FIXED POINTS FOR $U+C$ WHERE U IS LIPSCHITZ AND C IS COMPACT

By
Bruce Callert

(Received December 21, 1974)
The aim of this note is to give an extension of some results of Nashed and Wong [3] and Ishikawa and Fujita [1], by permitting nonlinearity. These authors considered mappings $U+C$ where U was linear and C a compact map. The former let some power U^{p} be a contraction, while the latter let U^{p} be a k-set-contraction, $k<1$. A result in which $I-U$ has been replaced by a Fredholm operator has been given by Mawhin [2].

I am grateful to Professor Nashed, who pointed out to me that we want to let U be nonlinear.

Two simple fixed point theorems are given here, one following [1] and the other [3], together with an application as in [3].

Lemma 1: Let X be a Banach space. Let $A: X \rightarrow X$ be Lipschitz. For $f \in X$, let $A_{f}: X \rightarrow X$ be defined by $A_{f} x=A x+f$. Suppose there exists a positive integer N and a real number $\alpha<1$ such that for all f in $X,\left(A_{f}\right)^{N}$ has Lipschitz norm $\leq \alpha$. Then $I-A$ is bijective, and $(I-A)^{-1}$ has Lipschitz norm \leq $(1-\alpha)^{-1}\left(1+\cdots+\|A\|^{N-1}\right)$, where $\|A\|$ is the Lipschitz norm of A.

Proof: Given $f \in X$, to solve $(I-A) x=f$ we want a unique fixed point of A_{f}. A unique fixed point of $\left(A_{f}\right)^{N}$ exists by the contraction mapping principle. By uniqueness, this is a fixed point of A_{f}.

Let $x-A x=f$ and $y-A y=g$. Put $K=(1-\alpha)^{-1}\left(1+\cdots+\|A\|^{N-1}\right)$. We want to show $\|x-y\| \leq K\|f-g\|$. Define $B: X \rightarrow X$ by $B z=A(z+x)+f-x$. Then $B 0=0$ and the two equations above may be written $0-B 0=0$ and $(y-x)-B(y-x)=g-f$. Now B has Lipschitz norm $\|A\|$, and $\left(B_{h}\right)^{N}$ has Lipschitz norm $\leq \alpha$ for all $h \in X$. That is, we could have assumed $A 0=0$ and $f=0$. Since $B_{g-f}(0)=g-f$ and B_{g-f} has Lipschitz norm $\|A\|$,

$$
\begin{aligned}
\left\|\left(B_{g-f}\right)^{N}(0)\right\| & \leq\left\|0-B_{g-f}(0)\right\|+\sum_{i=1}^{N-1}\left\|\left(B_{g-f}\right)^{i}(0)-\left(B_{g-f}\right)^{i+1}(0)\right\| \\
& \leq\|g-f\|\left(1+\|A\|+\cdots+\|A\|^{N-1}\right) .
\end{aligned}
$$

Because $\left(B_{g-f}\right)^{N}$ has Lipschitz constant $\leq \alpha$, for z in $X,\left\|\left(B_{g-f}\right)^{N} z\right\| \leq \alpha\|z\|+$ $\|g-f\|\left(1+\cdots+\|A\|^{N-1}\right)$.

The right hand side is $\langle\|z\|$ if $\|z\|>K\|g-f\|$. Hence, the fixed point of $\left(B_{g-f}\right)^{N}$ has norm $\leq K\|g-f\|$. That is, $\|y-x\| \leq K\|g-f\|$.
q.e.d.

Theorem 1: Let A satisfy the hypotheses of Lemma 1. Let B be a bounded nonempty closed convex subset of X. Let $C: B \rightarrow X$ be compact. That is, C is continuous and takes bounded sets to relatively compact sets. If $(I-A)^{-1} C(B) \subseteq B$ then $A+C$ has a fixed point in B.

Proof: By Lemma 1, $(I-A)^{-1} C$ is continuous. By the Schauder fixed point theorem it has a fixed point.

