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1. For each i=1, 2 let S; be a set, J; a o-ring of subsets of S;, X a topologi-
cal ring and g J;,—X a measure. If g is the function defined on the measurable
rectangles EXF, Ec J,;, Fe 3., by p(EXF)=p,(E)p(F), it is well known that p
is generally not countably additive on the ring generated by the measurable
rectangles (R. M. Dudley [7] Proposition). In this paper we shall discuss the
countable additivity of .

2. In this section we shall consider the product of topological ring-valued
measures.

For each t=1,2 let S; be a set, J; a o-ring of subsets of S;, X a topological
ring (that is, associative ring which is Hausdorff space such that the mappings
(a,b)—>a—b and (a, b)—ab are continuous functions of a and b) and 11 a base for
neighborhoods of 0 in X, consisting of closed, symmetric sets. N denotes the
set of all positive integers.

Definition 1. A set function y;: J,—>X is called a measure if for every se-
quence {E,} of mutually disjoint sets of 3‘; holds m( U E’,,)- Z v EY).
For a set Vc X and ke N put kV_{Z Y Y € V ’b 1, 2 -, k}.

Definition 2. A set KC X is called bounded if for every V in 1 there exists

a ke N such that KckV.
A set function g, is called bounded if its range is a bounded set. Let g J,—X
be a measure (z=1, 2).

Proposition 1. If singleton sets in X are bounded, then p, is bounded.
Proof. See T. Traynor Theorem 3.2.1.

Example. Let X=N be the topological ring of all integers with the discrete
topology. Then singleton set {1} is not bounded and hence the pomt measure g,
is not bounded.

For a set F e J; put t((F))={p(F"): F'€ I, F'C F}.
Proposition 2. If {F,} i3 a decreasing sequence in I, with r°le,.=¢, then
Sfor every V in U there exists an ne N such that p((F,)C V.
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Proof. See M. Takahasht [11] Proposition 3.
For a set A€3; and a set BC X put ,u1((A))B={t§1 m(ANA)b: AeJ; and
b€ Bi=1,2,--+,n) and A;NA;=@ (1+J), n€ N}

Definition 8. 2, is called Daniell continuous (D-continuous) if for every
decreasing sequence {E,} in J; with 01 E.,=@, every V in I and every bounded
gset BC X there exists a k€ N such that ¢, ((Ey))BcC V.

Proposition 3. If p, 18 D-continuous, then for every sequence {E,} of
mutually disjoint sets in J., every bounded set BC X and every V im W there
exists a ke N such that w,(E,)BCV for all n=k.

Proof For every n€ N put E,= U E,.. Then {FE,} is a decreasing sequence
with ﬂ E’ @. Since p, is D-contmuous, there exists a k€N such that
ﬂl((Ek))BC V. Since E,C E, for all n=k, we have i, ((E,))BCV for all n=k.

Corollary. If wu is D-continuous, then for every monotone sequence {E,}
in 31, every bounded set BC X and every Vel there exists a ke N such that
t(EnAE,))BCV holds for every m,ne N (m,n=k).

Proof. It is obvious.

Let X be a metric ring with the metric ||-||. For every set E€JJ; put
ll#1l|(E)=SuP{||§I ti(E)xl, where the supremum is taken for all finite families
{E};c: of mutually disjoint sets of J; contained in E and for all the finite families
{x}ier of elements of X such that ||z||<1 for all t€I. Then ||zl| is a monotone
and o-subadditive set function on J;. We say that g, has Bartle property ((B)-
property) if for every decreasing sequence {E,} in J; with ”Fi E.,=@ holds
}'i_lgllmll(E..)':O-

Proposition 4. If X is a metric ring and if p, has (B)-property, then
t8 D-continuous.

