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1. Introduction. In a recent work [5], J. Spruck studied the stability of
minimal submanifolds of #-dimensional Euclidean space. In this note, we study
similar results in general ambient space. The author wishes to express his hearty
thanks to Prof. H. Kitahara for his kind advices and to Mr. M. Maeda for his
valuable suggestions.

2. Statement of results. Let M=M™ be an m-dimensional compact orientable
C*” manifold with boundary oM and let x; M—M" be a minimal immersion of M
into an n-dimensional Riemannian manifold M*. It is well known that if E is
a vector field on M* such that E|M is normal and E|0M=0, and if ¢, denotes
the flow generated by E in a neighborhood of M in M", then setting A@)=
volume ¢,(M), dA/dt|.-,=0. Wesay that M is (infinitesimally) stable if d*4/d¢¥|,,
>0, i.e., volume M is a strict minimum for all such variations.

Theorem 1. Let M"(n=4) be a complete stmply connected Riemannian
mantfold with sectional curvature —b:<K,<—o&b® for some constants b and &
such that b=0, 0<6=<1. Let x: M=M™(m=8)—M" be a minimal immersion
with the second fundamental form B, and let f: M—R be the SJunction defined
as f(p):=Max {||B||*(p)—modb®} for pe M. Then, there is a constant ¢i(m)>0
depending only on m such that if f""”dV)“”‘<cl(m), then (M, x) is stable.

Theorem 2. Let M(n=>4) beaRv,emanman manifold with sectional curvature
0<K,<b* and injectivity radius R(M)=b"'x Jor some constant b>0. Let x: M=
Mm™(m=8)->M" be a minimal immersion with the second fundamental form
B. Then, there 18 a fonstant c:(m)>0 depending only on m such that if
(§ (IlBII”+mb’)’"/2dV> <cy(m), then (M, x) 18 stable.

Remark. If 5=0 in [Theorem 1, then our Theorem reduces to the Theorem
2 in [5]. We note that the condition on injectivity radius B(M) of M in Theorem
2 holds for complete simply connected n-dimensional manifolds with (1/4)b<

* The author wants to thank the referee for pointing out some gaps in his first proof
and for his kind advices.
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K,<b* (e.g., n-dimensional sphere of radius 1), and for complete simply connected
Riemannian symmetric spaces with 0< K,<b®, and for compact even-dimensional
orientable manifolds with 0< K,<b.

3. The second variation. Let M=M" be an n-dimensional Riemannian
manifold with metric <, > and connection 7. Let x: M=M™->M be a minimal
immersion. We denote by <,> and V' the induced Riemannian metric and the
induced Riemannian connection on M respectively. The tangent and normal bundle
of M are denoted by TM and NM respectively, and X7, X* denote the projection
of a vector field X along the mapping « onto T'M, NM respectively. The second
fundamental form B: TM X TM—NM of the immersion « is given by

B(X, Y)=VY—(FY)"=FY)" .

Let {e,, **-, ex} be an orthonormal basis of TM, and let K€ NM,, where
TM, and NM, are the tangent and normal vector space of M at pe M respec-
tively. We define

IBE)I*:=2, (<Bles, ey), E>).

It is easy to see that ||[B(X)|| is independent of the choice of an orthonormal
basis of TM, and that if E is unit, ||B(K)||* is the squares of the principal
curvatures of M at p with respect to the unit normal direction £. Let {E,, ---,
E,_.} be an orthonormal basis of NM,. Then the quantity

[1BI1*:=2 || B(EWII*

is the square of the length of the second fundamental form.

We next define the Laplace operator 4: '(NM)—I'(NM), where I'(NM) denotes
the space of C* normal vector fields on M. We define the connection V3 in NM
as Piv=F )" for XeI'(TM), ve I'(NM), where I'(TM) denotes the space of C”
tangent vector fields on M. In terms of this connection

(A”)(p):':%: {Vele:/”— (V;ejcj)v}(p)

where {e;, * -+, €5} is an orthonormal basis of T'M,.
Let us denote by R the curvature tensor field of M. And set
R(X)':; Rc/.xef

for each vector X € TM,, where {e;, *++, €} is an orthonormal basis of TM,,.
We can state the second variation formula (cf. [3]):
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d*A
dt?

