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1. Introduction

By differentiability, we shall mean that of class $C^{\infty}$. In this paper, $M$ will
denote an n-dimensional connected differentiable manifold. The connectedness
assumption on $M$ implies that any two of its points can be joined by a sectionally
smooth curve. All functions, tensor fields, etc., are assumed to be differentiable.
All indices, both Latin and Greek, have range 1, 2, $\cdots,$ $n$ . Summation over re-
peated indices, unless stated otherwise, is implied.

Let $\Gamma$ be a linear connection on $M$. The covariant derivative with respect
to $\Gamma$ of a tensor $S$ is denoted by $\nabla S$. In a coordinate $neighbourhdU$ with
coordinate functions $u^{\ell}$ , covariant differentiation and partial differentiation are
denoted by a comma and a dot respectively. Thus if $S$ has components $S_{k}^{if}$ in
$(U, u),$ $\nabla S$ has components

$S_{k,\ell}^{if}=S_{k\cdot l}^{\ell f}+\Gamma_{lm}^{i}S_{k}^{mj}+\Gamma_{lm}^{f}S_{k}^{\ell m}-\Gamma_{\ell k}^{m}S_{m}^{\ell J}$ ,

where $\Gamma_{jk}^{i}$ are the connection coefficients. The components of the curvature tensor
$R$ and the torsion tensor $T$ of $\Gamma$ in $(U, u^{1})$ are given respectively by

$R_{jkl}^{i}=\Gamma_{ij\cdot k}^{i}-\Gamma_{kf\cdot l}^{i}+\Gamma_{kh}^{\ell}\Gamma_{\ell f}^{h}-\Gamma_{\ell h}^{i}\Gamma_{kf}^{h}$ ,
$T_{fk}^{\ell}=\Gamma_{jk}^{\ell}-\Gamma_{kf}^{i}$ .

A tensor $S$ on $M$ is said to be recurrent with respect to $\Gamma$ if $S\not\equiv O$ (i.e., not
everywhere zero) and $\nabla S=\xi\otimes S$ for some covector $\xi$ . We call. $\xi$ the recurrence
covector of $S$. If $\xi=0$ , we say that $S$ is covariantly constant. It can be proved
that if $S\not\equiv O$ satisfies $\nabla S=\xi\otimes S$, then $S\neq 0$ ($i,e.$ , nowhere zero). Thus, a recurrent
tensor is nowhere zero. Recurrent tensor8 on a manifold with a linear connection
has been considered in great detail in Wong [9] and [10]. On the other hand,
Riemannian connection with recurrent curvature on a pseudo-Riemannian manifold
has been studied by Walker in [7] where he proved the following

Theorem. Let $\Gamma$ be the Riemannian connection of a $p\epsilon eudo$-Rimannian
$man\dot{j}fold$ . If the curvature tensor of $\Gamma$ is recurrent, then its recurrence
covector is $\iota_{oca}u_{y}$ a gradient.
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In this paper, we shall prove a number of results concerning recurrent tensors
on a pseudo-Riemannian manifold $M$ that are closely related to the above theorem.
In \S 2, we shall briefly review the theory of connection on a principal fibre bundle
and state some results of Wong on recurrent tensors that are needed later. In
\S 3, we first consider recurrent tensors which are co-directional with covariantly
constant tensors. Then, we express the condition for the recurrence covector of
a recurrent tensor on $M$ to be globally a gradient in terms of the bundle $L(M)$

of linear frames in $M$. In \S 4, we develop some results on the bundle $0(M)$

of orthonormal frames that are useful in the study of recurrent tensors on a
pseudo-Riemannian manifold, and obtain a characterization of recurrent tensors
in terms of $0(M)$ . In \S 5, we define the norm of tensors on $M$, and show that
a recurrent tensor on $M$ is either everywhere null or everywhere non-null. In
\S 6, we prove that the recurrence covector of a non-null recurrent tensor is
globally a gradient, and obtain a geometric interpretation of the recurrence
covector in terms of the norm of the recurrent tensor.

The author wishes to express his sincere thanks to Professor Yung-Chow Wong

who read through the manuscript and suggested a number of improvements.

2. Connection on a fibre bundle

In this section, we shall briefly review the theory of connections on a princi-
pal fibre bundle. We shall also state some results of Wong on recurrent tensors
that are needed later. All the results are well known, and can be found in [31

and [91.

A frame $z(u)$ at $u\in M$ is a basis $(X_{1}, \cdots, X_{n})$ of the tangent 8pace $T_{u}(M)$ at
$u$ . Let $L(M)$ be the collection of all frames at all points of $M$. The map $\pi$ ;

$L(M)\rightarrow M$ defined by $z(u)\rightarrow u$ is called the natural projection. Each coordinate
system $(U_{1}u)$ in $M$ induces a coordinate system in $L(M)$ as follows. Since the
vector $X_{\alpha}$ of the frame $z(u)\in\pi^{-1}(U)$ can be uniquely expressed as $X_{\alpha}=X_{\alpha}^{\ell}(\partial l\partial u)$ ,
$\{\pi^{-1}(U), (u, X_{\alpha}^{\ell})\}$ is a coordinate system in $L(M)$ . In this way, $L(M)$ becomes
an $(n+n^{2})$ -dimensional differentiable manifold. We shall use $[X_{\ell}^{\alpha}]$ to denote the
inverse of the $n\times n$ matrix $[X_{\alpha}^{\ell}]$ . The general linear group $GL(n, R)$ acts on $L(M)$

to the right in the sense that $A=[A_{\alpha}^{\alpha}.]\in GL(n, R)$ takes the frame $z=(X_{\alpha})$ to the
frame $zA=(X_{\alpha}A_{\alpha}^{\alpha}.)$ and we call such an action on $L(M)$ a right translation. Then
$L(M)$ is a principal fibre bundle over $M$ with $GL(n, R)$ as the structure group.