Proof. Since V={x: ||x|| =<1} is a neighborhood of 0 in X, there exists a k€ N
such that BckV. For every ¢>0 there exists an n€ N such that ||x||(E,)<e/k.
Let {E,:e: be any finite family of mutually disjoint sets in J; contained in E, and
{b}ier any finite family of elements of B. Since b,,— 2 2, 05€ Vel 3=1,2,---, k),

holds ”Z t1(En )b, “SE “ Z #1(Eﬁ)$n||sk ”le”(En)<€

Corollary. If X i3 a mormed ring, then the D-continuity implies (B)-
property.
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Proof. Since Bc X is a bounded set, sup {||z]l: € B}<co (see S. Berberian
[2] Lemma (26.3)). The proof follows.

Proposition 5. If X 18 a metric ring, then the following statements are
equivalent.

(1) g has (B)-property.

(2) llgll 28 s-bounded, that s, +f E.NE;=@ (1+]), then ,l,ii&””i”(E")Z("

(3) For every monotone sequence {E,} in I, follows mlil_l.lm e [(EnAEL)=0.

Proof. See L. Drewnowskt [4] Theorem 5.3.

Definition 4. p, is called D-bounded if for every E€3, and every Vell
there exists a Well such that x,((E))WcV.

Proposition 6. If p, 18 D-bounded, then for every Ec 3, and every bounded
set Bc X p,((E))B 18 bounded.

Proof. By the hypotheses for every Vell there exists a Well such that
w((E)WcV. Sinece B is bounded, there exists a k€ N such that BckW. For
every E"GS1 and every b,e B =1,2,---,m and EJ]E @ (+#37) holds
Z #I(E'.:)?h—Z (B Z bu-—Z Z 1 (E)b;iCkV, as b;—Z‘ bi, bije W, 1=1,2,--,m,
.7 1 2, Ic Hence pl((E))B 1s bounded.

Let R be the ring generated by the measurable rectangles {EXF: EeS,,
Fe3,}. Then it is well known that

(1) R coincides with the class of all finite disjoint unions K =£J1 E;X F,;, where
E.€3J, and F;ec J:(1=1,2, - -+, n).

(2) for every set K~CJ E‘XF,eR there exist two families {E,, E,, ---, E,}
(E,eJ,) and {F, F,, - ,,}(F¢€32) of sets Wlth E‘ﬂE D(E+£).

(8) for every decreasmg sequence {K }(K,= U E. XF,)in R and every ne N
there exist F,;€ 3, and F,;€ 3; such that E mE i=@@+#J) and any each E,,is
contained in some E,_, ;.

Lemma. Let {K,} be a decreasing sequence in R. For some Wel put
Jo={Jn: for some set FeJ, with FCF,; holds p(F)g W} and E,= U E.;,

in€dy

(n=1,2,---). Then {E,} is a decreasing sequence in 3,.

Proof. Let E,; XF,;, be any measurable rectangle with j,€J,. Since
E.;j XF,;,cK,cK, ,=UFE,_,;XF,_,,, there exists a k€ N such that E.; X F,;.C

E"dl }_th’ X F,. =1,k Hence Fo;,CF,. . xand k€ J,_, and consequently E,; CE,_,.CE,_,
an

For every set K= iQIE',XF,GR ({E;X F;} is mutually disjoint) we put u(K)=
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”

2 u(E)pa(F. Then w(K) is well defined and x: R—X is finitely additive.
" Theorem 1. Let X be a topological ring such that singleton sets in X are
bounded. If p, has the following properties (1) and (2), then p i8 countably
additive on R.

(1) p, 8 D-continuous.

(2) p 18 D-bounded.

