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1. Introduction and definitions.

Several definitions of a prime ideal in an arbitrary nonassociative ring have
been introduced. The recent one of Myung [12], based on a $*$-operation in the
family of ideals, effectively extended the results of Tsai [19] for Jordan rings

to a class of nonassociative rings which include both Jordan and alternative
rings.

The purpose of this paper is to establish a primary and tertiary ideal theory

for arbitrary nonassociative rings which is based on the notion of prime ideal
given by Myung [121. Throughout the paper we will deal with an arbitrary

nonassociative algebra $R$ over a commutative associative ring $\Phi$ with identity

rather than a nonassociative ring. We first recall some definitions in [121.

Definition 1.1. Let $R$ be an arbitrary nonassociative algebra and $I(R)$ be the
set of ideals in $R$ . A $*$-operation onR is a function from $\mathcal{J}(R)\times \mathcal{J}(R)$ into the
set of submodules of $R$ such that, for ideals $A,$ $B,$ $C,$ $D$,

$(^{*}1)$ if $A\subseteq C$ and $B\subseteq D$ then $A*B\subseteq C*D$,
$(^{*}2)$ $(O)*A=B*(O)=(O)$ ,
$(^{*}3)$ if $\overline{R}$ is a homomorphic image of $R$ then $\overline{A*B}=\overline{A}*\overline{B}$ .
It is shown in [12, Lemma 1.11 that in the presence of $(^{*}3)$ Condition $(^{*}2)$ is

equivalent to
$(^{*}2^{\prime})$ $A*B\subseteq A\cap B$ .
Various examples of $*$-operation for nonassociative rings are given in [12]

and [13], and for most of which $A*B$ happens to be an ideal of $R$ for ideals
$A,$ $B$ . In fact, we put.

Definition 1.2. A $*$-operation is said to be strong if *is a binary operation

on $J(R)$ .
* The author gratefully acknowledges that this research was supported by the Uni-
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In Section 2 we will construct various strong $*$-operations for most of the
well-known nonassociative algebras, which satisfy the following additional con-
dition.

Deflnition 1.3. A $*$-operation is said to be left-additive if $(A+B)*C\subseteq A*C+$

$B*C$ for all $A,$ $B,$ $C\in \mathcal{J}(R)$ . A right-additive $*$-operation is similarly defined.
This definition was introducted in [131 to generalize the results of Murata,

Kurata and Marubayashi [111 for associative rings to nonassociative rings. For
an arbitrary nonassociative algebra $R$ , one can easily construct a left-additive,
strong $*$-operation in $R$ (Section 2).

Specifically, this paper is divided into two parts. In the first part, we re-
visit the results of Myung [12] to include some larger classes of rings in the
present theory and then introduce the Baer lower radical into arbitrary algebras
by using a $*$-operation. An important application of this is that if $R$ is an s-
algebra then there exists a strong left-additive $*$-operation in $R$ which virtually

leads to the same prime radical as in Zwier [211. The most well-known s-algebras
are 2- and 3-algebras, and the largest known class of 3-algebras is the class of
weakly W-admissible algebras of Thedy [171 (Section 2). In the second part,
using a strong left-additive $*$-operation, we shall give a definition and basic
properties for primary ideals in an arbitrary nonassociative algebra which is
based on the concept of prime ideal disscussed in the first part. We then give
a necessary and sufficient condition in terms of $*$-operation for those algebras
in which the Lasker-Noether decomposition theorem holds. Finally, a $*_{- opera-}$

tion-analog of the tertiary ideal is introduced, and it is shown that, in a noetherian
algebra, any ideal can be represented as a finite intersection of tertiary ideals.

A remarkable advantage of the present theory is that a particular choice
of $*$-operation for an individual class of algebras yields a primary and tertiary
ideal theory in that class which seems to be in the best analogy with the classical
theory for associative rings and with the known theory for the Jordan case by
Tsai and Foster [201. If $R$ is an s-algebra then one can find a $*$-operation
which yields a primary ideal theory for s-algebras. In particular, if $R$ is a
weakly W-admissible algebra (a 3-algebra) and we set $A*B=AB^{2}+B^{2}A+(AB)B+$

$B(AB)+(BA)B+B(BA)$ for ideals $A,$ $B$ in $R$ , then it is shown that *is strong
and left-additive. Finally, we introduce a $*$-operation in a class of modules with
multi-operators under appropriate notion of ideal, so that the present theory
can be carried out to this class. A special case of this yields the primary ideal
theory of Tsai and Foster [20] for quadratic Jordan algebras.
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Definition 1.4. For any algebra $R,$ $f$ is defined to be function of $R$ into
$\mathcal{J}(R)$ such that for every $a$ in $R$

(f1) $aef(a)$ ,
(f2) if $x\in f(a)$ then $f(x)\subseteq f(a)$ ,
(f3) if $\overline{R}$ is a homomorphic image of $R$ then $\overline{f(a}$) $=f(\overline{a})$ .
The function $f$ is similar to one given in [11] and was introduced by Myung

[121 to generalize the notion of prime ideal in two ways by combining with $*_{-}$

operation. The basic example of $f(a)$ is the ideal $(a, S)$ generated by $a$ and a
fixed subset $S$ of $R$ . The most efficient example of $f(a)$ is the principal ideal
$(a)$ generated by $a$ in $R$ , to which we will restrict our attention for the second
part of this paper. If $A$ is an ideal of $R$ , we denote the ideal $\sum_{aeA}f(a)$ by $f(A)$ .
We then note that $A\subseteq f(A)$ and $f(A)\subseteq f(B)$ if $A\subseteq B$ , and also $f((a))=(a)$ . Let
$\mathcal{J}_{f}(R)=\{f(A)|A\in \mathcal{J}(R)\}$ . Then $\mathcal{J}_{f}(R)\subseteq \mathcal{J}(R)$ and, in particular, if $f(a)=(a)$ for
all $a\in R$ , then $f(A)=A$ and so $\mathcal{J}_{f}(R)=\mathcal{J}(R)$ .

2. Construction of the *-operation.

Let $X=\{x_{1}, x_{2}, x_{s}, \cdots\}$ be a fixed set of indeterminates and $\Phi\langle X\rangle$ be the free
nonassoeiative algebra over $\Phi$ generated by $X$. Let $R$ be an arbitrary nonas-
sociative algebra over $\Phi$ . If $ m(x_{1}, \cdots, x_{n})\in\Phi\langle X\rangle$ is a monomial and $A_{1},$

$\cdots,$
$A_{n}$

are submodules of $R$ , we denote by $m(A_{1}, \cdots, A_{n})$ the submodule of $R$ generated
by the elements $m(a_{1}, \cdots, a_{n}),$ $a_{\ell}\in A$ . Let $p(x_{1}, \cdots, x_{n})$ be an element in $\Phi\langle X\rangle$

and $p(x_{1}, \cdots, x_{n})=\sum m_{\ell}(x_{1}, \cdots, x_{n})$ be the sum of distinct monomials occuring in
$p$ . Then $p(A_{1}, \cdots, A_{n})$ means the submodule $\sum m_{i}(A_{1}, \cdots, A_{n})$ (note $p(A_{1}, \cdots, A_{n})$

does not necessarily equal the submodule generated by $p(a_{1}, \cdots, a_{n}),$ $a_{\ell}\in A_{\ell}$).