We call it the bundle of linear frames over $M$.
Let $\Gamma$ be a linear connection on $M$ and $\Gamma_{jk}^{\ell}$ the connection coefficients. Put
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$r_{k}^{i}=\Gamma_{fk}^{i}du^{j}$ . Then the local l-forms

$\theta^{\alpha}=X_{\ell}^{a}du^{\ell}$ ,
$\omega_{\mu}^{\lambda}=X_{\ell}^{\lambda}dX_{\mu}^{\ell}+X_{i}^{\lambda}r_{j}^{i}X_{\mu}^{f}$ ,

piece together to form $n+n^{2}$ global l-forms on $L(M)$ . These $n+n^{2}$ l-forms are
everywhere linearly independent. Furthermore, the equations $\theta^{a}=0$ (resp. $\omega_{\mu}^{\lambda}=0$)

define a field of $n^{2}$-planes (resp. n-planes) on $L(M)$ , which we call the field of
vertical (resp. horizontal) planes on $L(M)$ . The field of horizontal planes is in-
variant under the right translations. The field of vertical planes is completely
determined by the differential structure of $M$ alone, whereas the field of hori-
zontal planes is determined by, and also determines, the linear connection on $M$.

The determination of a linear connection on $M$ by assigning to $L(M)$ a field
of horizontal planes invariant under the right translations can be generalized to
other principal fibre bundles. In \S 4, we shall consider connections on the bundle
of orthonormal frames. For the moment, we state the following

Theorem 2.1. ([3, p. 79]) Let $f:B^{\prime}(M^{\prime}, G^{\prime})\rightarrow B(M, G)$ be a homomorphism of
principal fibre bundles with corresponding homomorphism $f:G^{\prime}\rightarrow G$ and in-
duced diffeomorphism $f:M^{\prime}\rightarrow M$. If $\Gamma^{\prime}$ is any connection on $B^{\prime}(M^{\prime}, G^{\prime})$ , then
there exists a unique connection $\Gamma$ on $B(M, G)$ such that the horizontal planes
of $\Gamma^{\prime}$ are mapped by $f$ into horizontal planes of $\Gamma$.

We now state some notions and results required in the characterization of
recurrent tensors by $L(M)$ . In what follows, theorems will usually be stated
and proved for a tensor of type $(2, 1)$ although they are also true for tensors of
arbitrary type.

Theorem 2.2. (Chern [1, p. 78], Wong [9, p. 330]) To a tensor $S$ of type
$(2, 1)$ on $M$, there corresponds a set of $n^{\epsilon}$ functions $S_{\gamma}^{a\beta}$ on $L(M)$ such that
for any $z\in L(M)$ and any A $eGL(n, R)$ ,

$S_{\gamma}^{\alpha}\ddagger\beta\cdot(zA)=S_{r^{\beta}}^{\alpha}(z)A_{\alpha}^{\alpha}A_{\beta}^{\rho*}A;*$

where $A=[A_{\gamma}^{f}\cdot]$ and $A^{-1}=[A_{\alpha}^{\alpha*}]$ . Conversely, to any such set of $n^{\prime}$ functions
on $L(M)$ , there corresponds a tensor of type $(2, 1)$ on M. This correspondence
is one-to-one.

If $\{\pi^{-1}(U), (u^{\ell}, X_{\alpha})\}$ is the local coordinate system in $L(M)$ induced by the
local coordinate system $(U_{1}u)$ in $M$, and $S_{k}^{j}$ are the components in $(U_{1}u)$ of
the tensor $S$, then the above correspondence is defined locally by
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$S_{\gamma^{\beta}}^{\alpha}=S_{k}^{if}X_{i}^{\alpha}X_{f}^{\beta}X_{\gamma}^{k}$ .
From now on, we shall refer to $S_{\gamma^{\beta}}^{\alpha}$ as the functio$ns$ on $L(M)$ corresponding

to the tensor $S$ on $M$.
When a linear connection on $M$ (or equivalently, a connection in $L(M)$ ) is

given, we can define the concept of a holonomy bundle as follows. A curve $z(t)$

in $L(M)$ is called horizontal if all its velocity vectors lie in the horizontal
planes. It can be proved that $z(t)$ is horizontal iff $z(t)$ , regarded as a field of
frames along the curve $\pi z(t)$ in $M$, is a parallel field of frames. For two points
$z_{0},$ $zeL(M)$ , we shall write $z_{0}\sim z$ if they can be joined by a (piecewise differenti-
able) horizontal curve. Then $\sim is$ an equivalence relation in $L(M)$ and we denote
the equivalence class containing $z_{0}$ by $B[z_{0}]$ . It can be proved that $B[z_{0}]$ is a
regular submanifold and a reduced bundle of $L(M)$ . We shall call it the holonomy

bundle through $z_{0}$ . The following results are well-known.

