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The aim of this note is to give an extension of some results of Nashed and
Wong [8] and Ishikawa and Fujita [1], by permitting nonlinearity. The8e authors
considered mappings $U+C$ where $U$ was linear and $C$ a compact map. The former
let 8ome power $U^{p}$ be a contraction, while the latter let $U^{P}$ be a k-set-contraction,
$k<1$ . A result in which $I-U$ ha8 been replaced by a Fredholm operator has been
given by Mawhin [2].

I am grateful to Profe88or Nashed, who pointed out to me that we want to
let $U$ be nonlinear.

Two simple fixed point theorems are given here, one following [1] and the
other [31, together with an application as in [3].

Lemma 1: Let $X$ be a Banach space. Let $A:X\rightarrow X$ be Lipschitz. For
$f\in X$, let $A_{f}:X\rightarrow X$ be defined by $A_{f}x=Ax+f$. $Suppo\epsilon e$ there $exi\epsilon ts$ a positive
integer $N$ and a real number $\alpha<1$ such that for au $f$ in $X$, $(A_{f})$“ has
Lipschitz $ norm\leq\alpha$. Then $I-A$ is bijective, and $(I-A)^{-1}$ has $Lip\epsilon chitz$ $ norm\leq$

$(1-\alpha)^{-1}(1+\cdots+||A||^{N-1})$ , where $||A||$ is the Lipschitz norm of $A$ .
Proof: Given $f\in X$, to solve $(I-A)x=f$ we want a unique fixed point of $A_{f}$.

A unique fixed point of $(A_{f})^{N}$ exists by the contraction mapping principle. By
uniqueness, this is a fixed point of $A_{f}$.

Let $x-- Ax=f$ and $y-- Ay=g$ . Put $K=(1-\alpha)^{-1}(1+\cdots+||A||^{N-1})$ . We want to
show $||x-y||\leq K||f-g||$ . Define $B:X\rightarrow X$ by $Bz=A(z+x)+r-x$ . Then $BO=0$

and the two equation8 above may be written $O-BO=0$ and $(y-x)-B(y-x)=g-f$.
Now $B$ has Lipschitz nom $||A||$ , and $(B_{h})$“ has Lipschitz norm $\leq\alpha$ for all $h\in X$.
That is, we could have assumed $AO=0$ and $f=0$. Since $B_{g-f}(0)=g-f$ and $B_{g-f}$

has Lipschitz norm $||A||$ ,

$||(B_{g-f})^{N}(0)||\leq||0-B_{g-f}(0)||+\sum_{i=1}^{N-1}||(B_{-f})^{i}(0)-(B_{g-f})^{i+1}(0)||$

$\leq||g-f||$ ($1+||A||+\cdots+|$ IAli“-,).

Becau8e $(B_{g-f})^{N}$ ha8 Lip8chitz constant $\leq\alpha$, for $z$ in $X$, $||(B_{g-f})^{ff}z||\leq\alpha||z||+$

$||g-fl|(1+\cdots+||A||-1)$ .
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The right hand side is $<||z||$ if $||z||>K||g-f||$ . Hence, the fixed point of
$(Bff-f)^{N}$ has norm$\leq K||g-f||$ . That is, $||y-x||\leq K||g-f||$ . q.e.d.

Theorem 1: Let $A$ satisfy the hypotheses of Lemma 1. Let $B$ be a bounded
nonempty closed convex subset of X. Let $C:B\rightarrow X$ be compact. That is, $C$ is
continuous and takes bounded sets to relatively compact sets. If $(I-A)^{-1}C(B)\subseteq B$

then $A+C$ has a fixed point in $B$ .
Proof: By Lemma 1, $(I-A)^{-1}C$ is continuous. By the Schauder fixed point

theorem it has a fixed point.

Corollary 1; Let $A$ and $B$ be as in Theorem 1. Let $C:B\rightarrow X$ be compact.

If $Ax+Cy\in B$ for all $x$ in $B$ and $y$ in $B$ then $A+C$ has a fixed point in $B$ .
Proof: For $y\in B,$ $A_{\sigma\nu}$ takes $B$ to $B$ . Hence, $(A_{Cy})^{N}$ , and also $A_{Cy}$ , have a

unique fixed point in $B$ . Thus, $(I-A)^{-1}C(B)\subseteq B$ .
Corollary 2: Let $A$ be as in Theorem 1. Let $C;X\rightarrow X$ be compact. If

$\lim\sup||x||\rightarrow\infty||x||^{-1}||Cx||<(1-\alpha)(1+||A||+\cdots+||A||^{N-1})^{-1}$ then $R(I-A-C)=X$.
Lemma 2: Let $Y$ be a Banach space, and let $[a, b]$ be bounded interval in

R. Let $F:[a, b]\times[a, b]\times Y\rightarrow Y$ be a function such that for $y\in Y$, the function
$(t, s)\rightarrow F(t, s, y)$ is strongly measurable. Suppose $F(t, s, 0)$ is in $L^{2}([a, b1\times[a, b];Y)$ .

Let $V:[a, b]\times[a, b]\rightarrow R$ be measurable and let $supa\leq t\leq b\int_{a}^{\ell}|V(t, s)|^{2}ds=M^{2}<\infty$ .
Suppose that for $t$ and $sa.e$ . in [$a,$ $b1$ and $x$ and $y$ in $Y$,

$||F(t, s, x)-F(t, s, y)||\leq V(t, s)||x-y||$ .
Then we may define $A:L^{2}([a, b1;Y)\rightarrow L^{2}([a, b)];Y)$ by

$Ax(t)=\int_{a}^{\ell}F(t, s, x(s))ds$ .