Let $w(x_{1}, \cdots, x.)$ denote the sum of all nonassociative words in $x_{1},$ $\cdots,$ $x_{n}$ whose
$x_{\ell}$-degrees are exactly 1 for all $i=1,$ $\cdots,$ $n$ . As usual, if $A$ is a submodule of
$R$ , we set $w(A, \cdots, A)=A^{n}$ . Then an easy induction on $n$ shows

$A^{n}=A^{n-1}A+A^{n-2}A^{2}+\cdots+AA^{n-1}$ with $A^{1}=A$ .
An algebra $R$ over $\Phi$ is called an s-algebra if $A^{*}$ is an ideal of $R$ for every
ideal $A$ in $R$ .

Example 2.1. Let $k\geq 1$ and $n>k$ , and let $p(x_{1}, \cdots, x_{k}, x_{k+1}, \cdots, x_{n})$ be an ele-
ment in $\Phi\langle X\rangle$ such that each monomial in $p$ has $x_{\ell}$-degree $\geq 1$ for some $1\leq i\leq k$

and for some $k\leq i\leq n$ . Setting $A*B=p(A, \cdots, A, B, \cdots, B)$ for ideals $A,$ $B$ in $R$

gives rise to a $*$-operation in $R$ . In particular, if we define $A*B$ to be the ideal
generated by $p(A, \cdots, A, B, \cdots, B)$ in $R$ , we obtain a strong $*$-operation, and
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furthermore, if $k=1$ and each monomial in $p$ has $x_{1}$-degree 1, the $*$-operation is
left-additive. Setting $p(x_{1}, x_{2})=\alpha x_{1}x,+\beta x_{2}x_{1}$ for $\alpha,$ $\beta\in\Phi$ , we obtain a left- and
right-additive $*$-operation in $R$ .

Example 2.2. Let $R$ be an s-algebra and let $w(x_{1}, \cdots, x.)$ be the same as
above. For ideals $A,$ $B$ in $R$ , if we set $A*B=w(A, B, \cdots, B)$ , we get a left-
additive $*$-operation in $R$ such that $A*A=A$ . Moreover if we define $A*B$ to
be the ideal generated by $w(A, B, \cdots, B)$ then *is strong and $A*A=A$ still
holds.

There is some occasion where $w(A, B, \cdots, B)$ in Example 2.2 becomes an ideal.
The largest known class of s-algebras for this case is the class of weakly W-
admissible algebras of Thedy [171. Recall that an algebra $R$ is called a noncom-
mutative Jordan algebra if the flexible law $(x, y, x)=0$ and the Jordan identity
$(x^{2}, y, x)=0$ hold in $R$ where $(x, y, z)=(xy)z-x(yz)$ . A noncommutative Jordan
algebra $R$ is called a weakly W-admissible algebra if $R$ satisfies the identities

(1) $[(a, b, c), c]-([a, c], c, b)=0$ ,

(2) $([a, b], d, c)+([b, c], d, a)+([c, a], d, b)$

$=\rho[(a, b, c), d]+\sigma[S(a, b, c), d]+\tau[d, [b, [a, c]]]$

for some elements $\rho,$ $\sigma,$
$\tau\in\Phi$ such that either the mapping $x\rightarrow(3+2\rho+6\sigma-4\tau)x$ or

$x\rightarrow(\rho+4\tau)x$ induces a bijection on any submodule of $R$ , where $[a, b]=ab-ba$ and
$S(a, b, c)=(a, b, c)+(b, c, a)+(c, a, b)$ . The latter condition would be the case when
$ 3+2\rho+6\sigma-4\tau$ or $\rho+4\tau$ is invertible in $\Phi$ . Thedy [17] calls a noncommutative
Jordan algebra over a field W-admissible if it satisfies

(3) $[a, (a, a, b)]=0$

in addition to the conditions above, and shows that if the characteristic is not
2, any generalized standard algebra of Schafer [15] is W-admissible with $\rho=-2$

and $\sigma=\tau=0$ . Lie algebras are also weakly W-admissible with $\rho=\tau=0$ . Therefore,
weakly W-admissible algebras generalize alternative, Lie, standard, and hence
Jordan algebras. Shestakov [16] recently defined another large class of algebras

and called a noncommutative Jordan algebra $R$ admissible if $R$ satisfies

(4) $([x, y], y, y)=0$ .
In view of (1) and (3), a W-admissible algebra is admissible. However, a weakly
W-admissible algebra is not in general admissible since, as Thedy [17, p. 178]

points out, any Lie algebra $R$ over a field is weakly W-admissible but (4) is
equivalent to $2L_{y}^{3}=0$ in $R$ where $L_{y}$ is the left multiplication by $y$ , and hence
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$R$ is not admissible unless $R$ is a nilpotent Lie algebra (in the finite-dimensional
case).

Let $w_{\ell}(x_{1}, \cdots, x_{n})=w(x_{1}, \cdots, x_{\ell-1}, x_{+1}, \cdots, x_{n})$ , $i=1,2,$ $\cdots,$ $n$ and $n\geq 2$ . If
$A_{1},$

$\cdots,$
$A_{n}$ are ideals of $R$ , one easily checks

$w(A_{1}, A_{2}, \cdots, A_{n})\subseteq\sum_{i=1}^{n}w_{\ell}(A_{1}, \cdots, A_{n})$ .
In generalizing Shestakov’s definition [16, Definition 11], we have

Definition 2.3. An algebra $R$ over $\Phi$ is said to be p-Ideal-admissible if there
exists an element $ p(x_{1}, \cdots, x_{n}, x_{n+1})\in\Phi\langle X\rangle$ which is homogeneous in each of
$x_{1},$ $\cdots,$ $x_{n}$ , such that for any ideals $A_{1},$

$\cdots,$
$A_{n}$ of $R$ the submodule $p(A_{1}, \cdots, A_{n}, R)$

is also an ideal of $R$ and

$w(A_{1}, \cdots, A_{n})\subseteq p(A_{1}, \cdots, A_{n}, R)\subseteq\sum_{i=1}^{n}w_{\ell}(A_{1}, \cdots,\acute{A}_{n})$

holds. Here $p(x_{1}, \cdots, x_{n}, x_{n+1})$ is not necessarily homogeneous in $x_{n+1}$ and $x_{n+1}$

may not occur in $p$ at all. In this case $p(x_{1}, \cdots, x_{n}, x_{n+1})$ is called an ideal-
admissible polynomial for $R$ .

Shestakov [16] calls an admissible algebra $ R\sigma$-admissible if there exists an
ideal-admissible polynomial $\sigma(x_{1}, x_{2}, x_{s}, x_{4})$ for $R$ .

Example 2.4. Block [1] defines a class of noncommutative Jordan algebras
satisfying

(5) $([x, y], z, z)=0$ ,

(6) $([x, y], z, w)+(z, [x, y], w)=0$ .
It is shown in [16] that any noncommutative Jordan algebra satisfying (5) and
(6) is $\sigma-(ideal-)admissible$ with

$\sigma(x_{1}, x_{2}, x_{8}, x)=w(x_{1}, x_{2}, x_{8})+\sum_{ueS_{3}}[x_{4}(x_{u(1)}(x_{u(2)}x_{u(8)}))$

$+((x_{u(2)}x_{u(8)})x_{u(1)})x_{4}]$

where $S_{3}$ is the \’{s}ymmetric group on {1, 2, 3}. Thus, for ideals $A,$ $B$ of $R$ , setting
$A*B=\sigma(A, B, B, R)$ yields a strong left-additive $*$-operation in $R$ such that

$A^{b}\subseteq A*A\subseteq A^{2}$

(see [16, p. 265]).