Theorem 2.3. (Wong [9, p. 336,]) Let $\Gamma$ be a linear connection and $S$ a
tensor on M. If $S$ is recurrent with respect to $\Gamma$ , then the restrictions of
its corresponding functions to any $B[z_{0}]$ of $L(M)$ have no common zero and
are proportional to a set of constants. Conversely, if this condition is satis-
fied on any $B[z_{0}]$ , then $S$ is recurrent.

Theorem 2.4. (Wong [9, p. 3381) Let $\Gamma$ be a linear connection and $S$ a
tensor on M. If $S$ is covariantly constant with respect to $\Gamma$ , then the restric-
tions of its corresponding functions to any $B[z_{0}]$ of $L(M)$ are constants, not
au zero. Conversely, if this condition is satisfied on any $B[z_{0}]$ , then $S$ is
covariantly constant.

Before leaving this section, we wish to remark that concepts such as hori-
zontal curves and holonomy bundles for a connection on $L(M)$ can similarly be
defined for a connection on any principal fibre bundle.

3. The recurrence covector

In this section, we first consider a class of recurrent tensors which bears a
special relationship to the covariantly constant tensor8. Then, we formulate the

condition for the recurrence covector to be globally a gradient in terms of the

bundle of linear frames.
Two tensor fields $S$ and $T$ on $M$ are said to be co-directional if there exists

a nowhere zero function $g$ on $M$ such that $T=gS$. We begin with

Theorem 3.1. Let $p$ be a linear connection on $M$.
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(a) Suppose $S$ is a recurrent tensor whose recurrence covector is globally
a gradient, say $\nabla W$, where $W$ is a global function on M. Then $e^{-W}S$ is a
covariantly constant tensor, and the most general covariantly constant tensor
co-directional with $S$ is of the form A $e^{-W}S$, where $A$ is a nonzero real number.

(b) Suppose $T$ is a covariantly constant tensor. Then any tensor co-
directional with $T$ is recurrent and its recurrence covector is globally a
gradient. If $W$ is any global function on $M$, any tensor co-directional with
$T$ having $\nabla W$ as the recurrence covector is of the form A $e^{W}T$, where $A$ is a
nonzero real number.

Proof. (a) That $e^{-W}S$ is covariantly constant if $S$ is recurrent can be verified
by straightforward checking. Now, assume that $f$ is a nowhere zero function
and that the tensor $fS$ is covariantly constant. Then,

$0=\nabla(fS)=(\nabla f)\otimes S+f(\nabla W)\otimes S$ .
Since $S$ is nowhere zero, it follows from the above equation that $\nabla\log|f|=-\nabla W$.
Therefore, $f=Ae^{-W}$ where $A$ is a nonzero real number.

(b) The proof is similar to that of (a) and is hence omitted.
It follows from this theorem that a tensor is recurrent with a recurrence

covector which is globally a gradient iff it is co-directional with a covariantly
constant tensor. The next theorem gives a characterization of such tensors in
terms of its corresponding functions on $L(M)$ . The result is analogous to Theo-
rem 2.3 of Wong.

Theorem 3.2. Let $\Gamma$ be a linear connection on $M,$ $S$ a tensor of type $(2, 1)$

and $S_{\gamma^{\beta}}^{a}$ its corresponding functions on $L(M)$ . If $S$ is recurrent’ and its
recurrence covector is globally a gradient, then on any $B[z_{0}]$ ,

(8.1) $S_{\gamma^{\beta}}^{\alpha}(z)=f(\pi z)c_{\gamma}^{\alpha\beta}$ ,

where $f$ is a nowhere zero $C^{\infty}$ function on $M$ and the constants $c_{\gamma}^{\alpha\beta}$ are not
all zero. Conversely, if condition (3.1) is satisfied on any $B[z_{0}]$ , then $S$ is
recurrent and its recurrence covector is globally a gradient.

Proof. Assume that $S$ is recurrent with recurrence covector $\nabla W$, where $W$

is a global function on $M$. By Theorem 3.1, $e^{-W}S$ is a covariantly constant tensor.
The functions on $L(M)$ corresponding to $e^{-W}S$ are $e^{-W}S_{\gamma}^{\alpha\beta}$ , and by Theorem 2.4,
we have

$e^{-W(x\iota)}S_{\gamma^{\beta}}^{\alpha}(z)=c_{r^{\beta}}^{\alpha}$ on $B[z_{0}]$ ,

where $c_{\gamma^{\beta}}^{\alpha}$ are not all zero. Thus $S_{\gamma}^{\alpha\beta}(z)=e^{W(itz)}c_{\gamma}^{\alpha\beta}$ on $B[z_{0}]$ , and condition (3.1)
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is satisfied. Conversely, assume that condition (3.1) is satisfied on a $B[z_{0}]$ . Let
$g=1/f$. Then $g$ is a nowhere zero function on $M$, and we have

$g(\pi z)S_{\gamma}^{\alpha\beta}(z)=c_{\gamma}^{\alpha\beta}$ .
Therefore by Theorem 2.4, $gS$ is covariantly constant. Hence by Theorem 3.1(b),

$S$ is recurrent and its recurrence covector is globally a gradient.

