\{E_n\}$ in \mathfrak{Z}_1 follows $\lim_{m \to \infty} ||\mu_1|| (E_m \triangle E_n) = 0$.

Proof. See L. Drewnowski [4] Theorem 5.3.

Definition 4. μ_1 is called *D*-bounded if for every $E \in \mathfrak{Z}_1$ and every $V \in \mathfrak{U}$ there exists a $W \in \mathfrak{U}$ such that $\mu_1((E)) W \subset V$.

Proposition 6. If μ_1 is D-bounded, then for every $E \in \mathfrak{Z}_1$ and every bounded set $B \subset X \ \mu_1((E))B$ is bounded.

Proof. By the hypotheses for every $V \in \mathbb{I}$ there exists a $W \in \mathbb{I}$ such that $\mu_1((E)) W \subset V$. Since B is bounded, there exists a $k \in N$ such that $B \subset kW$. For every $E_i \in \mathfrak{Z}_1$ and every $b_i \in B$ $i=1, 2, \dots, n$ and $E_i \cap E_j = \emptyset$ $(i \neq j)$ holds $\sum_{i=1}^{n} \mu_1(E_i) b_i = \sum_{j=1}^{n} \mu_1(E_j) \sum_{j=1}^{k} b_{ij} = \sum_{j=1}^{k} \sum_{i=1}^{n} \mu_1(E_i) b_{ij} \subset kV$, as $b_i = \sum_{j=1}^{k} b_{ij}$, $b_{ij} \in W$, $i=1, 2, \dots, n$, $j=1, 2, \dots, k$. Hence $\mu_1((E))B$ is bounded.

Let R be the ring generated by the measurable rectangles $\{E \times F : E \in \mathfrak{Z}_1, F \in \mathfrak{Z}_2\}$. Then it is well known that

(1) R coincides with the class of all finite disjoint unions $K = \bigcup_{i=1}^{n} E_i \times F_i$, where $E_i \in \mathfrak{Z}_1$ and $F_i \in \mathfrak{Z}_2$ $(i=1, 2, \dots, n)$.

(2) for every set $K = \bigcup_{i=1}^{n} E_i \times F_i \in R$ there exist two families $\{E_1, E_2, \dots, E_n\}$ $(E_i \in \mathfrak{I}_1)$ and $\{F_1, F_2, \dots, F_n\}(F_i \in \mathfrak{I}_2)$ of sets with $E_i \cap E_j = \emptyset(i \neq j)$.

(3) for every decreasing sequence $\{K_n\}(K_n = \bigcup_{i=1}^{k_n} E_{ni} \times F_{ni})$ in R and every $n \in N$ there exist $E_{ni} \in \mathfrak{I}_1$ and $F_{ni} \in \mathfrak{I}_2$ such that $E_{ni} \cap E_{nj} = \emptyset(i \neq j)$ and any each E_{ni} is contained in some $E_{n-1,k}$.

Lemma. Let $\{K_n\}$ be a decreasing sequence in R. For some $W \in \mathbb{1}$ put $J_n = \{j_n: \text{ for some set } F \in \mathfrak{Z}_2 \text{ with } F \subset F_{nj_n} \text{ holds } \mu_2(F) \notin W\}$ and $E'_n = \bigcup_{j_n \in J_n} E_{nj_n}$ $(n=1, 2, \cdots)$. Then $\{E'_n\}$ is a decreasing sequence in \mathfrak{Z}_1 .

Proof. Let $E_{nj_n} \times F_{nj_n}$ be any measurable rectangle with $j_n \in J_n$. Since $E_{nj_n} \times F_{nj_n} \subset K_n \subset K_{n-1} = \bigcup E_{n-1,i} \times F_{n-1,i}$, there exists a $k \in N$ such that $E_{nj_n} \times F_{nj_n} \subset E_{n-1,k} \times F_{n-1,k}$. Hence $F_{nj_n} \subset F_{n-1,k}$ and $k \in J_{n-1}$ and consequently $E_{nj_n} \subset E_{n-1,k} \subset E'_{n-1}$.

For every set $K = \bigcup_{i=1}^{n} E_i \times F_i \in R$ ($\{E_i \times F_i\}$ is mutually disjoint) we put $\mu(K) =$

SACHIO OHBA

 $\sum_{i=1}^{n} \mu_1(E_i) \mu_2(F_i).$ Then $\mu(K)$ is well defined and $\mu: R \to X$ is finitely additive.

Theorem 1. Let X be a topological ring such that singleton sets in X are bounded. If μ_1 has the following properties (1) and (2), then μ is countably additive on R.

(1) μ_1 is D-continuous.

(2) μ_1 is D-bounded.