Given $n$ elements $g(i)(1\leq i\leq n)$ in $L^{2}([a, b1;Y)$ , the map $\prod_{\ell=\iota}^{n}A_{g(i)}$ has Lipschitz

norm $M^{n}((b-a)^{n}/n!)^{1/2}$ . In particular, given $\beta\in(0,1)$ , there exists $N$ such that

for any $N$-tuple $g(i)(1\leq i\leq N),\prod_{\ell=\iota}^{*}A_{g(i)}$ has Lipschitz $ norm\leq\beta$ .
Proof: Given $x$ in $L^{2}([a, b];Y),$ $||F(t,$ $s,$ $x(s)||\leq V(t, s)||x(s)||+||F(t, s, 0)||$ .

Hence, $Ax$ is in $L^{2}([a, b];Y)$ . The proof about the Lipschitz norm of $\prod_{i=1}^{\sim}A_{g(i)}$ is by

induction. q.e. $d$ .
Theorem 2: Let $A$ be as in Lemma 2. Suppose $K\in L^{2}([a, b1\times[a, b1;R)$ .

Suppose $g:[a, b]\times Y\rightarrow Y$ has the property that $g(s, u)$ is strongly measurable in
$s$ for $u$ in $Y$ and for $sa.e$ . it is continuous in $u$ . Suppose for $sa.e$ . in $[a,$ $b1$
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and $u$ in $Y$,

$||g(s, u)||\leq\Sigma g_{i}(s)||u||^{1-\beta(\ell)}+g_{0}(s)$

where $g_{0}\in L^{2}([a, b];R)$ and $g_{i}\in L^{2/\beta(\ell)}$ , where $0<\beta(i)<1$ , for $1\leq i\leq n$ . Define
$C:L^{2}([a, b1;Y)\rightarrow L^{2}([a, b];Y)$ by

$Cx(t)=\int_{a}^{b}K(s, t)g(s, x(s))ds$ .

Then $I-A-C$ is surjective.

Proof: $C=HG$ where $Hx(t)=\int_{a}^{b}K(s, t)x(s)ds$ and $Gx(s)=g(s_{1}x(s))$ . $H$ is com-
pact, giving $C$ compact. By Lemma 2, $A$ satisfies the conditions of Lemma 1.
Since $||Gx||/||x||\rightarrow 0$ as $||x||\rightarrow\infty$ ,

$\lim_{||x||}\sup_{\rightarrow\infty}||Cx||/||x||<(1-\alpha)(1+\cdots+||A||^{N-1})^{-1}$ .
The result follows by Corollary 2. q.e. $d$ .

We recall [4] that if $(Y, d)$ is a bounded metric space, then the measure of
noncompactness $\gamma(Y)$ equals inf {$d>0$ ; there exists a finite number of sets $S_{1}\cdots S_{n}$

such that $Y=\bigcup_{\ell=1}^{n}$ Si and diameter $(S_{i})\leq d$}. If $Y_{1}$ and $Y_{2}$ are metric spaces and
$f:Y_{1}\rightarrow Y_{2}$ is continuous, $f$ is called a k-set-contraction if for every bounded subset
$S$ of $Y,$ $f(S)$ is bounded and $\gamma_{2}f(S)\leq k\gamma_{1}(S)$ .

Lemma 3: Let $A:X\rightarrow X$ be a Lipschitz mapping of a Banach space.
Suppose $\alpha<1$ and $N$ a positive integer, and for au $g(1)\cdots g(N)$ in $X,\prod_{\ell=1}^{N}A_{g(i)}$

has Lipschitz $ norm\leq\alpha$ . Let $C:X\rightarrow X$ be compact. Then $(A+C)^{N}$ is an a-set-
contraction.

Proof: Let $S$ be bounded. Take $R$ with $(A+C)^{i}(S)\subseteq B_{R}(0)$ for $1\leq i\leq N$.
Given $\epsilon>0$ , let N. be a finite $e$ net for $C(B_{R}(0))$ . We claim that for $x$ in $S$, and
each positive integer $n\leq N$, there is an n-tuple $z(i)(1\leq i\leq n)$ of elements of $N_{l}$

such that

Il $(A+C)^{n}x-\Pi A_{z(i)}(x)||<\epsilon(1+||A||\cdots+||A||^{n-1})$ .
The proof is by induction. It follows that $(A+C)^{N}(S)$ is contained in an
$\epsilon(1+\cdots+||A||^{N-1})$ neighborhood of $\cup\{\prod_{\ell=1}^{N}A_{z(i)}(S):z(i)(1\leq i\leq N)$ an N-tuple of ele-
ments of $NJ$ .

$N$

Since $\gamma\cup\prod_{\ell=1}A_{z(\ell)}(S)\leq\alpha\gamma(S)$ , we have $\gamma(A+C)^{N}(S)\leq\alpha\gamma(S)+2\epsilon(1+\cdots+||A||^{N-1})$ .
The result follows because $e>0$ was arbitrary. q.e. $d$ .
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Theorem 3: Let $B$ be a closed bounded convex subset of a Banach space
$X$, having nonempty interior. Suppose $A;X\rightarrow X$ is $C^{1}$ and satisfies the condi-
tions of Lemma 3. Let $C:X\rightarrow X$ be compact and $C^{1}$ . Let the closure of $(A+C)B$

be contained in the interior of $B$.
Then $A+C$ has a fixed point in $B$ .
Proof: by [4, Corollary 101 we need only show $(A+C)^{N}$ is a k-set-contraction,

$k<1$ , for some $N$. This holds by Lemma 3. q.e. $d$ .
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