The next theorem is a modified version of Theorem 8.2. The emphasis is on
the condition for a recurrence covector to be globally a gradient formulated in
terms of $L(M)$ .

Theorem 3.3. Let $\Gamma$ be a linear connection on $M,$ $S$ a recurrent tensor

of type $(2, 1)$ and $S_{r^{\beta}}^{\alpha}$ its corresponding functions on $L(M)$ . Then (by Theo-

rem 2.3) on any holonomy bundle $B[z_{0}]$ ,

(3.2) $S_{\gamma^{\beta}}^{a}(z)=f(z)c_{r^{\beta}}^{a}$ .
The recurrence covector is globally a gradient iff for each $u\in M$, the function
$f$ appearing in the above equation is constant on $\pi^{-1}(u)\cap B[z_{0}]$ .

Proof. To prove the ”sufficiency”, we first note that the function $f$ in (3.2)

is a $C^{\infty}$ function on $B[z_{0}]$ . Since local cross-section exists on $B[z_{0}]$ , the assump-

tion on $f(z)$ implies that $f$ induces a $C^{\infty}$ function on $M$ which we denote also by

$f$. The ”sufficiency” then follows from Theorem 3.2. To prove the ”necessity”,

assume that the recurrenoe covector is globally a gradient. By Theorem 3.2, we
have, on $B[z_{0}]$ ,

$S_{\gamma^{\beta}}^{\alpha}(z)=h(\pi z)d_{r^{\beta}}^{\alpha}$ ,

where $h$ is a function on $M$. Comparision of this with (3.2) shows that

$f(z)c_{r^{\beta}}^{\alpha}=h(\pi z)d_{\gamma}^{\alpha\beta}$ .
Thus for any nonzero constant $c_{\gamma^{\beta}}^{\alpha}$ , we have

$f(z)=h(\pi z)d_{\gamma}^{\alpha}\rho/c_{r^{\beta}}^{\alpha}$ .
Form this it follows that $f$ is constant on $\pi^{-1}(u)\cap B[z_{0}]$ for every $u\in M$.

We have thus obtained, in our Theorem 3.3, a neces8ary and sufficient con-
dition for the recurrence covector to be globally a gradient. In one of his papers,

Ludden [4, Corollary 3.21 asserts that the same condition is a necessary and

sufficient condition for the recurrence covector to be locally a gradient. However,

we believe that the ”necessity” of his Corollary 3.2 does not hold. In fact, in

proving the ”necessity” in his Theorem 3.1 (on which his Corollary 3.2 is based),
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he seemed to have assumed that the holonomy bundle $B_{\sigma}[z_{0}]$ in $\pi^{-1}(U)$ through
a point $z_{0}\in\pi^{-1}(U)$ is the same as $\pi^{-1}(U)\cap B[z_{0}]$ which is not necessarily true as
pointed out to the author by Professor Y. C. Wong.

The recurrenoe covector of a recurrent tensor which is locally a gradient is
not necessarily globally a gradient, as the following example shows.

Example. Let $R^{2}$ be the Euclidean 2-spaoe with a rectangular $crdinate$

system $(x, y)$ , and $M=R^{2}\backslash \{(0,0)\}$ . If $\xi_{1}=-y/(x^{2}+y^{2})$ and $\xi_{2}=x/(x^{2}+y^{2})$ , then the
covector field $\xi=\xi_{1}dx+\xi_{2}dy$ on $M$ is locally, but not globally, a gradient (see [6,
p. 931). Let $\Gamma$ be the linear connection on $M$ defined by $\Gamma_{jk}=\xi_{j}\delta_{k}^{\ell}$ . Then, it is easy
to verify that the vector $X=A(\partial/\partial x)+B(\partial/\partial y)$ where $A,$ $B$ are constants not both
zero, is a recurrent vector on $(M, \Gamma)$ with $\xi$ as the recurrenoe covector.

4. The bundle of orthonormal frames

From now on, we shall consider recurrent tensors on an n-dimensional pseudo-
Riemannian manifold $M$. For such $M$, we know that there is a special cla8s of
linear connections on $M$ closely related to the Riemannian metric of $M$. They
are the metric connections (to be defined later). In this case, it is important to
consider, instead of the bundle $L(M)$ of linear frames, the bundle of orthonormal
frames.

Let $g$ be the metric tensor of the Pseudo-Riemannian manifold $M$, so that $g$

is a symmetric tensor of type $(0_{1}2)$ on $M$ whose component matrix $[g_{j}]$ is every-
where non-singular. At each point $u\in M$, the signature of the matrix $[g_{j}]$ is
independent of the $crdInate$ system used, and is called the signature of the
tensor $g$ at $u$ . It is known, and can be proved by a continuity argument, that
for a connected manifold $M$, the signature of $g$ is the same everywhere. The
following is another proof of this fact.

Lemma 4.1. Let $g$ be a symmetric tensor of type $(0,2)$ on a connected
manifold $M$ and $[g_{j}]$ its component matrix. If $[g_{\ell j}]$ is everywhere non-
singular, then the signature of $g$ is the same everywhere on $M$.

