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1. Introduction

By differentiability, we shall mean that of class C*. In this paper, M will
denote an n-dimensional connected differentiable manifold. The connectedness
assumption on M implies that any two of its points can be joined by a sectionally
smooth curve. All functions, tensor fields, ete., are assumed to be differentiable.
All indices, both Latin and Greek, have range 1,2, :---,n. Summation over re-
peated indices, unless stated otherwise, is implied.

Let I' be a linear connection on M. The covariant derivative with respect
to I' of a tensor S is denoted by FS. In a coordinate neighbourhood U with
coordinate functions u!, covariant differentiation and partial differentiation are
denoted by a comma and a dot respectively. Thus if S has components Si’ in
(U, u*), 7S has components

lf:{lz zjl_{_F;mS;‘nI_FF{MSim_P{;‘LS:’Lj ’

where I'j, are the connection coefficients. The components of the curvature tensor
R and the torsion tensor T of I" in (U, u') are given respectively by

— i
Riw=T{j— Tyt i I'—TH T
Th=I3—T}, .

A tensor S on M is said to be recurrent with respect to I" if S#0 (i.e., not
everywhere zero) and FS=¢®S for some covector £, We call & the recurrence
covector of S. If £¢=0, we say that S is covariantly constant. It can be proved
that if S#0 satisfies /S=¢®S, then S+0 (i,e., nowhere zero). Thus, a recurrent
tensor is nowhere zero. Recurrent tensors on a manifold with a linear connection
has been considered in great detail in Wong [9] and [10]. On the other hand,
Riemannian connection with recurrent curvature on a pseudo-Riemannian manifold
has been studied by Walker in where he proved the following

Theorem. Let I' be the Riemannian connection of a pseudo-Riemannian
manifold. If the curvature temsor of I' is recurremt, them its recurrence
covector 18 locally a gradient.
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In this paper, we shall prove a number of results concerning recurrent tensors
on a pseudo-Riemannian manifold M that are closely related to the above theorem.
In §2, we shall briefly review the theory of connection on a principal fibre bundle
and state some results of Wong on recurrent tensors that are needed later. In
§8, we first consider recurrent temsors which are co-directional with covariantly
constant tensors. Then, we express the condition for the recurrence covector of
a recurrent tensor on M to be globally a gradient in terms of the bundle L(M)
of linear frames in M. In §4, we develop some results on the bundle O(M)
of orthonormal frames that are useful in the study of recurrent tensors on a
pseudo-Riemannian manifold, and obtain a characterization of recurrent tensors
in terms of O(M). In §5, we define the norm of tensors on M, and show that
a recurrent tensor on M is either everywhere null or everywhere non-null. In
§6, we prove that the recurrence covector of a non-null recurrent tensor is
globally a gradient, and obtain a geometric interpretation of the recurrence
covector in terms of the norm of the recurrent tensor.

The author wishes to express his sincere thanks to Professor Yung-Chow Wong
who read through the manuscript and suggested a number of improvements.

2. Connection on a fibre bundle

In this section, we shall briefly review the theory of connections on & princi-
pal fibre bundle. We shall also state some results of Wong on recurrent tensors
that are needed later. All the results are well known, and can be found in [3]
and [9].

A frame z(u) at u€ M is a basis (X, -+, X,) of the tangent space T, (M) at
u. Let L(M) be the collection of all frames at all points of M. The map =#:
L(M)—M defined by z(u)—u is called the natural projection. Each coordinate
system (U, in M induces a coordinate system in L(M) as follows. Since the
vector X, of the frame 2z(u) ez }(U) can be uniquely expressed as X,=X%(9/0u?),
{z~(U), (u*, X.)} is a coordinate system in L(M). In this way, L(M) becomes
an (n-+n?)-dimensional differentiable manifold. We shall use [X¢] to denote the
inverse of the nXmn matrix [X]. The general linear group GL(n, R) acts on L(M)
to the right in the sense that A=[A%.]€ GL(n, R) takes the frame z=(X,) to the
frame zA=(X,A2.) and we call such an action on L(M) a right translation. Then
L(M) is a principal fibre bundle over M with GL(n, R) as the structure group.
We call it the bundle of linear frames over M.