Example 2.5. Let $R$ be a weakly W-admissible algebra. A careful examina-
tion of the proof of Thedy [17, Lemma 7] reveals that $w(A_{1}, A_{2}, A_{8})$ is an ideal
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of $R$ for any $idea1_{8}A_{1},$ $A_{2},$ $A_{8}$ of $R$ . Thus $R$ is $\sigma$-Ideal-admissible with
$\sigma(x_{1\prime}x_{2}, x_{8}, x_{4})=w(x_{1}, x_{2}, x_{s})$ .

We note

$w(x_{1}, x_{2}, x_{8})=\sum_{u\in S_{3}}[x_{u(1)}(x_{u(2)}x_{u(8)})+(x_{u(2)}x_{u(8)})x_{u(1)}]$ .
Setting $A*B=w(A, B, B)$ , we obtain a strong left-additive $*_{- operation}$ in $R$ such
that $A*A=A^{8}$ . This also proves the existence of a $*_{- operation}$ in a weakly W-
admissible ring satisfying Condition $(^{*}4)$ in [12]. We will denote $A*B$ by $\langle A, B\rangle$

in this case.
It is readily seen that, for ideals $A,$ $B$ in $R,$ $\langle A, B\rangle$ is reduced to

(7) $\langle A, B\rangle=AB^{2}+B^{2}A+(AB)B+B(AB)+(BA)B+B(BA)$ .
In relation of Example 2.5 with Example 2.4, one should note that a weakly W-
admissible algebra does not necessarily 8atisfy (5) or (6). Using the flexible law,
$\langle A, B\rangle$ is further reduced to

(8) $\langle A, B\rangle=AB^{2}+(AB)B+B(AB)+(BA)B+B(BA)$

$=B^{2}A+(AB)B+B(AB)+(BA)B+B(BA)$ .
Let $R$ be an alternative algebra and let $a\in A$ and $b,$ $c\in B$ . From $(a, b, c)=-$

$(b, a, c)$ we have

(9) $\langle A, B\rangle=(AB)B+B(AB)+(BA)B+B(BA)$

for ideals $A,$ $B$ in $R$ . Let $R$ now be a flexible algebra satisfying $S(a, b, c)=$

$(a, b, c)+(b, c, a)+(c, a, b)=0$ . For ideals $A,$ $B$ in $R$ , let aeA and $b,$ $c\in B$ . Then
by the flexible law $(b, c, a)+(a, c, b)=0$ we have $B(BA)\subseteq B^{2}A+(AB)B+AB^{2}$ , and
$S(b, a, c)=0$ implies $B(AB)\subseteq(BA)B+B^{2}A+B(BA)+AB^{2}+(AB)B\subseteq AB^{2}+B^{2}A+$

$(AB)B+(BA)B$ . Hence $B(BA)+B(AB)\subseteq AB^{2}+B^{2}A+(AB)B+(BA)B$ and similarly
we get $(AB)B+(BA)B\subseteq B(AB)+B(BA)+AB^{2}+B^{2}A$ . Therefore in this case $\langle A, B\rangle$

is reduced to

(10) $\langle A, B\rangle=AB^{2}+B^{2}A+(AB)B+(BA)B$

$=AB^{S}+B^{2}A+B(AB)+B(BA)$ .
In particular, (10) holds for any standard algebra. Since a Jordan algebra is a
standard algebra, in a Jordan algebra $\langle A, B\rangle$ is further reduced to

(11) $\langle A, B\rangle=AB^{2}+(AB)B$ .
If $R$ is a Lie algebra, in view of the Jacobi identity and anticommutativity, we
have
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(12) $\langle A, B\rangle=(AB)B$ .
We also note that, in any algebra $R$ where $AB$ is an ideal of $R$ for ideals $A,$ $B$ ,

the operation $\langle A, B\rangle$ given by (7) yields a strong $*$-operation in $R$ such that
$\langle A, A\rangle=A^{S}$ .

Example 2.6. Another class of ideal-admissible algebras is the class of
$(-1,1)$-algebras. A right alternative algebra $R$ is called a $(-1,1)$-algebra if the
identity $S(a, b, c)=0$ holds in R. Dorofeev [4] proves that $AB+BA$ is an ideal
for any ideals $A,$ $B$ in $R$ . Thus $R$ is p-ideal-admissible with $p(x_{1}, x_{2})=w(x_{1}, x_{2})$ .
Hence setting $A*B=AB+BA$ gives rise to a strong left-additive $*$-operation in
$R$ . In any algebra we will denote

(18) $AoB=AB+BA$ .
Example 2.7. Let $R$ be a noncommutative Jordan algebra over $\Phi$ in the

sence of McCrimmon [9]. An ideal-building operation in $R$ is the well-known
quadratic operation $U$ defined by $yU_{x}=x(xy+yx)-x^{2}y$ for $x,$ $y\in R.$ McCrimmon
[9, Lemma 5] proves that the submodule $AU_{B}$ is an ideal of $R$ for any ideals
$A,$ $B$ in $R$ . Thus $U$ yields a strong left-additive $*$-operation in $R$ .

3. Prime ideals and radicals.

We first recall some definitions and known results from [12]. Let *be a
$*$-operation defined in an arbitrary algebra $R$ and $f$ be the function in Definition
1.4.

An ideal $P$ of $R$ is called $f^{*}$-prime if $f(A)*f(B)\subseteq P$ for ideals $A,$ $B$ implies
$f(A)\subseteq P$ or $f(B)\subseteq P$. An ideal $P$ is called $f^{*}$-semiprime if $f(A)*f(A)\subseteq P$ implies
$f(A)\subseteq P$ for any ideal $A$ in $R$ . If $f(a)=(a)$ for all $a\in R$ , an $f^{*}$-prime or $f^{*}-$

semiprime ideal is simply called $*$-prime or $*$-semiprime. A nonempty subset
$M$ of $R$ is called an $f^{*}$-system if, for $A,$ $B\in J(R),$ $ f(A)\cap M\neq\emptyset$ and $ f(B)\cap M\neq\emptyset$

imply $ f(A)*f(B)\cap M=\emptyset$ . Given an ideal $A$ of $R$ , the $f^{*}$-prime radical, $r_{f}^{*}(A)$ ,

of $A$ is defined to be the set of elements xeR such that any $f^{*}$-system con-
taining $x$ meets $A$ , and shown to be the intersection of all $f^{*}$-prime ideals con-
taining $A$ . In particular $r_{f}^{*}(0)$ is called the $f^{*}$-prime radical of $R$ and denoted
by $P_{f}^{*}(R)$ . If $f(a)=(a)$ for all $aeR$ , these are called a $*$-system and the *-prime

radical of $A$ or of $R$ , and denoted by $r^{*}(A)$ or $P^{*}(R)$ , respectively. Call $R$

$f^{*}$-semisimple (or $*$-semisimple) if $P_{f}^{*}(R)=0$ (or $ P^{*}(R)=0\rangle$ .
Deflnition 3.1. An ideal $P$ is called prime if $AB\subseteq P$ implies $A\subseteq P$ or $B\subseteq P$

for any ideals $A,$ $B$ of $R$ . An ideal $P$ of $R$ is called $\sigma$-prime if $\langle A, B\rangle\subseteq P$ implies
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$A\subseteq P$ or $B\subseteq P$. If $P$ is prime in the sense of the operation $A\circ B$ given by (13),
$P$ is called $\circ$ -prime. Finally, if $R$ is a Jordan algebra and $P$ is prime in the
sense of Tsai [19], $P$ is called Q-prime. The prime radicals of an ideal $A$ or of
$R$ will be denoted by $r(A),$ $r_{\sigma}(A),$ $r_{0}(A)$ or by $P(R),$ $P_{\sigma}(R),$ $P_{0}(R)$ , respectively. A
prime algebra is also defined in the usual sense for each of the operations above.