Proof. We shall prove that if $\{K_n\}(K_n=\bigcup_{i=1}^{k_n} E_{ni} \times F_{ni})$ is a decreasing sequence in R such that $\mu(K_n) \notin V(n=1,2,\cdots)$ for some $V \in \mathbb{I}$, then holds $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$, Let $V_i \in \mathbb{I}$ be a neighborhood of 0 in X such that $V_1+V_i \subset V$ and let $W \in \mathbb{I}$ be a neighborhood which satisfies the condition (2) for V_1 . Put $J_n=\{j_n:$ for some $F \in \mathbb{S}_2$ with $F \subset F_{nj_n}$ holds $\mu_2(F) \notin W$, $J'_n=\{$ other $j_n's\}$ for all $n \in N$ and $E'_n=\bigcup_{j_n \in J_n} E_{nj_n}$. Then $\{E'_n\}$ is a decreasing sequence. We shall show that $\bigcap_{n=1}^{\infty} E'_n \neq \emptyset$. If it were false, then there would exist an $n \in N$ such that $\mu_1((E_n))B \subset V$, B being the range of μ_2 . Since in the equality $\mu(K_n)=\sum_{j_n \in J_n} \mu_1(E_{nj_n})+\sum_{j_n \in J'_n} \mu_1(E_{nj_n})\mu_2(F_{nj_n})$ holds $\sum_{j_n \in J_n} \mu_1(E_{nj_n})\mu_2(F_{nj_n}) \in V_1$ and $\mu_2(F_{nj_n}) \in W$ for all $j_n \in J'_n$, holds $\mu(K_n) \in$ $V_1+V_1 \subset V$, which is a contradiction. Consequently there exists a point $x_0 \in S_1$ such that $x_0 \in \bigcap_{n=1}^{\infty} E'_n$. Let j_n be positive integer with $x_0 \in E_{nj_n}$. Since $\{K_n\}$ is decreasing, $\{E_{nj_n}\}$ also is decreasing. We shall show that $\bigcap_{n=1}^{\infty} F_{nj_n} \neq \emptyset$. If it were false, then by Proposition 2 there would exist an $n \in N$ such that $\mu_2((F_n)) \subset W$ and hence $j_n \notin J_n$, which is a contradiction. Let y_0 be a point in S_2 with $y_0 \in \bigcap_{n=1}^{\infty} F_{nj_n}$, Then we have $(x_0, y_0) \in K_n$ for all n. The proof is complete.

We say that X has (G)-property if $\{a_n\}$ is any sequence in X such that $a_n \notin V$ $(n=1,2,\cdots)$ for some $V \in \mathbb{I}$, then the set $\{\sum_i a_{ni}: \{a_{ni}\}\}$ is a finite subsequence of $\{a_n\}$ is not bounded.

For example, any H^* -algebra and the convolution algebra l^1 have (G)-property.

Theorem 2. Under the hypotheses of Theorem 1 suppose X has (G)-property, then μ is s-bounded.

Proof. It is easy to show that μ is bounded. Since X has (G)-property by S. Ohba [14] Theorem 3 μ is s-bounded.

Let $\mathfrak{Z}_1 \times \mathfrak{Z}_2$ be the σ -ring generated R.

Corollary. Under the hypothesis of Theorem 2 μ has the countably additive extension to $\mathfrak{I}_1 \otimes \mathfrak{I}_2$ provided that X be complete metric ring.

Proof. Since μ is s-bounded, the proof is obvious from G. Fox and P. Morales [8] Theorem 2.11.

38

3. In this section we shall consider the product of Banach-algebra-valued measures.

For each i=1,2 let \Im_i be a σ -ring of a set S_i , X a Banach algebra and $\mu_i: \Im_i \to X$ a vector measure.

For every set $F \in \mathfrak{Z}_2$ put $\tilde{\mu}_2(F) = \sup \{ ||\mu_2(A)|| : A \subset F, A \in \mathfrak{Z}_2 \}$. Then $\sup \{ \tilde{\mu}_2(F) : F \in \mathfrak{Z}_2 \} < \infty$, because μ_2 is s-bounded. It is well known that if $\{F_n\}$ is a decreasing sequence in \mathfrak{Z}_2 with $\bigcap_{n=1}^{\infty} F_n = \emptyset$, then $\lim_{n \to \infty} \tilde{\mu}_2(F_n) = 0$ holds (cf. Proposition 2). For every set $E \in \mathfrak{Z}_1$ we put $||\mu_1||(E) = \sup \{ ||\sum_{i \in I} \mu_1(E_i) x_i|| \}$, where the supremum

For every set $E \in \mathfrak{J}_1$ we put $||\mu_1||(E) = \sup \{||\sum_{i \in I} \mu_1(E_i)x_i||\}$, where the supremum is taken for all the finite families $\{E_i\}_{i \in I}$ of mutually disjoint sets of \mathfrak{J}_1 contained in E and for all the finite families $\{x_i\}_{i \in I}$ of elements of X such that $||x_i|| \leq 1$ for all $i \in I$.

