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1. Introduction and result

In [3, Lemma 2], Finkelstein proved the law of the iterated logarithm for
sequences of independent identically distributed random vectors. Analogical result
for m-dependent random vectors was obtained by Yokoyama [8, Lemma 3]. The
$prf$ of Lemma 3 in [8] is based on the result of [7], the law of the iterated
logarithm for one-dimensional $\phi$-mixing stationary processes. From this point of
view, we can easily see that the law of the iterated logarithm for multi-dimen-
8ional mixing processes is induced from the law for one-dimensional cases.

Let $\{X_{n}, -\infty<n<\infty\}$ be a 8equence of random variables defined on some
probability space $(\Omega, \mathcal{B}, P)$ which is strictly stationary and satisfies one of the
following conditions:

(I) $sup|P(A\cap B)-P(A)P(B)|/P(A)=\phi(n)\downarrow 0$ $(n\rightarrow\infty)$

(the $\phi$-mixing condition) and

(II) $sup|P(A\cap B)-P(A)P(B)|=\alpha(n)$ I $0$ $(n\rightarrow\infty)$

(the strong mixing condition).

Here the supremum is taken over all $A\in \mathscr{M}_{-\infty}^{k}$ and $B\in \mathscr{M}_{k+n}^{\infty}$ , and $\mathscr{M}_{a}^{b}(-\infty\leq$

$a<b\leq\infty)$ denotes the $\sigma- field$ generated by $X_{a},$
$\cdots,$

$X_{b}$ .
Let $\{Z_{n}=(Z_{n1}, \cdots, Z_{np}), -\infty<n<\infty\}$ be a strictly stationary sequence of ran-

dom vectors deflned on $(\Omega, \mathcal{B}, P)$ with values in p-dimensional Euclidean space
$R^{p}(p\geq 1)$ . For $\{Z_{n}\}$ , mixing conditions (I) and (II) are defined in the same manner,
here.$\mathscr{M}_{a}^{l}$ is generated by $Z_{a},$

$\cdots,$
$Z_{b}$ . If $\{X_{a}, \cdots, X_{b}\}$ and $\{Z_{a}, \cdots, Z_{t}\}$ generate

the same a-field $X_{a}^{b}$ for $-\infty\leq a<b\leq\infty$ , then $\{X_{n}\}$ and $\{Z_{n}\}$ have the $8ame$

mixing coefficients $\phi(n)$ or $\alpha(n)$ . If $\{X_{n}\}$ has the same mixing coefficients as $\{Z_{n}\}$ ,
then we denote $\{X_{n}\}$ by $\{X.(Z)\}$ . In what follows, we assume that $EX_{0}=0$ ,
$EZ_{0}=0$ and $ 0<\sigma^{2}=EX_{1}^{2}+2\sum_{j=2}EX_{1}X_{j}<\infty\infty$ .

Let $K$ be the p-th order symmetric positive definite matrix $\{K_{f}\}$ with inverse
$\{K^{\ell f}\}$ , and let $H(K)$ be the reproducing kernel space with reproducing kernel $K$,
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that is, $H(K)$ consists of all p-dimensional vectors $x=(x_{1}, \ldots, x_{p})$ with inner
product

(1) $\langle x, y\rangle_{K}=\sum_{\ell,j=1}^{p}x_{\ell}K^{j}y_{j}$ for $x,$ $y\in H(K)$ .
Put

(2) $\Delta_{\ell j}=EZ_{1\ell}Z_{1j}+\sum_{k=2}^{\infty}EZ_{1j}Z_{kj}+\sum_{k=2}^{\infty}EZ_{k\ell}Z_{1j}$ , $i,$ $j=1,$ $\cdots,$ $p$ ,

if these series converge. Define the $p$-th order matrix $\Delta$ by

(3) $\Delta=\{\Delta_{ij}\}$ .
Further, when $\Delta$ is positive definite, let $B_{p}$ denote the unit ball of $H(\Delta)$ , i.e.,

(4) $B_{p}=\{xeR^{p};||x||_{A}\leq 1\}$

where $||\cdot||_{\Lambda}$ denotes the norm of $H(\Delta)$ which is defined as $||x||_{4}^{2}=\langle x, x\rangle_{\Delta}$ for
$x\in H(\Delta)$ .

Theorem 1. Suppose that the sequence $\{Z_{n}=(Z_{n1}, \cdots, Z_{np}), -\infty<n<\infty\}$ satis-
fies (I) or (II) and that the matrix $\Delta$ is positive definite. Suppose further
that the sequences $\{X_{n}(Z)\}$ obey the law of the iterated logarithm, then with
probability 1, the sequence

(5) $\Sigma_{n}=\frac{\Sigma_{\ell=1}nZ}{(2n\log\log n)^{1/2}}$ , $n=8,4,$ $\cdots$

is relatively compact and the set of its limit pojnts is $B_{p}$ .
Let $R^{p}$ be the conjugate space of $R^{p}$ and let

(6) $\sigma_{T}^{2}=E\{(TZ_{1})^{2}\}+2\sum_{j=2}^{\infty}E\{(TZ_{1})(TZ_{j})\}$ for $\tau\in R^{p}$ .

We easily show that if the series in (2) converge for $i,$ $j=1,$ $\cdots,$ $p$ and $\Delta$ is posi-

tive definite, then $\sigma_{T}^{2}=||T||_{A^{-1}}^{2}$ and $\sigma_{T}^{2}=0$ if and only if $T=0$ . The rest of the
proof of Theorem 1 is obtained in the same line as the $prf$ of Lemma 3 in [81

by using Lemma 3 in [2, p. 1721.

2. Applications

Rezn$ik[7]$ , Oodaira-Yoshihara [61 and many authors have shown that the
law of the iterated logarithm for mixing processes holds under the 8uitable con-
ditions for decays of mixing coefficients. In view of Theorem 1, we 8hall show
their multivariate $ver8ions$ .
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(C-1) (see [4, Corollary 3]) $\{Z_{n}\}$ satisfies (I) with
1. $ E||Z_{n}||^{2+\delta}<\infty$ for some $\delta>0$ ( $||\cdot||$ is the usual Euclidean norm);

2. $\Sigma\{\phi(n)\}^{(1+\delta)/(2+\delta)}<\infty$ .
(C-2) (see [6, Theorem 4]) $\{Z_{n}\}$ satisfies (II) with
1. $||Z_{n}||<C<\infty$ with probability1;
2. $\alpha(n)=O(1/n^{1+}*)$ for some $\epsilon>0$ .
(C-3) (see [6, Theorem 5]) $\{Z_{n}\}$ satisfies (II) with
1. $ E||Z.||^{2+\delta}<\infty$ for some $\delta>0$ ;
2. $\Sigma\{\alpha(n)\}^{\delta\prime/(2+\delta^{\prime})}<\infty$ for some $\delta^{\prime}(0<\delta^{\prime}<\delta)$ .
Theorem 2. Suppose that the matrix $\Delta$ is positive definite and that one

of the conditions (C-1), (C-2) and (C-3) is satisfied, then with probability1,
the sequence

$\Sigma_{n}=\frac{\Sigma_{i=1}^{n}Z}{(2n\log\log n)^{1/2}}$ , $n=3,4,$ $\cdots$

is relatively compact and the set of its limit points is $B_{p}$ .
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