Proof. The tensor $g$ given in the Lemma is a Riemannian metric on $M$.
Let $\Gamma$ be the Levi-Civita connection of $g$ . Then $g$ is covariantly con8tant with
respect to $\Gamma$ . According to Theorem 2.4, the functions $g_{\alpha\beta}=X_{a}g_{j}X_{\beta}^{j}$ on $L(M)$

are constant on any $B[z_{0}]\subset L(M)$ . Let $u$ be an arbitrary point of $M$. Since
$\pi^{-1}(u)\cap B[z_{0}]\neq\phi$ , we see that the signature of $[g_{\ell j}]$ at $u$ is the same as the signa-
ture of the matrix $[g_{\alpha\beta}]$ of constants.
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In what follows, we shall assume that the given Riemannian metric on $M$ is
of signature $r(0\leq r\leq n)$ . The case $r=n$ (resp. $\gamma=0$) corresponds to a positive
(resp. negative) definite metric. All other cases correspond to indefinite metrics.
Let

$e_{\alpha}=\left\{\begin{array}{ll}1 & if \alpha=1, \cdots, r,\\-1 & if \alpha=r+1, \cdots, n.\end{array}\right.$

We denote by $0(r, n-r)$ the subgroup of $GL(n, R)$ consisting of all those matrices
leaving the bilinear form

$f(u, v)=\sum_{\alpha}e_{\alpha}u^{\alpha}v^{\alpha}$

invariant. Thus, in particular, $0(n, 0)$ is the n-dimensional orthogonal group.
A frame $(X_{\alpha})$ at $M$ is said to be orthonormal if $g_{tj}X_{\alpha}^{i}X_{\beta}^{f}=e_{\alpha}\delta_{\alpha\beta}$ (not summed

over $\alpha$). Let $0(M)$ be the subset of $L(M)$ consisting of all the orthonormal
frames of $M$. Then $0(M)$ is an $(1/2)n(n+1)$-dimensional submanifold of $L(M)$ .
It is also a reduced bundle of $L(M)$ over $M$ with structure group $0(r, n-r)$ .
For details, we refer to [2] and [3, p. 158]. This manifold is sometimes difficult
to handle, because convenient local coordinate systems are not available. How-
ever, by considering the restriction to $0(M)$ of functions on $L(M)$ , we can obtain
some interesting and useful results.

As an example, to each tensor $S$ of type $(2, 1)$ on $M$ there correspond $n^{8}$ func-
tions $S_{r^{\beta}}^{\alpha}$ on $L(M)$ and the8e functions have restrictions on $0(M)$ . The following
theorem is analogous to Theorem 2.2.

Theorem 4.2. Let $M$ be a pseudo-Riemannian $man\dot{j}fold$ of signature $r$ .
To a tensor of type $(2, 1)$ on $M$, there corresponds a set of $n^{8}$ functions $S_{r^{\beta}}^{a}$

on $0(M)$ such that for any $z\in O(M)$ and any $A\in O(r, n-r)$ ,

$S_{\gamma}^{\alpha}:\rho\cdot(zA)=S_{r^{\beta}}^{\alpha}(z)A_{\alpha}^{\alpha}A_{\beta}^{\beta}A_{\gamma}^{r_{*}},$

where $A=[A_{\gamma}^{\gamma}\cdot]$ and $A^{-1}=[A_{\alpha}^{a}]$ . Conversely, to any such set of $n^{8}$ functions
on $0(M)$ , there corresponds a tensor of type $(2, 1)$ on M. Moreover, this cor-
respondence is one-to-one.

The $prf$ of Theorem 4.2 is similar to that of Theorem 2.2 and is therefore
omitted. As before, we shall refer to $S_{\gamma^{\beta}}^{\alpha}$ as the $ funct\dot{w}n\epsilon$ on $0(M)$ corre-
$SP^{ond}\dot{j}ng$ to the tensor $S$ on $M$. Obviously, they are the restriction to $0(M)$ of
the corresponding functions on $L(M)$ .

Let $[g^{\ell k}]$ be the inverse matrix of $[g_{\ell j}]$ . Then $g^{\ell k}$ are the components of a
global tensor field on $M$. The components $g_{\ell j}$ and $g^{\ell k}$ are frequently used to
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lower or raise the indices of tensors. Thus, the equation $S_{\iota^{j_{k}}}=g_{\ell t}S^{\ell j_{k}}$ is equivalent

to $S_{k}^{j\ell}=g^{\ell\ell}S_{t^{j}k}$ . The advantage in considering the functions on $0(M)$ corresponding

to tensors on $M$ is that these functions remain essentially unchanged when indices
are raised or lowered. We make this precise in

Theorem 4.3. When an index of a function, say $\alpha$ , is lowered or raised,

the function is multiplied by $e_{\alpha}$ . Thus, if $S^{\alpha\beta_{f}}$ and $S_{\alpha}^{\rho_{f}}$ are the functions on
$0(M)$ corresponding to tensors on $M$ having components $S^{\ell j_{k}}$ and $S_{\ell k}^{j}=g_{l}S^{\ell j_{k}}$

respectively, then $S^{\alpha\beta_{f}}=e_{\alpha}S_{\alpha}^{\beta_{f}}$ (not summed over a).