Corollary 1; Let A and B be as in Theorem 1. Let $C: B \rightarrow X$ be compact. If $A x+C y \in B$ for all x in B and y in B then $A+C$ has a fixed point in B.

Proof: For $y \in B, A_{c y}$ takes B to B. Hence, $\left(A_{c y}\right)^{N}$, and also $A_{c y}$, have a unique fixed point in B. Thus, $(I-A)^{-1} C(B) \subseteq B$.

Corollary 2: Let A be as in Theorem 1. Let $C: X \rightarrow X$ be compact. If $\lim \sup _{\|x\|-\infty}\|x\|^{-1}\|C x\|<(1-\alpha)\left(1+\|A\|+\cdots+\|A\|^{N-1}\right)^{-1}$ then $R(I-A-C)=X$.

Lemma 2: Let Y be a Banach space, and let $[a, b]$ be bounded interval in R. Let $F:[a, b] \times[a, b] \times Y \rightarrow Y$ be a function such that for $y \in Y$, the function $(t, s) \rightarrow F(t, s, y)$ is strongly measurable. Suppose $F(t, s, 0)$ is in $L^{2}([a, b] \times[a, b] ; Y)$.

Let $V:[a, b] \times[a, b] \rightarrow \mathbf{R}$ be measurable and let $\sup _{a \leq t \leq b} \int_{a}^{t}|V(t, s)|^{2} d s=M^{2}<\infty$. Suppose that for t and s a.e. in $[a, b]$ and x and y in \bar{Y},

$$
\|F(t, s, x)-F(t, s, y)\| \leq V(t, s)\|x-y\| .
$$

Then we may define $\left.A: L^{2}([a, b] ; Y) \rightarrow L^{2}([a, b)] ; Y\right)$ by

$$
A x(t)=\int_{a}^{t} F(t, s, x(s)) d s
$$

Given n elements $g(i)(1 \leq i \leq n)$ in $L^{2}([a, b] ; Y)$, the map $\prod_{i=1}^{n} A_{q(i)}$ has Lipschitz norm $M^{n}\left((b-a)^{n} / n!\right)^{1 / 2}$. In particular, given $\beta \in(0,1)$, there exists N such that for any N-tuple $g(i)(1 \leq i \leq N), \prod_{i=1}^{n} A_{g(i)}$ has Lipschitz norm $\leq \beta$.

Proof: Given x in $L^{2}([a, b] ; Y), \| F(t, s, x(s)\|\leq V(t, s)\| x(s)\|+\| F(t, s, 0) \|$. Hence, $A x$ is in $L^{2}([a, b] ; Y)$. The proof about the Lipschitz norm of $\prod_{i=1}^{n} A_{g(i)}$ is by induction.
q.e.d.

Theorem 2: Let A be as in Lemma 2. Suppose $K \in L^{2}([a, b] \times[a, b] ; \mathbf{R})$. Suppose $g:[a, b] \times Y \rightarrow Y$ has the property that $g(s, u)$ is strongly measurable in s for u in Y and for s a.e. it is continuous in u. Suppose for 8 a.e. in $[a, b]$
and u in Y,

$$
\|g(s, u)\| \leq \Sigma g_{i}(s)\|u\|^{1-\beta(i)}+g_{0}(s)
$$

where $g_{0} \in L^{2}([a, b] ; \mathbf{R})$ and $g_{i} \in L^{2 / \beta(i)}$, where $0<\beta(i)<1$, for $1 \leq i \leq n$. Define $C: L^{2}([a, b] ; Y) \rightarrow L^{2}([a, b] ; Y) b y$

$$
C x(t)=\int_{a}^{b} K(s, t) g(s, x(s)) d s
$$

Then $I-A-C$ is surjective.
Proof: $C=H G$ where $H x(t)=\int_{a}^{b} K(s, t) x(s) d s$ and $G x(s)=g(s, x(s)) . \quad H$ is compact, giving C compact. By Lemma 2, A satisfies the conditions of Lemma 1. Since $\|G x\| /\|x\| \rightarrow 0$ as $\|x\| \rightarrow \infty$,

$$
\lim _{\|x\| \rightarrow \infty} \sup _{\|}\|C x\| /\|x\|<(1-\alpha)\left(1+\cdots+\|A\|^{N-1}\right)^{-1}
$$

The result follows by Corollary 2.
q.e.d.