Let I' be a linear connection on M and I}, the connection coefficients. Put
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ri=Ii{du’. Then the local 1-forms

=Xsdut ,
wi=XdXL+Xri X,

piece together to form m+mn® global 1-forms on L(M). These n-+n® 1-forms are
everywhere linearly independent. Furthermore, the equations #*=0 (resp. wi=0)
define a field of n2-planes (resp. n-planes) on L(M), which we call the field of
vertical (resp. horizontal) planes on L(M). The field of horizontal planes is in-
variant under the right translations. The field of vertical planes is completely
determined by the differential structure of M alone, whereas the field of hori-
zontal planes is determined by, and also determines, the linear connection on M.

The determination of a linear connection on M by assigning to L(M) a field
of horizontal planes invariant under the right translations can be generalized to
other principal fibre bundles. In §4, we shall consider connections on the bundle
of orthonormal frames. For the moment, we state the following

Theorem 2.1. ([3, p. 79]) Let f: B'(M’,G’)—B(M, G) be a homomorphism of
principal fibre bundles with corresponding homomorphism f:G’'—G and in-
duced diffeomorphism f: M'->M. If I' is any connection on B'(M’,G’), then
there exists a unique connection I’ on B(M, G) such that the horizontal planes
of I'" are mapped by f into horizontal planes of I.

We now state some notions and results required in the characterization of
recurrent tensors by L(M). In what follows, theorems will usually be stated
and proved for a tensor of type (2,1) although they are also true for tensors of
arbitrary type.

Theorem 2.2. (Chern [1, p. 78], Wong [9, p. 330)) To a tensor S of type
(2,1) on M, there corresponds a set of n® functions S8 on L(M) such that
Jor any ze L(M) and any AecGL(n, R),

S5 (24)=S25(2) AT AL AL

where A=[A}.] and A-'=[A%']. Conversely, to any such set of n® Sfunctions
on L(M), there corresponds a tensor of type (2,1) on M. This correspondence
18 one-to-ome.

If {=Y(U), (u*, X1.)} i8 the local coordinate system in L(M) induced by the
local coordinate system (U, w) in M, and Si’ are the components in (U, u¥) of
the tensor S, then the above correspondence is defined locally by
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SP=Sy X XEX% .

From now on, we shall refer to S¢f as the functions on L(M) corresponding
to the tensor S on M.

When a linear connection on M (or equivalently, a connection in L(M)) is
given, we can define the concept of a holonomy bundle as follows. A curve z(f)
in L(M) is called horizontal if all its velocity vectors lie in the horizontal
planes. It can be proved that 2z(t) is horizontal iff z(¢), regarded as a field of
frames along the curve zz(t) in M, is a parallel field of frames. For two points
2, 2€ L(M), we shall write z,~2z if they can be joined by a (piecewise differenti-
able) horizontal curve. Then ~ is an equivalence relation in L(M) and we denote
the equivalence class containing 2z, by Bl[z,]. It can be proved that B[z,] is a
regular submanifold and a reduced bundle of L(M). We shall call it the holonomy
bundle through z,. The following results are well-known.

Theorem 2.3. (Wong [9, p. 836]) Let I' be a linear conmection and S a
tensor on M. If S is recurrent with respect to I', then the restrictions of
its corresponding functions to any Bz,] of L(M) have mo common zero and
are proportitonal to a set of comstants. Conversely, if this condition is satis-
fied on any B[z,], then S is recurrent.

Theorem 2.4. (Wong [9, p. 838]) Let I' be a linear conmection and S a
tensor on M. If S is covariantly constant with respect to I, then the restric-
tions of its corresponding functions to any Blz,] of L(M) are constants, not
all zero. Conwversely, if this comdition 1is satisfied on any B[z, then S 18
covariantly constant. )

Before leaving this section, we wish to remark that concepts such as hori-
zontal curves and holonomy bundles for a connection on L(M) can similarly be
defined for a connection on any principal fibre bundle.