Proof. Let $z=(X_{\alpha})$ be an orthonormal frame, and $(X^{\beta})$ its dual frame. Then

$S_{\alpha}^{\rho_{f}}(z)=S_{\ell k}^{j}X_{\alpha}^{\ell}X_{f}^{k}X_{j}^{\beta}=g_{tl}S^{\ell j_{k}}X_{\alpha}^{i}X_{\gamma}^{k}X_{f}^{\beta}$ .
Sinoe $(X_{\alpha})$ is orthonormal,

$g_{\ell\ell}X_{\alpha}^{i}X_{\epsilon}^{l}=e_{\alpha}\delta_{\alpha}$. (not summed over $\alpha$),

i.e.,
$g_{\ell}X_{\alpha}^{\ell}=e_{\alpha}\delta_{\alpha*}X_{\ell}=e_{\alpha}X_{\ell}^{\alpha}$ (not summed over $\alpha$).

Therefore,

$S_{\alpha}^{\beta_{\gamma}}(z)=S^{\ell j_{k}}e_{\alpha}X_{\ell}^{a}X_{f}^{k}X^{\beta_{j}}=e_{\alpha}S^{\alpha\beta_{\gamma}}(z)$ (not summed over $\alpha$).

For the rest of this section, we shall study recurrent tensors with respect to
the metric connections on a pseudo-Riemannian manifold. We first explain what
a metric connection is.

Suppose we are given a connection in the bundle $0(M)$ of orthonormal frames
(in the sense of connection on a principal fibre bundle). The inclusion map
$0(M)\rightarrow L(M)$ is a bundle homomorphism and so the connection on $0(M)$ extends
to a unique connection on $L(M)$ according to Theorem 2.1. This connection on
$L(M)$ is then a linear connection on $M$. A linear connection on $M$ induced from
a connection on $0(M)$ as above is called a metric connection. We note that the
definition of $0(M)$ , and consequently the definition of a metric connection, in-
volves the Riemannian metric $g$ of $M$. It can be proved ([3, p. 1581) that a
linear connection on $M$ is a metric connection on $M$ iff $\nabla g=0$ . The familiar
Riemannian (Levi-Civita) connection determined by $g$ is the unique metric connec-
tion on $M$ with zero torsion.

Associated with a metric connection are two fields of horizontal n-planes.

The first is the field of horizontal n-planes in $0(M)$ , the horizontal n-plane at a
point $z\in O(M)$ being a linear subspaoe of $T,(O(M))$ . The second is the field of
horizontal n-planes in $L(M)$ , the horizontal n-plane at a point $z\in L(M)$ is a linear
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subspaoe of $T,(L(M))$ . If for each $zeO(M)$ , we regard $T.(O(M))$ as a subspace
of $T.(L(M))$ , the two horizontal n-planes at $z$ are identical. This observation
has implications on the holonomy bundles.

Containing any $z_{0}\in O(M)$ , there are two holonomy bundles. The first, $C[z_{0}]$ ,
is the holonomy bundle of the connection on $0(M)$ . The second, $B[z_{0}]$ , is the
holonomy bundle of the associated metric connection on $L(M)$ . The next proposi-
tion says that we do not have to distinguish between the two.

Proposition 4.4. Let a connection on $0(M)$ extend to a metric connection
on $L(M)$ , and $z_{0}\in O(M),$ $z_{1}\in L(M)$ . Then,

(a) A curve $z(t)$ in $L(M)$ joining $z_{0},$ $z_{1}$ is a horizontal curve in $L(M)$ iff
it is a horizontal curve in $0(M)$ ;

(b) The holonomy bundle $B[z_{0}]$ in $L(M)$ containing $z_{0}$ is the same as the
holonomy bundle $C[z_{0}]$ in $0(M)$ containing $z_{0}$ .

Proof. (a) Let $u(t)=\pi z(t)$ be the projection of $z(t)$ in $M$. If $z(t)$ is a hori-
zontal curve in $L(M)$ , it is a parallel field of frames along the curve $u(t)$ with
respect to the metric connection. Sinoe $\nabla g=0$ for a metric connection, length
and orthogonality of vectors in $M$ are preserved by parallel transport. As $z(O)=z_{0}$

is an orthonormal frame, so is each $z(t)$ . Therefore $z(t)$ is a curve in $0(M)$ .
Sinoe the horizontal planes in $0(M)$ and $L(M)$ are identical, $z(t)$ is a horizontal
curve in $0(M)$ . The converse follows from the same observation.

(b) This follows easily from (a) and from the definition of $B[z_{0}]$ and $C[z_{0}]$ .
Recurrent tensors with respect to the metric connections on a pseudo-

Riemannian manifold will be called simply recurrent tensors on a pseudo-
Riemannian manifold. The next two theorems are easy consequences of Theo-
rems 2.3, 2.4 and Proposition 4.4.

Theorem 4.5. Let $S$ be a tensor on a pseudo-Riemannian manifold $M$.
Then $S$ is recurrent $\dot{j}ff$ the restriction of its corresponding functions on
$0(M)$ to any $B[z_{0}]$ of $0(M)$ has no common zero and are proportional to a set
of constants.