For the basic Properties of prime ideals and radicals in terms of $*$-operation,
consult Myung [12]. We first prove

Lemma 3.2. Let $R$ be an algebra such that, for any ideals $A,$ $B$ in $R$ ,
AB is an ideal of R. Then an ideal $P$ of $R$ is prime if and only if $P$ is
$\sigma$-prime if and only if $P$ is $\circ$ -prime.

Proof. Let $A,$ $B$ be any ideals of $R$ . We first observe $(BA)^{2}\subseteq AB$ since
$(BA)^{2}=(BA)(BA)\subseteq AB$ . Let $P$ be $\sigma$-prime and let $AB\subseteq P$. Then $(BA)^{2}\subseteq AB\subseteq P$

and hence from (7) $\langle BA, BA\rangle=(BA)^{8}\subseteq P$, so $BA\subseteq P$ since $P$ is a-prime. There-
fore we have $\langle A, B\rangle=AB^{2}+B^{2}A+B(AB)+B(BA)+(AB)B+(BA)B\subseteq P$. This im-
plies $A\subseteq P$ or $B\subseteq P$ and $P$ is prime. Suppose $P$ is prime and let $\langle A, B\rangle\subseteq P$.
Then $(AB)B\subseteq P$ and hence $A\subseteq P$ or $B\subseteq P$ ; that is, $P$ is a-prime. Now, let $P$

be $\circ$ -prime and let $AB\subseteq P$. Then $(BA)^{2}\subseteq AB\subseteq P$ and so $(BA)\circ(BA)\subseteq P$, which
implies $BA\subseteq P$. Thus $A\circ B=AB+BA\subseteq P$ and so $A\subseteq P$ or $B\subseteq P$. Clearly, if $P$

is prime, it is $\circ$ -prime.

Since an alternative or Lie algebra $R$ satisfies the condition in Lemma 3.2,
we have

Corollary 3.3. An ideal $P$ in an alternative or Lie algebra is prime if
and only if $P$ is $\sigma$-prime if and only if $P$ is $\circ$ -prime.

Therefore, the prime ideal theory for alternative algebras is a special case
of that for $(-1,1)$-algebras in terms of the operation $A\circ B$ , or for weakly W-
admissible algebras in terms of $\langle A, B\rangle$ . For a Jordan algebra we obtain.

Lemma 3.4. Let $P$ be an ideal in a (linear) Jordan algebra $J$ where $2y=x$

has a unique solution for all $x,$ $ye$ J. Then $P$ is Q-prime if and only if $P$

is a-prime.

Proof. Suppose $P$ is a $\sigma$-prime ideal of $J$ and $A,$ $B$ are ideals of $J$ such
that $AU_{B}\subseteq P$ where $U$ is the quadratic operation. Recall $AU_{A}=A^{8}$ . Setting
$C=A\cap B$ , we get $C^{8}=\langle C, C\rangle=CU_{C}\subseteq AU_{B}\subseteq P$. Hence $C\subseteq P$ since $P$ is $\sigma$-prime.
But then $\langle A, B\rangle\subseteq A\cap B=C\subseteq P$, so $A\subseteq P$ or $B\subseteq P$. Thus $P$ is Q-prime. Now,
suppose $P$ is a Q-prime ideal of $J$ and $\langle A, B\rangle\subseteq P$ for ideals $A,$ $B$ . Then clearly
$AU_{B}\subseteq\langle A, B\rangle\subseteq P$ by (11) and hence $A\subseteq P$ or $B\subseteq P$, showing that $P$ is $\sigma$-prime.
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In the past five years there has been a great deal of study to classify some
large classes of prime rings. Recently, Thedy [18] introduced a class of nonas-
sociative rings $R$ defined by the identities

(14) $[x, (y, x, y)]=0$ ,

(15) $(x, [y, z], x)=0$ , $(x, [y, z], w)=([y, z], w, x)=(w, x, [y, z])$ .
The identity (15) is to say that the commutators $[R, R]$ are completely alternative.
Thedy [181 proves that any prime ring of characteristic $\neq 3$ satisfying (14) and
(15) is alternative or commutative. Rings satisfying (14) and (15) generalize
generalized standard rings. Kleinfeld, Kleinfeld and Kosier [6] prove also the
same result for generalized accessible rings which generalize generalized standard
rings. It should be noted that any generalized accessible ring satisfies (14) and
(15) (see [6, Lemma 2]). However, a weakly W-admissible algebra does not
necessarily satisfy (14) or (15). The ll-dimensional nilpotent Lie algebra of [17,

p. 178] reveals that $(e_{1}, e_{1}, [e_{2}, e_{8}])=(e_{1}, e_{1},2e_{6})=-4e_{11}$ but $(e_{1}, [e_{2}, e_{8}], e_{1})=0$ . Thedy
brought in a letter our attention to this example. In a weakly W-admissible
algebra $R$ there is no direct comparision between the primeness and the $\sigma-$

primeness of $R$ . In fact, if $R$ is an algebra where $AB=0$ implies $BA=0$ for
ideals $A,$ $B$ of $R$ , then the $a$-primeness implies the primeness since if $AB=BA=$
$0,$ $\langle A, B\rangle=0$ . On the other hand, if $R$ is an algebra such that $AB$ is an ideal of
$R$ for any ideals $A,$ $B$ then by Lemma 3.2 the primeness implies the a-primenss.
The known results about prime rings however suggest the following.

Conjecture. Any $\sigma$-prime (or prime) weakly W-admissible algebra is al-
ternative or Jordan.

As a particular case of this conjecture we can prove.

Theorem 3.5. Any a-prime or prime generalized standard algebra of
characteristic $\neq 2,8$ is alternative or Jordan.

Proof. Note the result is well known for th $e$ primeness. Suppose $R$ is $\sigma-$

prime. Much of the proof is done by Thedy [181 If $A^{2}=0$ for an ideal $A$ of
$R,$ $\langle A, A\rangle=A^{s}=0$ and so $A=0$ . Hence $R$ is semiprime. It is shown in [18,

Theorem 11 that $R$ is a subring of the algebra direct sum $A\oplus C$ of an alternative
algebra $A$ and a commutative algebra $C$ such that any alternator of the form
$(x, y, y)$ or $(y, y, x)$ lies in $C$ and any commutator $[x, y]$ lies in $A$ . Hence the
ideal $I$ generated by the alternators of $R$ and the ideal $J$ generated by the com-
mutators of $R$ are contained in $C$ and $A$ , respectively. Thus $II=JI=0$ and, as
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remarked above, \langle I, $ J\rangle$ $=0$ . Therefore $I=0$ or $J=0$ and $R$ is alternative or
Jordan.

For the proof one could also use an argument in [6] where two idea18 similar
to $I$ and $J$ are constructed. We now return to an arbitrary algebra equipped
with a $*$-operation. The following definition will be used throughout this paper.