3. The recurrence covector

In this section, we first consider a class of recurrent tensors which bears a
special relationship to the covariantly constant tensors. Then, we formulate the
condition for the recurrence covector to be globally a gradient in terms of the
bundle of linear frames.

Two tensor fields S and T on M are said to be co-directional if there exists

-a nowhere zero function g on M such that T=gS. We begin with

Theorem 3.1. Let I be a linear connection on M.
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(@) Suppose S 18 a recurrent tensor whose recurrence covector 1is globally
a gradient, say VW, where W is a global function on M. Then e 7S is a
covariantly constant tensor, and the most general covariantly constant tensor
co-directional with S is of the form Ae %S, where A is a nonzero real number.

(b) Suppose T is a covariantly constant temsor. Then any tensor co-
directional with T 1is recurrent and its recurremce covector is globally a
gradient. If W is any global fumction on M, any tensor co-directional with
T having VW as the recurrence covector is of the form A e¥T, where A is a
nonzero real number.

Proof. (a) That e 7S is covariantly constant if S is recurrent can be verified
by straightforward checking. Now, assume that f is a nowhere zero function
and that the tensor fS is covariantly constant. Then,

0=V (fS)=F RS+, W)RS .

Since S is nowhere zero, it follows from the above equation that V log |fl=—FW.
Therefore, f=A e " where A is a nonzero real number.

(b) The proof is similar to that of (a) and is hence omitted.

It follows from this theorem that a tensor is recurrent with a recurrence
covector which is globally a gradient iff it is co-directional with a covariantly
constant tensor. The next theorem gives a characterization of such tensors in
terms of its corresponding functions on L(M). The result is analogous to Theo-
rem 2.3 of Wong.

Theorem 3.2. Let I" be a linear connection on M, S a tensor of type (2,1)
and S} its corresponding fumctions on L(M). If S is recurrent and its
recurrence covector is globally a gradient, then on any Blz,],

(3.1) S4P(2)=f(nz)c3? ,

where f is a nowhere zero C* function on M and the constants c2# are not
all zero. Conversely, if condition (8.1) is satisfied on any Blz,], then S 18
recurrent and ils recurrence covector is globally a gradient.

Proof. Assume that S is recurrent with recurrence covector V W, where W
is a global function on M. By [Theorem 3.1, e-*S is a covariantly constant tensor.

The functions on L(M) corresponding to e 7S are e-¥S28, and by
we have

e—W(ﬂ)St;ﬁ(z):c;‘fﬁ on Blz],

where c7# are not all zero. Thus S2#(2)=e¥*¢c%# on Blz,], and condition 3.1)
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is satisfied. Conversely, assume that condition (8.1) is satisfied on a B[z,]. Let
g=1/f. Then g is a nowhere zero function on M, and we have

9(z2)Ss8(z)=c5f .

Therefore by Theorem 2.4, gS is covariantly constant. Hence by Theorem 3.1(b),
S is recurrent and its recurrence covector is globally a gradient.

The next theorem is a modified version of Theorem 3.2. The emphasis is on
the condition for a recurrence covector to be globally a gradient formulated in -
terms of L(M).

Theorem 3.3. Let I’ be a linear connection on M, S a recurrent tensor
of type (2,1) and S its corresponding functions on L(M). Then (by Theo-
rem 2.3) on any holonomy bundle B[z],

8.2 S28(2)=f(2)c3? .

The recurrence covector is globally a gradient iff for each ue M, the function
f appearing in the above equation is comstant on =~*(u)N B[z,].

Proof. To prove the “sufficiency”, we first note that the function f in
is a C*™ function on B[z,]. Since local cross-section exists on B[z,], the assump-
tion on f(2) implies that f induces a C* function on M which we denote also by
f. The “sufficiency” then follows from [Theorem 3.2. To prove the “necessity”,
assume that the recurrence covector is globally a gradient. By we
have, on Biz.],

Ssb(z)=h(z2)d3* ,

where % is a function on M. Comparision of this with shows that
J@)csf=h(zz)d3? .