Proof. We shall prove that if {K ,}(K,= U E. xXF,) is a decreasmg sequence
in R such that x(K,) ¢ V(n=1,2,---) for some Vell, then holds N K.#+3, Let

V,ell be a neighborhood of 0 in X such that V,+V,cV and ’I‘eé Wel be a
neighborhood which satisfies the condition (2) for V,. Put J,={.: for some Fel,
with FC F,;, holds p(F)¢ W}, J,={other j.’s} for all neN and E,= LEJJ E.;,.
Then {E,} is a decreasing sequence. We shall show that ﬂ E' +3. ij 1t” were
false, then there would exist an n € N such that /.tl((En))Bc V B being the range
of p,. Since in the equality #(K,.)— 2 ﬂl(E’,.,,.)#z(F,.;,.H % #1(E,.;,.)yz(F,.;,.
holds Z (B ) pe(Faj,) €V, and yz(F,,,n) eW for all ,7,.eJ",,, "holds u(K,)e
V.+ V”C v, wh1ch is a contradiction. Consequently there exists a point xz,€ S,
such that x,¢€ ﬂ E” Let j. be positive integer with wer’M” Since {K,} is
decreasing, {E,.,,,} also is decreasmg We shall show that ﬂ F,.,,,:#@ If it were
false, then by [Proposition 2 there would exist an ne N such that p((Fo)C ] W and
hence j, ¢ J,, which is a contradiction. Let y, be a point in S, with y,€ ﬂ F,.,,‘,
Then we have (%, %) € K, for all n. The proof is complete.

We say that X has (G)-property if {a,} is any sequence in X such that a,¢ V'
(n=1,2, ---) for some Vell, then the set {??} @i {0, is & finite subsequence of
{a.}} is not bounded.

For example, any H*-algebra and the convolution algebra I' have (G)-property.

Theorem 2. Under the hypotheses of Theorem 1 suppose X has (G)-property,
then p is s-bounded.

Proof. It is easy to show that g is bounded. Since X has (G)-property by
S. Ohba ¢ is s-bounded.

Let 3, X 3. be the o-ring generated E.

Corollary. Under the hypothesis of Theorem 2 u has the countably additive
extension to 3,QJ. provided that X be complete metric ring.

Proof. Since x is s-bounded, the proof is obvious from G. Fox and P.
Morales [8] Theorem 2.11.
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3. In this section we shall consider the product of Banach-algebra-valued
measures.

For each 7=1,2 let 3‘ be a o-ring of a set S;, X a Banach algebra and
v J—X a vector measure.

For every set F €3, put &, (F)=sup {||p(A)|l: ACF, AeJ;}. Then sup {#(F):
Fe J,}<co, because te is s-bounded. It is well known that if {F,.} isa decreasing
sequence in J, with ﬂ F,=@, then IEE Fs(F)=0 holds (cf. Proposition 2

For every set E € 31 we put || ylll(lg’) =gsup {HZ ()21}, where the supremum
is taken for all the finite families {E};.; of mutually disjoint sets of I, contained
in E and for all the finite families {x;};c; of elements of X such that ||z,||<1
for all 7¢e 1.

Proposition 7. The following statements are equivalent.

(1) p, v8 D-continuous.

(2) p, has (B)-property.

(3) There exists a bounded, mon-negative measure v, on 3, such that
lim [z |1(&)=0.

v1(E)—0
(4) There exists a bounded, non-negative measure v, on I, such that

v,(E)—0 of and only +f |lp||(E)—0.
Proof. See M. Duchon Theorem 8 and Theorem 6.
Proposition 8. If p, 48 D-continuous, then sup{||p.||(E): E€ J,}<oo.
Proof. See M. Duchon
Corollary. If p, is D-continuous, then p, 18 D-bounded.

Proof. It is obvious.

For every set K=£JlE¢><F,eR put p(K)=§.'l t(E)p(Fy). Then holds the
followings.

Theorem 3. If p, 18 D-continuous, then p has the countable additive ex-
tension to 3,0,

Proof. By there exists a bounded, non-negative measure v, on
3, such that hl(iEn)l_‘o | ;zl(E)||=0. Since p. is s-bounded, there exists a bounded,
non-negative measure v, on I, such that hm [l |(F)=0. Let v,Xv, be the
product measure of v, and v,. Then hm lIy(K)ll=0 (see, for example, the
proof of I. Kluvanek [9] Theorem). Cgﬁsequently by S. Ohba u
has the countable additive extension to J,®3;.
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