for a variation vector field Ee€ I'(NM), E|loM=0, where dV is the volume element
of M. ' ‘

We analyze this formula further by writing E=wuv, where v is & unit normal
vector field on M and % is a C* funetion on M vanishing on dM. Then

4dE= ; ol s(uv) _Vf.pj(u”)}
= Z,: Weles(wp+ub;p)— W e) (Wy—ulz, o v}

=2 Ueslesw) —(Foe)uby+ull oy cp— oy -+ 20, (V2 0}
=(du)v+ uAv+2Z',e;(u)V§:”

(1)

= —SMKE, AB>+||B(E)|*—(R(E), EXdV

where 4u is the Laplacian of w. Hence

(2) KE, AE>=udu+u*y, 4v)
since <y, V;p>=0.

Combining (1) and (2) we have the formula

d:A

(3) dt?

= | G, s>+ IBGI—<E6), DuwldV

In what follows, we consider only the case where M is assumed to satisfy
the curvature condition of namely 0<K,<b? where b is a positive
real number, the other case is similar.

Lemma 1. Assume 0<K,<b:. Then

d*A
dt?

g—s {(wdu+(1| Bl*+mb)usld V
t=0 M
- SM{IVul”—(I |Bll*+mb)utldV

where Vu 18 the gradient vector field of u.

Proof. Since ||B()||*)<||B||* and <R(E), E>=uXR®), v>=—mb*u* we need
only show <y, 44>=<0. For <, Av>=§}<v, eV ap—F #q,,v>= }’_:Kv, i,Vi,v>=—-—2;]|V V%
Here we have used the identities <y, F4u>=0 and 0=X<y, Fiv>=|FLv|*+<y, PiPiv>
for each vector field X on M. Substitution in (3) completes the proof.

From this Lemma we see that M is stable if we can show that

(4) S (llB|I2+mb’)u2dV<S PuldV
M M
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for all ##0 in the Sobolev space I:°I1(M).

4. Proof of Theorem 2. At first, applying the Sobolev inequality of D.
Hoffman and J. Spruck [2] we get the following Lemma.

Lemma 2. Assume 0<K,<b?, and let x: M—>M be a minimal immersion
and h be a mon-negative C* function on M vanishing on oM. Then

(th’m/(m—ﬁ)d V)(m—z)/”"gc2 (m)? (S”Whlzd V)uz

provided
b(1—a)~(az* Vol (supp Aym <
and
20<R(M) (the ingjectivity radius of M)
where

p=>b"tsin™! [2b(1—a) " */™(wz* Vol (supp h))*/™] .
Here a i8 a free parameter 0<a<l and

cx(m)=cy(m, a)=(1/7)2' ™a(l—a)/"((m—2)/m)wy™

(=the same constant in .

Proof. At first we notice that there is a gap in the proof of Lemma 4.2.
in [2]. But we can supply the gap and then have the Sobolev inequality in the
following form:

Under the same assumptions and the same notations of this Lemma we have

([, pmerav) ™™ s oom | whiav
n M

because of M is minimal, where ¢(m)=c(m, a)=r2"a"(1—a)"/"™(m/(Mm—1))w;*/™.
So, replacing h by h¥m-0/m-2 jn the Sobolev inequality gives

(S h”"'/("‘_‘”dV>(m_1)/m§0(m)s M—_-llh"‘""‘“”thldV.
o M m—2

By Holder’s inequality

(S hﬁm/(u—z)dv)(m_1)/m§c(m)M<S hz’“/("‘““dV)M(S,Whl’dvy“.
1% m—2 M

Therefore by virture of ¢(m)2(m—1)/(m—2)=c,(m)~* we get
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m— m 1/
(] mreoav) ™ semy([ warav)”.
M M

This completes the proof.

Remark. It ig easy to see that ¢,(m) is maximum when a=m/(m-+1) .From
the definition of I,(M) we see that holds for any he II,(M) which
satisfies the conditions of this Lemma. And we can easily show that

(S (nBl|=+mb2)m/2dv)””'<c,(m)
M
implies b(1—a) *™(w,' Vol M)/™<1/2 and hence
oo =b7" sin™ [2b(1—a)*™(w;* Vol M)/»]<—Cb™*

implies 20,<7b~'<R(M). Therefore we see that the conditions of
imply the conditions of Lemma 2.