Theorem 4.6. Let $S$ be a $ten\epsilon or$ on a pseudo-Riemannian manifold $M$.
Then $S$ is $covarianu_{y}$ constant $\dot{j}ff$ the restriction of its corresponding func-
tions on $0(M)$ to any $B[z_{0}]$ of $0(M)$ are constants, not au zero.

5. Norm of tensors in a pseudo-Riemannian manifold

In this section, we continue our study of recurrent tensors on a pseudo-
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Riemannian manifold $M$. First, we define the nom of a tensor and generalize

the notion of null and non-null vectors to tensors. As before, we shall confine
our discussions to tensors of type $(2, 1)$ although the same is true for tensors of
arbitrary type.

Let $T_{1}^{2}(u)$ be the linear space of tensors of type $(2_{1}1)$ at $ueM$. The inner
product in $T.(M)$ defined by the metric $g=(g_{\ell j})$ induces an inner product $\langle$ , $\rangle_{u}$

in $T_{1}^{2}(u)$ as follows. For $S=(S_{k}^{\ell j})$ and $T=(T_{k}^{j})$ in $T_{1}^{2}(u)$ ,

(5.1) $\langle S, T\rangle_{u}=g_{\ell p}g_{jq}g^{kr}S_{k}^{\ell j}T_{f}^{pq}$ .
The norm $||S_{u}||$ of a tensor $S$ at $u$ is defined as $|\langle S, S\rangle_{u}|^{1/g}$ . A tensor $S$ i8 said
to be null at $u$ if $S_{u}\neq 0$ and $||S_{u}||=0$ . Otherwise, it is said to be non-null. Of
course, null tensors only exist when the Riemannian metric i8 indefinite.

We shall find a formula for $||S_{u}||$ in terms of the functions $S_{\gamma^{\beta}}^{\alpha}$ on $0(M)$

corresponding to $S$. Suppose $z=(X_{1}, \cdots, X_{n})$ is an orthonormal frame at $u$ and
(X1

$\ldots,$
$X^{n}$) its dual frame. Direct verification with definition (5.1) of the inner

product will show that the set $\{X_{\alpha}\otimes X_{\beta}\otimes X^{\gamma};\alpha, \beta, \gamma=1, \cdots, n\}$ is an orthonormal
basis of $T_{1}^{2}(u)$ . It can also be proved that for any orthonormal frame $z=(X_{\alpha})$

at $u$ ,

(5.2) $||S_{u}||^{2}=|\sum_{\alpha\beta\gamma}e_{\alpha}e_{\beta}e_{\gamma}(S_{\gamma^{\beta}}^{\alpha}(z))^{2}|$ .

The natural projection $\pi;L(M)\rightarrow M$ sends a frame at a point $u$ to $u$ . For
simplicity, we shall denote the restriction of $\pi$ to $0(M)$ by the same $8ymbol$ , and
again call it the natural projection. The following theorem is an immediate
consequenoe of (5.2).

Theorem 5.1. Let $S$ be any tensor in $M$ and $S_{\gamma^{\beta}}^{\alpha}$ its corresPonding func-
tions on $0(M)$ . Then the function $|\sum_{\alpha\beta\gamma}e_{\alpha}e_{\beta}e_{\gamma}(S_{r^{\beta}}^{\alpha}(z))^{2}|$ , being equal to the square

norm of $S_{u}$ , is constant on $\pi^{-1}(u)$ for every $u\in M$.
We now prove

Theorem 5.2. A recurrent tensor $S$ on a pseudo-Riemannian manifold is
either everywhere null or everywhere non-null.

Proof. Since $S$ is recurrent, we may choo8e (cf. Theorem 4.5) a $B[z_{0}]$ lying
in $0(M)$ so that for all $z\in B[z_{0}]$ ,

$S_{\gamma^{\beta}}^{\alpha}(z)=f(z)c_{\gamma^{\beta}}^{\alpha}$

where $f$ is nowhere zero on $B[z_{0}]$ and the constants $c_{r^{\beta}}^{\alpha}$ are not all zero. There-
fore, by (5.2),
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(5.3) $||S_{\pi*}||^{2}=|\sum_{a\beta\gamma}e_{\alpha}e_{\beta}e_{f}(S_{\gamma}^{\alpha\beta}(z))^{2}|=(f(z))^{2}|\sum_{\alpha\beta\gamma}e_{\alpha}e_{\beta}e_{\gamma}(c_{\gamma^{\beta}}^{\alpha})^{2}|$ .
Sinoe $f$ is nowhere zero on $B[z_{0}]$ and $\pi B[z_{0}]=M$, it follows from (5.3) that $||S_{u}||^{2}$

is either everywhere zero or everywhere nonzero in $M$.
It is seen from the above theorem that for a non-null recurrent tensor $S$ ,

the norm $||S_{u}||>0$ for every $u\in M$. Consequently, the function $||S||;M\rightarrow R$ de-
fined by $||S||(u)=||S_{u}||$ is differentiable on $M$. This function $||S||$ will be used
in \S 6.

6. The recurrence covector in a pseudo-Riemannian manifold

In this section, we shall study the recurrenoe covector of a non-null recurrent
tensor on a pseudo-Riemannian manifold. We first prove

Theorem 6.1. The recurrence covector of a non-null recurrent tensor on
a pseudo-Riemannian manifold is globally a gradient.