Thus for any nonzero constant c3?, we have
f@)=h(zz)d3#/c7? .

Form this it follows that f is constant on z~*(u)N B[z,] for every u€ M.

We have thus obtained, in our [Theorem 3.3, a necessary and sufficient con-
dition for the recurrence covector to be globally a gradient. In one of his papers,
Ludden [4, Corollary 38.2] asserts that the same condition is a necessary and
sufficient condition for the recurrence covector to be locally a gradient. However,
we believe that the “necessity” of his Corollary 8.2 does not hold. In faect, in
proving the “necessity” in his (on which his Corollary 8.2 is based),
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he seemed to have assumed that the holonomy bundle By[z,] in z~(U) through
a point z,€ 7z Y(U) is the same as =~'(U)N B[z,] which is not necessarily true as
pointed out to the author by Professor Y.C. Wong.

The recurrence covector of a recurrent tensor which is locally a gradient is
not necessarily globally a gradient, as the following example shows.

Example. Let R? be the Euclidean 2-space with a rectangular coordinate
system (x,%), and M=R>\{(0,0)}. If &=—y/(x*+y*) and &=u/(x2+y?), then the
covector field é=¢,dx+&,dy on M is locally, but not globally, a gradient (see [6,
p. 93]). Let I' be the linear connection on M defined by I'i,=¢6f. Then, it is easy
to verify that the vector X=A(9/dx)+ B(3/dy) where A, B are constants not both
zero, is a recurrent vector on (M, I') with & as the recurrence covector.

4. The bundle of orthonormal frames

From now on, we shall consider recurrent tensors on an n-dimensional pseudo-
Riemannian manifold M. For such M, we know that there is a special class of
linear connections on M closely related to the Riemannian metric of M. They
are the metric connections (to be defined later). In this case, it is important to
consider, instead of the bundle L(M) of linear frames, the bundle of orthonormal
frames.

Let g be the metric tensor of the pseudo-Riemannian manifold M. , S0 that g
is a symmetric tensor of type (0,2) on M whose component matrix [g,,] is every-
where non-singular. At each point € M, the signature of the matrix [g.] is
independent of the coordinate system used, and is called the signature of the
tensor g at u. It is known, and can be proved by a continuity argument, that

for a connected manifold M, the signature of g is the same everywhere. The
following is another proof of this fact.

Lemma 4.1. Let g be a symmetric temsor of type (0,2) on a connected
manifold M and [gy] its component matriz. If [g,] is everywhere non-
singular, then the signature of g is the same everywhere on M.

Proof. The tensor g given in the Lemma is a Riemannian metric on M.
Let I' be the Levi-Civita connection of g. Then g is covariantly constant with
respect to I'. According to the functions g.=X:9,X} on L(M)
are constant on any B[z,]JcL(M). Let u be an arbitrary point of M. Since
z~*(u) N Blz,]+#¢, we see that the signature of [g:s] at u is the same as the signa-
ture of the matrix [g,s] of constants.
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In what follows, we shall assume that the given Riemannian metric on M is
of signature » (0<r<n). The case r=mn (resp. r=0) corresponds to a positive
(resp. negative) definite metric. All other cases correspond to indefinite metrics.
Let

e={ 1 if a=L -7,
-1 if a=r+l,eem.

We denote by O(r, n—r) the subgroup of GL(n, R) consisting of all those matrices
leaving the bilinear form

f(u’ V)= 3] e, U*v*

invariant. Thus, in particular, O(n,0) is the n-dimensional orthogonal group.

A frame (X,) at M is said to be orthonormal if g,X ¢ X}h=e.0qp (not summed
over a). Let O(M) be the subset of L(M) consisting of all the orthonormal
frames of M. Then O(M) is an (1/2)n(n-+1)-dimensional submanifold of L(M).
It is also a reduced bundle of L(M) over M with structure group O(r, n—7).
For details, we refer to [2] and [3, p. 158]. This manifold is sometimes difficult
to handle, because convenient local coordinate systems are not available. How-
ever, by considering the restriction to O(M) of functions on L(M), we can obtain
some interesting and useful results.