We recall [4] that if (Y, d) is a bounded metric space, then the measure of noncompactness $\gamma(Y)$ equals $\inf \left\{d>0\right.$: there exists a finite number of sets $S_{1} \cdots S_{n}$ such that $Y=\bigcup_{i=1}^{n} S_{i}$ and diameter $\left.\left(S_{i}\right) \leq d\right\}$. If Y_{1} and Y_{2} are metric spaces and $f: Y_{1} \rightarrow Y_{2}$ is continuous, f is called a k-set-contraction if for every bounded subset S of $Y, f(S)$ is bounded and $\gamma_{2} f(S) \leq k \gamma_{1}(S)$.

Lemma 3: Let A: $X \rightarrow X$ be a Lipschitz mapping of a Banach space. Suppose $\alpha<1$ and N a positive integer, and for all $g(1) \cdots g(N)$ in $X, \prod_{i=1}^{N} A_{g(i)}$ has Lipschitz norm $\leq \alpha$. Let $C: X \rightarrow X$ be compact. Then $(A+C)^{N}$ is an α-setcontraction.

Proof: Let S be bounded. Take R with $(A+C)^{i}(S) \subseteq B_{R}(0)$ for $1 \leq i \leq N$. Given $\varepsilon>0$, let N_{ε} be a finite ε net for $C\left(B_{R}(0)\right)$. We claim that for x in S, and each positive integer $n \leq N$, there is an n-tuple $z(i)(1 \leq i \leq n)$ of elements of $N_{\text {a }}$ such that

$$
\left\|(A+C)^{n} x-\Pi A_{z(i)}(x)\right\|<\varepsilon\left(1+\|A\| \cdots+\|A\|^{n-1}\right) .
$$

The proof is by induction. It follows that $(A+C)^{N}(S)$ is contained in an $\varepsilon\left(1+\cdots+\|A\|^{N-1}\right)$ neighborhood of $\cup\left\{\prod_{i=1}^{N} A_{z(i)}(S): z(i)(1 \leq i \leq N)\right.$ an N-tuple of elements of $\left.N_{4}\right\}$.

Since $\gamma \cup \prod_{i=1}^{N} A_{z(i)}(S) \leq \alpha \gamma(S)$, we have $\gamma(A+C)^{N}(S) \leq \alpha \gamma(S)+2 \varepsilon\left(1+\cdots+\|A\|^{N-1}\right)$. The result follows because $\varepsilon>0$ was arbitrary.
q.e.d.

Theorem 3: Let B be a closed bounded convex subset of a Banach space X, having nonempty interior. Suppose $A: X \rightarrow X$ is C^{1} and satisfies the conditions of Lemma 3. Let $C: X \rightarrow X$ be compact and C^{1}. Let the closure of $(A+C) B$ be contained in the interior of B.

Then $A+C$ has a fixed point in B.
Proof: by [4, Corollary 10] we need only show $(A+C)^{N}$ is a k-set-contraction, $k<1$, for some N. This holds by Lemma 3.

BIBLIOGRAPHY

[1] S. Ishikawa and H. Fujita: Some variants of a strict-set-contraction, Yokohama Math. J. 21 (1973), 83-87.
[2] J. Mawhin: The solvability of some operator equations with a quasibounded nonlinearity in normed spaces, J. Math. Anal. and Appl. 45 (1974), 455-467.
[3] M. Z. Nashed and J. S. W. Wong: J. Math. and Mech. 18 (1969), 767-777.
[4] R. D. Nussbaum: Some asymptotic fixed point theorems, Trans. Amer. Math. Soc. 171 (1972), 349-375.

University of Auckland, Auckland, New Zealand