Proof. Let $S$ be any non-null recurrent tensor on a pseudo-Riemannian

manifold $M$. We shall show that $S$ satisfies the condition stated in Theorem 3.3.
As in the proof of Theorem 5.2, we choose a $B[z_{0}]$ lying in $0(M)$ and obtain, on
$B[z_{0}]$

(5.8) $||S_{\pi},||^{2}=|\sum_{\alpha\beta\gamma}e_{\alpha}e_{\beta}e_{f}(S_{f}^{\alpha\beta}(z))^{2}|=(f(z))^{2}|\sum_{\alpha\beta\gamma}e_{\alpha}e_{\beta}e_{\gamma}(c_{\gamma}^{\alpha\beta})^{2}|$ .

It follows from this and the fact that $S$ is non-null that for each $u\in M,$ $(f(z))^{2}$

is a nonzero constant on $\pi^{-1}(u)\cap B[z_{0}]$ . Sinoe $f$ is a nowhere zero differentiable
function on the arcwise connected $B[z_{0}]$ , it has a constant sign on $B[z_{0}]$ , and
consequently, for each $u\in M,$ $f$ is constant on $\pi^{-1}(u)\cap B[z_{0}]$ . Therefore by Theo-
rem 3.3, the recurrenoe covector of $S$ is globally a gradient.

It would be interesting to compare Theorem 6.1 with Walker’s result quoted

in \S 1. While Walker’s result asserts that if the curvature tensor of a Riemannian
connection is recurrent, then no matter whether it is null or non-null, its recur-
renoe covector is locally a gradient, our result asserts that for every non-null

recurrent tensor, its recurrenoe covector is globally a gradient. Moreover, our
proof is entirely different from Walker’s proof, which involves an extremely

delicate manipulation with indices.
Since every tensor is non-null with respect to a definite Riemannian metric,

an immediate consequenoe of Theorem 6.1 is the rather obvious result that every

recurrent tensor in a pseudo-Riemannian manifold with definite Riemannian metric
has a globally gradient recurrenoe covector.



RECURRENT TENSORS ON A PSEUDO-RIEMANNIAN MANIFOLD 29

As to null recurrent tensors Theorem 6.1 is not true in general. In fact,

Patterson [5, \S 4] has given an example of a recurrent tensor on an indefinite
Riemannian manifold whose recurrence covector is not even locally a gradient.
However, we have the following easy consequences of Theorem 3.1.

Proposition 6.2. Let $S$ be a null recurrent tensor on a pseudo-Riemannian

manifold M. Then
(a) The recurrence covector of $S$ is globally a gradient iff $S$ is co-direc-

tional to a null, parallel tensor field;
(b) The recurrence covector of $S$ if locally a gradient iff in a suitably

chosen neighbourhood of each point there exists a null, parallel tensor field
with which $S$ is co-directional.

A problem in the theory of Riemannian connection with recurrent curvature
on a pseudo-Riemannian manifold is to find a natural geometrical interpretation
of the recurrenoe covector, see e.g., [8, p. 238]. We end this section with an
interpretation of the recurrenoe covector of a non-null recurrent tensor. We
recall that for a non-null recurrent tensor $S$ , the norm $||S||$ of S-is a differenti-
able function on $M$ and is everywhere positive.

Theorem 6.3. Let $S$ be a non-nuu recurrent tensor on a pseudo-Riemannian

manifold $M,$ $\xi$ the recurrence covector and $||S||$ the norm of S. Then $\xi=$

$\nabla$($\log$ llSll).

Proof. Without loss of generality, we may assume that $S$ is of type $(2, 1)$ .
By Theorem 6.1, $\xi$ is of the form $\nabla W$ for some function $W$ on $M$. By Theorem
8.1, $e^{-W}S$ is covariantly constant. Choosing a $B[z_{0}]$ contained in $0(M)$ , we have,
on $B[z_{0}]$ ,

$e^{-W(\pi\iota)}S_{\gamma^{\beta}}^{\alpha}(z)=c_{r^{\beta}}^{\alpha}$ ,

where $S_{\gamma^{\beta}}^{\alpha}$ are the functions on $L(M)$ corresponding to $S$ and $c_{\gamma^{\beta}}^{\alpha}$ are constants,
not all zero. Then, using the notations in \S 5,

$||S_{\pi*}||^{2}=|\sum_{\alpha\beta\gamma}e_{\alpha}e_{\beta}e_{\gamma}(S_{\gamma^{\beta}}^{\alpha}(z))^{2}|=e^{2W(\pi*)}|\sum_{\alpha\beta\gamma}e_{\alpha}e_{\beta}e_{f}(c_{\gamma}^{\alpha\beta})^{2}|$ .
I.e.,

$||S_{u}||^{2}=e^{2W(u)}|\sum_{\alpha\beta\gamma}e_{\alpha}e_{\beta}e_{f}(c_{\gamma^{\beta}}^{\alpha})^{2}|$

for all $u\in M$. This means that

log $||S||=W+\frac{1}{2}$log
$|\sum_{a\beta\gamma}e_{\alpha}e_{\beta}e_{\gamma}(c_{\gamma^{\beta}}^{\alpha})^{2}|$

,
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and so
$\xi=\nabla W=\nabla(\log||S||)$ .
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