As an example, to each tensor S of type (2,1) on M there correspond n® fune-
tions S%f on L(M) and these functions have restrictions on O(M). The following
theorem is analogous to

Theorem 4.2. Let M be a pseudo-Riemannian manifold of signature r.
To a tensor of type (2,1) on M, there corresponds a set of n® functions S%#
on O(M) such that for any 2€ O(M) and any A<€O(r, n—7r),

S5ef*(24)=8%F(2)A3*AG*AT. ,

where A=[A}+] and A '=[A3"]. Conversely, to any such set of m® functions
on O(M), there corresponds a tensor of type (2,1) on M. Moreover, this cor-
respondence 18 one-to-one.

The proof of is similar to that of and is therefore
omitted. As before, we shall refer to S3# as the functions on O(M) corre-
sponding to the tensor S on M. Obviously, they are the restriction to O(M) of
the corresponding functions on L(M).

Let [g*] be the inverse matrix of [g,;]. Then g* are the components of a
global tensor field on M. The components g,; and g* are frequently used to
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lower or raise the indices of tensors. Thus, the equation S./,=g,SY, is equivalent
to S¥*,=g"S,’,. The advantage in considering the functions on O(M) corresponding
to tensors on M is that these functions remain essentially unchanged when indices
are raised or lowered. We make this precise in

Theorem 4.3. When an index of a function, say a, 18 lowered or raised,
the function 18 multiplied by e,. Thus, if S*%; and S.fr are the functions on
O(M) corresponding to temsors on M having components S*; and S/.=g.S",
respectively, then S**,=e,S.%; (not summed over a).

Proof. Let z=(X,) be an orthonormal frame, and (X?#) its dual frame. Then
Sr(2)=8S,H Xt Xt X=g,8" X X} X4 .
Since (X,) is orthonormal,

guXiX!=e,b, (not summed over a),
i.e.,
guXi=e0.,.X'=e, X (not summed over a).
Therefore,

Safr(2)=8SYe, X Xt X6=e,S*f(z) (not summed over a).

For the rest of this section, we shall study recurrent tensors with respect to
the metric connections on a pseudo-Riemannian manifold. We first explain what
a metric connection is.

Suppose we are given a connection in the bundle O(M) of orthonormal frames
(in the sense of connection on a principal fibre bundle). The inclusion map
OWM)->L(M) is a bundle homomorphism and so the connection on O(M) extends
to a unique connection on L(M) according to [Theorem 2.1. This connection on
L(M) is then a linear connection on M. A linear connection on M induced from
a connection on O(M) as above is called a metric connection. We note that the
definition of O(M), and consequently the definition of a metric connection, in-
volves the Riemannian metric ¢ of M. It can be proved ([3, p. 1568]) that a
linear connection on M is a metric connection on M iff Fg=0. The familiar
Riemannian (Levi-Civita) connection determined by g is the unique metric connec-
tion on M with zero torsion. ,

Associated with a metric connection are two fields of horizontal =-planes.
The first is the field of horizontal n-planes in O(M), the horizontal n-plane at a
point z€ O(M) being a linear subspace of T,(O(M)). The second is the field of
horizontal n-planes in L(M), the horizontal n-plane at a point z€ L(M) is a linear
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subspace of T,(L(M)). If for each ze O(M), we regard T,(O(M)) as a subspace
of T.(L(M)), the two horizontal n-planes at 2z are identical. This observation
has implications on the holonomy bundles.

Containing any z,€ O(M), there are two holonomy bundles. The first, C[z,],
is the holonomy bundle of the connection on O(M). The second, B[z,], is the
holonomy bundle of the associated metric connection on L(M). The next proposi-
tion says that we do not have to distinguish between the two.

Proposition 4.4. Let a connection on O(M) extend to a metric conmection
on L(M), and 2,€OM), z,€ L(M). Then,

@) A curve 2(t) in L(M) joining 2,2, t8 a horizontal curve in L(M) +ff
it 18 a horizontal curve in O(M);

(b) The holonomy bdbundle Blz,] in L(M) containing 2z, is the same as the
holonomy bundle C[z,] in O(M) containing z,.