Deflnition 3.6. Let $*$ be a strong $*$-operation defined in an algebra $R$ .
Given an ideal $A$ of $R$ , define $D_{*}^{n}(A)$ and $d_{*}^{n}(A)$ recursively as

$D_{*}^{0}(A)=A$ , $D_{*}^{n+1}(A)=D_{*}^{n}(A)*D_{*}^{n}(A)$ ,
$d_{*}^{0}(A)=A$ , $d_{*}^{n+1}(A)=A*d_{*}^{n}(A)$ .

An ideal $A$ is said to be $*$-solvable if $D_{*}^{n}(A)=0$ for some $n$ , and similarly, $A$ is
called $*$-nilpotent if $d_{*}^{n}(A)=0$ for some $n$ .

One can easily check by induction that

$D_{*}^{n}(D_{*}^{m}(A))=D_{*}^{n+m}(A)$ ,
$D_{*}^{n}(A)\subseteq d_{*}^{n}(A)$ ,
$d_{*}^{n}(d_{*}^{m}(A))\subseteq d_{*}^{n+m}(A)$ .

Thus if an ideal $A$ is $*$-nilpotent, it is $*$-solvable. This definition seems natural
in our situation because of its similarity with that for Lie algebras and with
”one-sided” nilpotence in nonassociative algebras; for example, ”right” or ’‘left”
nilpotence (see Shestakov [161). If $R$ is an alternative algebra and $A*B=A\circ B$

for ideals $A,$ $B$ in $R$ , then Hentzel and Slater [51 show that the $*$-nilpotence in
$R$ coincides with the nilpotence in the ordinary sense. More precisely, they
prove.

Lemma 3.7. Let $R$ be an alternative algebra and let $A*B=A\circ B$ for ideals
$A,$ $B$ in R. Then $d_{*}^{n}(A)=A^{n}$ for any $\dot{j}deal$ $A$ and positive integer $n$ .

Theorem 3.8. Let *be a strong $*$-operation in R. Then $R$ $is^{*}$-semisimple
if and only if $R$ contains no nonzero $*$-solvable ideals.

Proof. Note that $R$ is $*$-semisimpl $e$ if and only if the ideal (0) is-semiprime
[12, Theorem 2.2]. If $A$ is a nonzero $*$-solvable ideal of $R$ , there exi8ts an $n$

such that $D_{*}^{n+1}(A)=0$ and $D_{*}^{n}(A)\neq 0$ . Since $D_{*}^{n}(A)*D_{*}^{n}(A)=D_{*}^{n+1}(A)=0$ , we have
that (0) is not $*$-semiprime. The conver8e is immediate.

If $R$ is an s-algebra, we note that there exi8ts a strong $*_{- operatIon}$ in $R$

such that $A*A=A^{S}$ for any ideal $A$ in $R$ . The same proof as in Theorem 8.8
then shows
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Theorem 3.9. Let *be a strong $*$-operation in an s-algebra $R$ such that
$A*A=A$ . Then $R$ is $*$-semisimple if and only if $R$ contains no nonzero
nilpotent ideals.

Corollary 3.10. The $*$-prime radical $P^{*}(R)$ contains all $*$-solvable $(\epsilon 0*_{-}$

nilpotent) ideals of R. If $R$ is an s-algebra such that $A*A=A^{S}$ then $P^{*}(R)$

contains all nilpotent ideals in $R$ .
Proof. Let $A$ be a $*_{-solvabIe}$ ideal in $R$ and let $\overline{R}=R/P^{*}(R)$ . Then clearly

$\overline{A}$ is $*$-solvable in $\overline{R}$ and since Ii is $*$-semisimple, by Theorem 3.8 $\overline{A}=(\overline{0})$ , thus
$A\subseteq P^{*}(R)$ . If $R$ is an s-algebra, then the result is immediate from Theorem 3.9.

The following lemma will be frequently used.

Lemma 3.11. Let $h$ be a homomorphism of $R$ onto R. For $ ideal\epsilon$ $A$ in
$R$ , the mapping $A\rightarrow h(A)$ induces $a$ 1–1 correspondence between the set of $f^{*}-$

prime ideals in $R$ containing the kernel of $h$ and the set of $f^{*}$-prime ideals
in $\overline{R}$ .

Proof. It is enough to show that $h(P)=\overline{P}$ is $f^{*}$-prime in $\overline{R}$ for any $f^{*}-$

prime ideal $P$ in $R$ containing the kernel of $h$ and that, for any $f^{*}-pr\ddagger me$ ideal
$\overline{P}$ in $\overline{R},$ $h^{-1}(\overline{P})$ is $f^{*}$-prime in $R$ . The first part of this is proved in [12, Lemmas
2.3 and 2.5]. Let $\overline{P}$ be an $f^{*}$-prime ideal in $\overline{R}$ and let $P=h^{-1}(\overline{P})$ . Suppose
$f(A)*f(B)\subseteq P$ for ideals $A,$ $B$ in $R$ . Then by $(^{*}3)$ and (f3), we have $f(\overline{A})*f(\overline{B})\subseteq\overline{P}$

and hence $f(\overline{A})\subseteq\overline{P}$ or $f(\overline{B})\subseteq\overline{P}$, which implies $f(A)\subseteq P$ or $f(B)\subseteq P$ since $P$ con-
tains the kernel of $h$ . Hence $h^{-1}(\overline{P})$ is $f^{*}$-prime.

Theorem 3.12. Let *be a $*$-operation in $R$ (not necessarily strong) and
$A$ be an $\dot{\tau}deal$ of R. If the quotient algebra $R/A$ is $f^{*}$-semisimple, then
$P_{f}^{*}(R)\subseteq A$ .

Proof. Let $\{P_{t}\}$ be the collection of $f^{*}$-prime ideals in $R$ containing $A$ . By
Lemma 3.11, $\{P_{\ell}/A\}$ is the collection of $f^{*}$-prime ideals in $R/A$ . Hence $\cap(P/A)=0$

$i$

and so $\cap P_{l}\subseteq A$ . Since $P_{f}^{*}(R)$ is the intersection of all $f^{*}$-prime ideals in $R$ , we
have $P_{f}^{*}(R)\subseteq Ai$

Corollary 3.13. If $R$ is an s-algebra and *is strong such that $A*A=A$‘

for every ideal $A$ , then $P^{*}(R)$ is the smallest ideal $L$ of $R$ such that $R/L$

contains no nonzero nilpotent ideals.

Proof. If $L$ is an ideal such that $R/L$ contains no nonzero nilpotent ideal,
then by Theorem 3.9 $R/L$ is $*$-semisimple. Hence by Theorem 3.12 $L\supseteq P^{*}(R)$ .

Corollary 3.14. Let *be strong. Then the $*$-prime radical $ P^{*}(R)i\epsilon$ the
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intersection of all ideals $S$ of $R$ such that $R/S$ has no nonzero-solvable ideals.

Proof. Let $K=\bigcap_{i}S_{\ell}$ be the intersection of all ideals $S$ such that $R/S$ has
no nonzero $*$-solvable ideals. Let $P^{*}(R)=\cap P_{\alpha}$ be the intersection of all $*$-prime

$\alpha$

ideals in $R$ . Since $R/P_{\alpha}$ is $*$-semisimple, by Theorem 8.8 $K\subseteq P^{*}(R)$ . On the
other hand, if $R/S_{\ell}$ contains no nonzero $*$-solvable ideals, then by Theorem 3.8
again, $R/S_{\ell}$ is-semisimple. Therefore by Theorem 3.12 $S_{i}\supseteq P^{*}(R)$ and $K\supseteq P^{*}(R)$ ,
so $K=P^{*}(R)$ .