Now we are going to prove Theorem 2. As we have just remarked inllihe
previous section, we need only show that the hypothesis (1 BlI2+mb2)™/2d V) <

c:(m) implies (4). Suppose for contradiction that (4) is f‘a[.lse, namely
(5) | S quI*dVéS (1BlI*+mbYud V
M M

for some uel‘h(M), % # V. By the property of H,(M) we can assume that the
function % in the inequality (5) satisfies =0 on M. Then from (or
from Remark of

(m—2)/2m 1/2
(6) (S u=m/<m-2>dv) §cg(m)‘1(s |Vu|=dv> .
M M
Then from (5) we have
(m—2)/2m 1/2
(7) (S u='~/<'~-2>dv) gc,(m)-l(g (uBn2+mb=>u=dV) .
M M
But by Holder’s inequality
»n m—2)/m
(8) S (IIBII’+mb’)u’dV§<S (IIBII’+mb’)”‘”dV>N (S wme-g )"
M M M
Combining (7) and (8) gives

(m—2)/2m

(Lu"""”d V)(m_mm§c,(m)"1(sx(lIBII2+mb’)"'”d V)U.(S”u’”‘/""”d )
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1/m
Hence <S (1| B]12+mb*)™/2d V) =cy(m) contradicting our assumption.
M

5. Appendix. We shall show that in the (m-1)-dimensional unit sphere
S»*! with the canonical Riemannian metric structure there are many compact
orientable; minimal submanifolds with boundary which satisfy the condition of
Theorem 2. At first, we note that M:=S™*'(n=m+1) satisfy the hypotheses of
for b=1, i.e., it is of constant éectional curvature K,=1 and injectivity
radius B(M)=r.

For any a, 0<a<l1, let

2i={e=(", ---, 2™*") e 8™ 2" 20},

where S™ is the m-dimensional unit sphere of E™*!. Since S™ is an orientable,
totally geodesic submanifold of S™*!, M:=23X" is a compact orientable, totally
geodesic submanifold of S™** and with boundary 037 ={r=(z, -, a™*)e€
S»; x™*'=qa}, On the other hand, volume X7 is a decreasing continuous function
of a, 0<a<1, and volme 27—0 as a—1. Thus have certainly a constant a satisfying

the condition of ie.,

<S <||B||2+m)’“’2dV)1/m=m1’z<Vol Ip)Hm<oy(m)
M

Therefore we have in S™*' a compact orientable, totally geodesic (and hence
minimal) submanifold 27 with boundary which is stable.

To get other compact orientable, minimal submanifolds with boundary which
are stable, we consider R™*2, the (m+2)-dimensional Euclidean space, as R?*'X
R+t let

2o(r)={x= (2", -+, x**") € 8?(r); a**'=a},
279(3)”—“{?:(?!‘, Y ﬂ"“) € Sq(s); y‘ﬁ'lgn&} ’

where p+q=m and 7, >0, r*+s*=1 and 0<a, B<1, and S?(r) (resp. S¥s)) is the
p-dimensional sphere of radius 7 in R?*! (resp. the g-dimensional sphere of radius
8 in R***). Then Z%(r)xX2%(s) a compact orientable hypersurface of S»+: and with
boundary (03%(r)xX2%(8)U (Z2(r)x02%(8)). It is easy to see that the second funda-
mental form B has eigen-values s/ of multiplicity »p and —r/s of multiplicity gq.
And hence I%(r)X3%(s) is minimal if and only if »r= v p/m, s=+'q/m. Thus,
when M:=232(r)XZX%(s) is minimal, we have ||B|[*=m. Then from the previous
discussion we have certainly constants a, 8 satisfying the condition of

i.e.,
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1/m - -
(S (| IBII2+m)’”/2dV> =(2m)*/* Vol Z2(v p/m) Vol 24(v q/m) < cs(m) .
M

Therefore we have in S™*! a compact orientable, minimal submanifold 32(v p/m) X
2(v/g/m) with boundary which is stable, but not totally geodesic.
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