Proof. (a) Let w(t)=nz(f) be the projection of z(f) in M. If 2(t) is a hori-
zontal curve in L(M), it is a parallel field of frames along the curve u(f) with
respect to the metric connection. Since Fg=0 for a metric connection, length
and orthogonality of vectors in M are preserved by parallel transport. As z(0)=z,
is an orthonormal frame, so is each z(f). Therefore 2(f) is a curve in O(M).
Since the horizontal planes in O(M) and L(M) are identical, z(t) is a horizontal
curve in O(M). The converse follows from the same observation.

(b) This follows easily from (a) and from the definition of B[z,] and C[z,].

Recurrent tensors with respect to the metric connections on a pseudo-
Riemannian manifold will be called simply 7recurrent tensors on a pseudo-
Riemannian manifold. The next two theorems are easy consequences of Theo-
rems 2.3, 2.4 and [Proposition 4.4,

Theorem 4.5. Let S be a tensor on a pseudo-Riemannian mantfold M.
Then S 18 recurrent iff the restriction of 1its corresponding functions on
OM) to any Blz,] of O(M) has mo common zero and are proportional to a set
of constants.

Theorem 4.6. Let S be a tensor on a pseudo-Riemannian manifold M.
Then S is covariantly constant iff the restriction of its corresponding fumnc-
tions on O(M) to any Blz,] of O(M) are constants, not all zero.

5. Norm of tensors in a pseudo-Riemannian manifold

In this section, we continue our study of recurrent tensors on a pseudo-
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Riemannian manifold M. First, we define the norm of a tensor and generalize
the notion of null and non-null vectors to tensors. As before, we shall confine
our discussions to tensors of type (2,1) although the same is true for tensors of
arbitrary type.

Let T%w) be the linear space of tensors of type (2,1) at € M. The inner
product in T,(M) defined by the metric g=(g,;) induces an inner product <, >,
in T%(u) as follows. For S=(S{) and T=(T}’) in T%(w),

(6.1) <S, T>u=gtpglqgkrsl‘ch£q .

The norm ||S.l| of a tensor S at u is defined as |<S, S).|"/%. A tensor S is said
to be null at u if S,#0 and ||S.||=0. Otherwise, it is said to be non-null. Of
course, null tensors only exist when the Riemannian metric is indefinite.

We shall find a formula for ||S.|| in terms of the functions S%? on O(M)
corresponding to S. Suppose z=(X,, -+, X,) is an orthonormal frame at % and
(X4 --+, X" its dual frame. Direct verification with definition [(5.1) of the inner
product will show that the set {X,®XsQX": e, §,r=1, -+, n} is an orthonormal

basis of T%(u). It can also be proved that for any orthonormal frame z=(X,)
at u,

(6.2) HSull*=1] a};r eaeper(S7#(2))*| .

The natural projection z: L(M)—M sends a frame at a point # to u. For
simplicity, we shall denote the restriction of = to O(M) by the same symbol, and
again call it the natural projection. The following theorem is an immediate

consequence of (5.2).

Theorem 5.1. Let S be any tensor in M and S3é its corresponding func-
tions on O(M). Then the function | Zp} e.eper(S28(2))%, being equal to the square
afr

norm of S., 18 constant on n~(u) for every uec M.
We now prove

Theorem 5.2. A recurrent tensor S on a pseudo-Riemannian manifold is
either everywhere null or everywhere non-null.

Proof. Since S is recurrent, we may choose (cf. Theorem 4.5) a B[z,] lying
in O(M) so that for all ze€ B[z,],
S38(z)=[f(2)c3?
where f is nowhere zero on B[z,] and the constants c¢$f are not all zero. There-

fore, by (5.2),
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(5.3) [Szl12=] g;r e.2527(S7F(2))2|=(f(2))*| ,§ eseper(c3?)?| .

Since f is nowhere zero on B[z,] and =B[z,]=M, it follows from [5.8) that }|S,||?
is either everywhere zero or everywhere nonzero in M.