We close this section with an analogous result of Brown and McCoy [2, $p$ .
2501. If $S$ is a subalgebra of $R$ such that any ideal of $S$ is also an ideal of $R$ ,
then, in view of $(^{*}2)$ , any $*$-operation in $R$ induces a $*$-operation in $S$.

Theorem 3.15. Let $S$ be a subalgebra of an algebra $R$ equipped with a
$*_{- operation}$ such that any $\dot{j}deal$ of $S$ is also an rdeal of R. Then we have
$P^{*}(S)=P^{*}(R)\cap S$.

Proof. Let $P$ be a $*$-prime ideal in $R$ and let $A*B\subseteq P\cap S$ for ideals $A,$ $B$

in $S$ . Since $A,$ $B$ are ideals in $R$ and $P$ is $*$-prime in $R$ , we have $A\subseteq P\cap S$ or
$B\subseteq P\cap S$. Hence $P^{*}\cap S$ is $*$-prime in $S$ . Let $P^{*}(R)=\cap P$ , the intersection of

$i$

all-prime ideals in $R$ . Then $P^{*}(R)\cap S=(\bigcap_{i}P_{i})\cap S=\bigcap_{i}(P\cap S)\supseteq P^{*}(S)$ since $P\cap S$

is $*_{- prime}$ in $S$. Conversely, let $a\in P^{*}(R)\cap S$ and $M$ be any $*_{- system}$ in $S$ con-
taining $a$ . Let $A,$ $B$ be ideals in $R$ such that $ A\cap M\neq\emptyset$ and $ B\cap M\neq\emptyset$ , so
$(A\cap S)\cap M\neq\emptyset$ and $(B\cap S)\cap M\neq\emptyset$ . This implies $\emptyset\neq(A\cap S)*(B\cap S)\cap M\subseteq A*B\cap$

$M$. Hence $M$ is a $*$-system in $R$ , and since $a\in P^{*}(R),$ $M$ contains $0$ . Thus
$a\in P^{*}(S)$ and $P^{*}(R)\cap S\subseteq P^{*}(S)$ .

Corollary 3.16. If $R$ is a direct sum of ideals $A_{\ell},$ $ieI$, then $P^{*}(A_{\ell})=$

$P^{*}(R)\cap A$ for all $i\in I$ and hence

$\sum_{i}\oplus P^{*}(A)\subseteq P^{*}(R)$ .
Corollary 3.17. If $K$ is the algebra obtained by adjoining an identity to

$R$ , then $P^{*}(R)=R\cap P^{*}(K)$ .

4. The Baer lower radical.

In this section we introduc$e$ the Baer lower radical in an arbitrary algebra
$R$ in terms of a $*_{-ope}$ration and the function $f$. For this we need the following
additional condition:

(f4) $f(a+b)\subseteq f(a)+f(b)$ for all $a_{1}b\in R$ .
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For a fixed subset $S$ of $R$ and any element $aeR$ , the ideal $(S, a)$ generated by
$a$ and $S$ in $R$ is still the basic example of the function $f$ satisfying $(fl)-(f4)$ .
For any family $\{A_{\alpha}|\alpha\in I\}$ of ideals in $R$ , if (f4) holds, one $e$asily checks

$\sum_{\alpha_{\vee^{-}}I}f(A_{\alpha})=f(\sum_{\alpha\epsilon I}A_{\alpha})$ .
Thus the function $f$ satisfying (f4) will be called additive. For any homomorphic

image $\overline{R}$ of $R$ , if $f$ is additive, we further observe

$\sum_{\alpha eI}f(\overline{A}_{\alpha})=f(\sum_{\alpha eI}\overline{A}_{\alpha})=\overline{f(\sum_{\alpha\in I}A_{\alpha})}$ .
Using this, if $\{N_{\alpha}/A|\alpha\in I\}$ is a family of ideals in $\overline{R}=R/A$ , then we can easily

check

(16) $\sum_{\alpha eI}f(N_{\alpha}/A)=f(\sum_{\alpha eI}N_{\alpha})/A$ .
Throughout this section we assume that *is strong and $f$ is additive. To in-
troduce the Baer lower radical in $R$ , we proceed as in Divinsky [3]. Recall
$\mathcal{J}_{f}(R)=\{f(A)|A\in \mathcal{J}(R)\}$ .

Let $N_{0}^{\prime}$ be the sum of all $*$-nilpotent ideals in $\mathcal{J}_{f}(R)$ . Then we have $N_{0}^{\prime}=$

$f(N_{0})$ for some ideal $N_{0}$ in $R$ since $f$ is additive. Let $N_{1}^{\prime}$ be the ideal in $R$ such
that $N_{1}^{\prime}/f(N_{0})$ is the sum of all the $*$-nilpotent ideals in $\mathcal{J}_{f}(R/f(N_{0}))$ . Then by
(16) we have $N_{1}^{\prime}=f(N_{1})$ for some ideal $N_{1}$ of $R$ . For every ordinal $\alpha$ , which is
not a limit ordinal, we define $N_{a}^{\prime}$ to be the ideal in $R$ such that $N_{a}^{\prime}/f(N_{\alpha-1})$ is
the sum of all the $*$-nilpotent ideals in $J_{f}(R/f(N_{\alpha-1}))$ . We then have $N^{\prime}=f(N_{\alpha})$

for some ideal $N_{a}$ in $R$ . If $\alpha$ is a limit ordinal, we define

$N_{\alpha}^{\prime}=\sum_{\beta<\alpha}N_{\beta}^{\prime}=\sum_{\beta<\alpha}f(N_{\beta})=f(\sum_{\beta<\alpha}N_{\beta})$ .

Then we have an increasing sequence of ideals in $\mathcal{J}_{f}(R)$

$ f(N_{0})\subseteq f(N_{1})\subseteq\cdots\subseteq f(N_{\alpha})\subseteq\cdots$

Let $\tau$ be the smallest ordinal such that

$ f(N_{\tau})=f(N_{\tau+1})=\cdots$

This process leads to

Deflnition 4.1. The ideal $f(N_{f})$ in $\mathcal{J}_{f}(R)$ is called the $f^{*}$-Baer lower radical
of $R$ and is denoted by $B_{f}^{*}(R)$ . If $f(a)=(a)$ for all $aeR$ , we call this the *-Baer
lower radical of $R$ and denote it by $B^{*}(R)$ .

We note that $R/B_{f}^{*}(R)$ contains no nonzero $*$-nilpotent ideals in $\mathcal{J}_{f}(R/B_{f}^{*}(R))$ .
For, if $\mathcal{J}_{f}(R/B_{f}^{*}(R))$ contains a nonzero $*$-nilpotent ideal $f(Q)/B_{f}^{*}(R)$ then $ f(Q)\supsetneq$
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$B_{f}^{*}(R)$ but, by definition of $B_{f}^{*}(R),$ $f(Q)\subseteq B_{f}^{*}(R)$ , a contradiction.
We now prove the well-known characterization of $B_{f}^{*}(R)$ .
Theorem 4.2. The $f^{*}$-Baer lower radical $B_{f}^{*}(R)$ is the intersection of all

ideals $f(Q_{\ell})$ in $\mathcal{J}_{f}(R)$ such that $R/f(Q_{\ell})$ has no nonzero $*$-nilpotent ideals in
$\mathcal{J}_{f}(R/f(Q_{\ell}))$ .