Proposition 7. The following statements are equivalent.

(1) μ_1 is *D*-continuous.

(2) μ_1 has (B)-property.

(3) There exists a bounded, non-negative measure ν_1 on \mathfrak{Z}_1 such that $\lim_{u \in E \to 0} ||\mu_1||(E)=0.$

(4) There exists a bounded, non-negative measure ν_1 on \mathfrak{Z}_1 such that $\nu_1(E) \rightarrow 0$ if and only if $||\mu_1||(E) \rightarrow 0$.

Proof. See *M. Duchoň* [6] Theorem 8 and Theorem 6.

Proposition 8. If μ_1 is D-continuous, then $\sup \{||\mu_1||(E): E \in \mathfrak{J}_1\} < \infty$.

Proof. See *M. Duchoň* [6] Theorem 2.

Corollary. If μ_1 is D-continuous, then μ_1 is D-bounded.

Proof. It is obvious.

For every set $K = \bigcup_{i=1}^{n} E_i \times F_i \in R$ put $\mu(K) = \sum_{i=1}^{n} \mu_1(E_i) \mu_2(F_i)$. Then holds the followings.

Theorem 3. If μ_1 is D-continuous, then μ has the countable additive extension to $\mathfrak{I}_1 \otimes \mathfrak{I}_2$

Proof. By Proposition 7 there exists a bounded, non-negative measure ν_1 on \mathfrak{I}_1 such that $\lim_{\nu_1(E)\to 0} ||\mu_1(E)||=0$. Since μ_2 is s-bounded, there exists a bounded, non-negative measure ν_2 on \mathfrak{I}_2 such that $\lim_{\nu_2(F)\to 0} ||\mu_2||(F)=0$. Let $\nu_1 \times \nu_2$ be the product measure of ν_1 and ν_2 . Then $\lim_{\nu_1 \times \nu_2(K)\to 0} ||\mu(K)||=0$ (see, for example, the proof of *I. Kluvanek* [9] Theorem). Consequently by *S. Ohba* [13] Theorem 3 μ has the countable additive extension to $\mathfrak{I}_1 \otimes \mathfrak{I}_2$.

SACHIO OHBA

Acknowledgement

I would like to express may thanks to Professor *M. Takahashi* for his help and kind encouragement. Also, I would like thank Professor *I. Kluvánek* for his helpful comment.

REFERENCES

- [1] R. G. Bartle: A general bilinear vector integral, Studia Math. 15 (1956), 337-352.
- [2] S. K. Berberian: Lectures in Functional Analysis and Operator Theory, Springer-Verlag, New York, 1973.
- [3] W. M. Bogdanowicz and R. A. Oberle: Topological rings of sets generated by Rickart families of contents (Preprint).
- [4] L. Drewnowski: Topological rings of sets, continuous set functions, integration, I, II, III, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom et Phys. 20 (1972), 269-276, 277-286, 439-445.
- [5] M. Duchon: A convolution algebra of vector valued measures on a compact Abelian group, Revue Roumaine Math. Pures et Appl. 16 (1971), 1467-1476.
- [6] M. Duchon: A dominancy of vector valued measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom et Phys. 19 (1971), 1085-1091.
- [7] R. M. Dudley: A note on products of spectral measures, Vector and Operator Valued Measures and Applications, Academic Press, New York, 1973, 125-126.
- [8] G. Fox and P. Morales: Strongly additive functions on lattices, Fund. Math. 78 (1973), 99-106.
- [9] I. Kluvanek: On the product of vector measures, J. Austral. Math. Soc. 15 (1973), 22-26.
- [10] R. A. Oberle: Theory of a vector measures on topological rings of sets and generalizations of the Vitali-Hahn-Saks theorem, Thesis, The Catholic University of America, 1971.
- [11] M. Takahashi: Bounded variation property of a measure, Proc. Japan Acad. 49 (1973), 605-608.
- [12] T. Traynor: S-bounded additive set functions, Vector and Operator Valued Measures and Applications, Academic Press, New York, 1973, 355-365.
- [13] S. Ohba: Extensions of vector measures, Yokohama Math. J. 21 (1973), 61-66.
- [14] S. Ohba: Topological-group-valued measures, Yokohama Math. J. 22 (1974), 101-104.

Kanagawa University Rokkaku-bashi, Kanagawa-ku Yokohama, Japan

40