It is seen from the above theorem that for a non-null recurrent tensor S,
the norm ||S,]|>0 for every uw€ M. Consequently, the function ||S||: M—>R de-
fined by [IS]|(u)=1|S.!|| is differentiable on M. This function [|S|| will be used
in §6.

6. The recurrence covector in a pseudo-Riemannian manifold

In this section, we shall study the recurrence covector of a non-null recurrent
tensor on a pseudo-Riemannian manifold. We first prove

Theorem 6.1. The recurrence covector of a mon-null recurrent temsor on
a pseudo-Riemannian manifold 18 globally a gradient.

Proof. Let S be any non-null recurrent tensor on a pseudo-Riemannian
manifold M. We shall show that S satisfies the condition stated in

As in the proof of Mheorem 5.2, we choose a Blz,] lying in O(M) and obtain, on
Blz,]
(5.3) 1Szl 2= greaeper(S‘;‘ﬁ(z))ﬂ=(f(z))2| greaeﬁer(c?ﬁ)zl .

It follows from this and the fact that S is non-null that for each we M, (f(2))*
is a nonzero constant on z~!(u)N B[z,]. Since f is a nowhere zero differentiable
function on the arcwise connected B[z,], it has a constant sign on B[z,], and
consequently, for each w€ M, f is constant on n~*(w)N Blz,]. Therefore by Theo-
rem 3.3, the recurrence covector of S is globally a gradient.

It would be interesting to compare with Walker’s result quoted
in §1. While Walker’s result asserts that if the curvature tensor of a Riemannian
connection is recurrent, then no matter whether it is null or non-null, its recur-
rence covector is locally a gradient, our result asserts that for every non-null
recurrent tensor, its recurrence covector is globally a gradient. Moreover, our
proof is entirely different from Walker’s proof, which involves an extremely
delicate manipulation with indices.

Since every tensor is non-null with respect to a definite Riemannian metrie,
an immediate consequence of is the rather obvious result that every
recurrent tensor in a pseudo-Riemannian manifold with definite Riemannian metric
has a globally gradient recurrence covector.
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As to null recurrent tensors Theorem 6.1l is not true in general. In fact,
Patterson [5, §4] has given an example of a recurrent tensor on an indefinite
Riemannian manifold whose recurrence covector is not even locally a gradient.
However, we have the following easy consequences of [Theorem 3.1.

Proposition 6.2. Let S be a null recurrent tensor on a pseudo-Riemannian
manifold M. Then

(@) The recurrence covector of S is globally a gradient iff S is co-direc-
tional to a null, parallel tensor field;

(b) The recurrence covector of S if locally a gradient i+ff in a suitably
chosen mneighbourhood of each point there exists a null, parallel tensor field
with which S s co-directional.

A problem in the theory of Riemannian connection with recurrent curvature
on a pseudo-Riemannian manifold is to find a natural geometrical interpretation
of the recurrence covector, see e.g., [8, p. 238]. We end this section with an
interpretation of the recurrence covector of a non-null recurrent tensor. We
recall that for a non-null recurrent tensor S, the norm [|S|| of S is a differenti-
able function on M and is everywhere positive.

Theorem 6.3. Let S be a non-null recurrent tensor on a pseudo-Riemannian

manifold M, & the recurrence covector and ||S|| the morm of S. Then &=
V(log |1SI]).

Proof. Without loss of generality, we may assume that S is of type (2,1).
By [Theorem 6.1, & is of the form VW for some function W on M. By Theorem
3.1, e 7S is covariantly constant. Choosing a B[z,] contained in O(M), we have,
on Blz.],

e‘W""’S‘,’Eﬁ(z)-:c‘;ﬁ R

where S§# are the functions on L(M) corresponding to S and c¢%# are constants,
not all zero. Then, using the notations in §5,

118wl 12=1 § e.eper(S58(2))| =€ @] § eseger(csf)?| .
afy apy
Le.,
[|Sull2=e" )| § eseper(cy?)?|
afr
for all e M. This means that

log |18]]= W+%log | 3 eaeper(es?yl
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and so
e=FW=F(log 1SIl) .
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