Proof. Let $W=\bigcap_{i}f(Q_{\ell})$ and let $B_{f}^{*}=B_{f}^{*}(R)$ . Clearly $W\subseteq B_{f}^{*}$ since $R/B_{f}^{*}$ con-
tains no nonzero $*$-nilpotent ideals in $\mathcal{J}_{f}(R/B_{f}^{*})$ . Conversely, take any ideal
$f(Q_{\ell})\in \mathcal{J}_{f}(R)$ such that $\mathcal{J}_{f}(R/f(Q))$ contains no nonzero $*_{-nilpotent}$ idea18. Then
$f(N_{0})\subseteq f(Q)$ . To use transfinite induction, assume that $f(N_{\alpha})\subseteq f(Q_{\ell})$ for every
$\alpha<\beta$ . If $\beta$ is a limit ordinal, then by the construction we have

$f(N,)=\sum_{\alpha<\beta}f(N_{\alpha})\subseteq f(Q_{\ell})$ .
If $\beta$ is not a limit ordinal, then $\beta-1$ exists and $f(N_{\beta-1})\subseteq f(Q_{\ell})$ . Now, suppose
$f(N_{\beta})$ is not contained in $f(Q_{\ell})$ . Then there exists $a^{*}$-nilpotent ideal $f(C)/f(N_{\beta-1})$

not contained in $f(Q)/f(N_{\beta-1})$ . We then consider

$\frac{f(C)+f(Q_{\ell})}{f(Q_{\ell})}\cong\frac{f(C)}{f(C)+f(Q_{\ell})}$ .

For some $n,$ $d_{*}^{n}(f(C))\subseteq f(N_{\beta-1})\subseteq f(Q)$ by $(^{*}3)$ and so $d_{*}^{n}(f(C))\subseteq f(C)\cap f(Q)$ by
$(^{*}2^{\prime})$ . Hence $f(C)/f(C)\cap f(Q_{t})$ $i_{8}$

$*$-nilpotent and thus $[f(C)+f(Q_{\ell})]/f(Q_{\ell})$ is a
nonzero $*$-nilpotent ideal in $R/f(Q)$ since $f(C)\not\in f(Q_{\ell})$ . This is a contradiction.
Therefore $f(N_{\beta})\subseteq f(Q_{\ell})$ and $W=B_{f}^{*}$ .

Definition 4.3. Let $R$ be an s-algebra. For an ideal $A$ of $R$ , let $A^{a}$ and
$P_{l}(R)$ respectively denote the prime radical of $A$ and of $R$ in the sense of Zwier
[21]. Also, $B(R)$ denotes th $e$ Baer lower radical of $R$ in the sense of ordinary
nilpotence.

The same proof as for Theorem 4.2 shows

Theorem 4.4. The Baer lower radical $B(R)$ for an s-algebra $R$ is the in-
tersection of all $\dot{j}dealsQ_{\ell}$ such that $R/Q$ has no nonzero nilpotent ideals.

If $f(a)=(a)$ for all $a\in R$ , in relation between $P^{*}(R)$ and $B^{*}(R)$ we have

Theorem 4.5. Let $R$ be an arbitrary algebra equipped with a strong $*_{-}$

operation. Then $B^{*}(R)\subseteq P^{*}(R)$ .
Proof. The proof is immediate from Corollary 3.14 and Theorem 4.2 since

$f(A)=A$ for all ideals $A$ in $R$ .
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Theorem 4.6. Let $R$ be an s-algebra equipped with a strong $*$-operation
such that $A*A=A$ for every ideal $A$ of R. Then $P^{*}(R)=B(R)$ .

Proof. Let $P^{*}(R)=\cap P_{\ell}$ , the intersection of all $*$-prime ideals in $R$ . Then
$i$

since $R/P$ is $*$-semisimple, by Theorem 3.9 $R/P$ has no nonzero nilpotent ideals.
Hence by Theorem 4.4 we have $P^{*}(R)\supseteq B(R)$ . Conversely, if $R/P$ has no nonzero
nilpotent ideals, by Theorem 3.9 again $R/P_{\ell}$ is $*$-semisimple and hence by Theorem
3.12 we get $P^{*}(R)\subseteq Q_{i}$ and $P^{*}(R)\subseteq B(R)$ . This proves the theorem.

Since Rich [14] proves $P_{1}(R)=B(R)$ , we have

Corollary 4.7. Let $R$ be the same s-algebra as in Theorem 4.6. Then we
have

$P^{*}(R)=P.(R)=B(R)$ .
Corollary 4.8. If $R$ is the same algebra as in Theorem 4.6, then for any

ideal $A$ of $R$ we have $r^{*}(A)=A^{G}$ .
Proof. Let $\overline{R}=R/A$ and let $r^{*}(A)=\cap P_{\ell}$ , the intersection of $*$-prime ideals

$andsoP^{*}(\overline{R})=r^{*}(A)/AP_{\ell}inRcontainingA.\cdot$
$Simi1ar1yweshP_{1}(\overline{R})=A^{o}/A(seeZw\dot{j}er[2l]).HenceThen\overline{r^{*}(A)}=^{\frac{i}{\bigcap_{\ell}P_{\ell}ow}}=\bigcap_{\ell}\overline{P}_{\ell}--r^{*}(\overline{0})=P^{*}(R)byLemma3.ll$

,

by Corollary 4.7 $r^{*}(A)/A=A^{o}/A$ and $r^{*}(A)=A^{o}$ .
This shows that in an s-algebra $R$ any strong $*$-operation such that $A*A=A$‘

for any ideal $A$ leads to the same prime radical as in Zwier [21]. We have
shown that any s-algebra possesses such a $*$-operation. In particular, if $J$ is a
Jordan algebra, then for any ideal $A$ of $J$, we have

$A^{Q}=r_{\sigma}(A)=A^{o}$

where $A^{Q}$ is the prime radical of $A$ in the sense of the quadratic operation. If
$R$ is an alternative or Lie algebra then

$r(A)=r_{\sigma}(A)=r_{0}(A)=A^{o}$

(See Section 3 for notations.)

5. Primary ideals.

In the re8t of the paper we will a8sume that any $*$-operation is strong and
left-additive, and $f(a)=(a)$ for all $a\in R$ . Recall an arbitrary algebra always
Possesses a strong left-additive $*$-operation. Our definition of primary ideal is
es8entia11y the $*_{- operation}$-analog of that for quadratic Jordan algebras given
by Tsai and Foster [20] and thus that in the classical theory for the associative
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case. We begin with.

Definition 5.1. Let $R$ be an arbitrary algebra equipped with a 8trong left-
additive $*$-operation. An ideal $Q$ of $R$ is called left $*$-primary if $A*B\subseteq Q$ for
ideals $A,$ $B$ of $R$ implies that $A\subseteq Q$ or $B\subseteq r^{*}(Q)$ .

Henceforth we will say $*$-primary” rather than “left” $*$-primary. If $R$ is
an algebra where $ A*B=\langle A, B\rangle$ given in (7) is an ideal for any ideals $A,$ $B$ of
$R$ , then a $*$-primary ideal is called $\sigma$-primary. Similarly, if $A*B=A\circ B,$ $AU_{B}$ ,

or $AB$ in a $(-1,1)$-algebra, Jordan algebra, or alternative algebra, then we will
say $’’\circ$ -primary”, $Q$-primary”, or “primary”. We note that every $*$-prime ideal
of $R$ is $*$-primary.

We first give some ”internal” characterization of $*$-primary ideals by using

the same definition as in [201.

Theorem 5.2. An ideal $Q$ of $R$ is $*$-primary if and only if (0) is $*_{- pri-}$

mary in $R/Q$ .
Proof. If we let $\overline{R}=R/Q$ , by Lemma 3.11 we have $\overline{r^{*}(Q)}=r^{*}(\overline{0})$ . Suppose

$Q$ is $*$-primary and $\overline{A}*\overline{B}=\overline{0}$ for ideals $A,$ $B$ in $R$ such that $Q\subseteq A$ and $Q\subseteq B$ .
Then by $(^{*}3)A*B\subseteq Q$ and so $A\subseteq Q$ or $B\subseteq r^{*}(Q)$ . Hence $\overline{A}=\overline{0}$ or $\overline{B}\subseteq\overline{r^{*}(Q)}=r^{*}(\overline{0})$

and (0) is-primary in $\overline{R}$ . If (0) is $*$-primary and $A*B\subseteq Q,\overline{A}*\overline{B}=\overline{0}$ and so $\overline{A}=\overline{0}$

or $\overline{B}\subseteq r^{*}(\overline{0})=\overline{r^{*}(Q)};B\subseteq r^{*}(Q)$ . Hence $Q$ is $*$-primary in $R$ .
Following [20], we give

Definition 5.3. Given an ideal $A$ of $R$ and a $*$-system $M$. Then we call $N$

a $*_{- M}$-system if $R\supseteq N\supseteq M$ and $(m)*(n)\cap N\neq\emptyset$ for all meM and all $n\in N$. If
$ A\cap M=\emptyset$ , then the $*$-lower M-component $A_{K}^{*}$ of $A$ is the set $\{xeR|(x)*(m)\subseteq A$

for some $meM$} and the $*$-upper M-component $A_{*}^{K}$ of $A$ is the set {$xeR|$ every
$*_{- M}$-system containing $x$ meets $A$}. An element $a\in R$ is $*$-prime to $A$ if $(x)*(a)$

$\subseteq A$ implies that $x\in A$ . An ideal $B$ is $*$-prime to $A$ if $B$ contains an element

that is $*$-prime to $A$ . Finally, when $ A\cap M=\emptyset$ , we say that $A$ is related to $M$

if every element of $M$ is $*$-prime to $A$ .
For an ideal $A$ of $R$ , we always have $A\subseteq A_{K}^{*}$ since $(a)*(m)\subseteq A*(m)\subseteq A$ .

Every $*$-system $M$ is a $*_{- M}$-system. Let $\{N_{\ell}\}$ be a collection of $*_{- M}$-systems.

Tnen $N=\bigcup_{i}N_{\ell}$ is also a $*_{- M}$-system. Hence for a $*$-system $M$ not meeting $A$ ,

there exists a unique maximal $*_{-M}$-system not meeting $A$ .
Lemma 5.4. $L$et $A$ be an ideal of $R$ .
(a) If $M$ is a $*$-system in $R$ not meeting $A$ , then $A_{r}^{*}$ is an ideal in $R$ .



PRIME AND PRIMARY IDEAL THEORIES 157

(b) $A$ is related to a $*$-system $M$ not meeting $A$ if and only if $c(A)$ is a
$*_{- M}$-system.

(c) If $M$ is a $*$-system and $N$ is an arbitrary $*_{- M}$-system not meeting
$A$ , then $A$ is contained in an ideal $\tilde{A}$ such that $\tilde{A}$ is maximal relative to

$\bullet^{\tilde{A}\cap N=\emptyset}*$ Moreover, $\tilde{A}$ is related to $M$.
(d) Let $M$ be a $*$-system not $meet\dot{j}ng$ A. Then $B$ is a maximal element

in the set $M=$ {$C$ is an ideal in $R|A\subseteq C$ and $C$ is related to $M$} if and only

if $c(B)$ is $a$ $*_{-M}$-system not meeting $A$ .
Proof. The proof is essentially the same as in [201 and we prove only (a)

and (b).

(a) Let $x$ , $zeA*K$ . Then $(x)*(c)$ and $(y)*(d)$ are contained in $A$ for some
$c,$ deM. Since $M$ is a $*$-system, there exists an element $e\in(c)*(d)\cap M$. Since
*is left-additive, $(x-y)*(e)\subseteq(x)*(e)+(y)*(e)\subseteq(x)*(c)+(y)*(d)$ since $ e\in(c)*(d)\subseteq(c)\cap$

$(d)$ . Thus $(e)\subseteq(c)$ and $(x)*(e)\subseteq(x)*(c)$ . This implies $(x-y)*(e)\subseteq A$ , showing $A_{H}^{*}$

is a submodule of $R$ . Let $(a)*(m)\subseteq A$ for some $m\in M$. For any $xeR$ , we have
$(xa)*(m)\subseteq(a)*(m)\subseteq A$ . Hence $A_{M}^{*}$ is an ideal of $R$ .

(b) Suppose $A$ is related to a $*$-system $M$ not meeting $A$ . For every ele-
ments $a\in c(A),$ $meM$, since $m$ is $*$-prime to $A$ , we have $(a)*(m)\cap c(A)\neq\emptyset$ .
Hence $c(A)$ is a $*_{- M}$-system. Conversely, if $c(A)$ is $a^{*}- M$-system then $ A\cap M=\emptyset$ .
For every element $m$ in $M$, if $x$ is not in $A,$ $(x)*(m)\neq\emptyset$ since $c(A)$ is a $*_{-M-}$

system. Hence $(x)*(m)$ is not contained in $A$ , and so $A$ is related to $M$ .
Using Lemma 5.4, the following theorem can be proved exactly the same as

in [20].

Theorem 5.5. Let $A$ be an ideal of $R$ and $M$ be a $*$-system not meeting
A. Then

(a) $A_{*}^{K}$ is the intersection of all ideals $L$ such that $A\subseteq L$ and $L$ is related
to M. Hence $A_{*}^{H}$ is an ideal of $R$ .

(b) $c(A*)$ is the uniquely determined maximal $*_{- M}$-system not meeting $A$ .
(c) $A\subseteq A_{M}^{*}\subseteq A_{*}^{Jf}$ .
Using Theorem 5.5, we can prove the following characterization of-primary

ideals (also see [20])

Theorem 5.6. Let $Q$ be an ideal of R. Then the following are equivalent.
(a) $Q$ is $*$-primary.
(b) If $P$ is a $*$-prime ideal of $R$ such that $P\neq R$ and $Q\subseteq P$, then $Q=Q_{*}^{c(P)}$ .
(c) If $P$ is a $*$-prime ideal of $R$ such that $P\neq R$ and $Q\subseteq P$, then $Q=Q_{c(P)}^{*}$ .
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(d) all elements not in $r^{*}(Q)$ are $*_{- prime}$ to $Q$ .
The following lemma is immediate from the definition of the $*$-prime radical

of ideals.

Lemma 5.7. If $A,$ $B$ are ideals in $R$, then
(a) if $A\subseteq B,$ $r^{*}(A)\subseteq r^{*}(B)$ ,
(b) $r^{*}(r^{*}(A))=r^{*}(A)$ .
(c) $r^{*}(A\cap B)=r^{*}(A)\cap r^{*}(B)$ .
Lemma 5.8. If $Q$ and $Q^{\prime}$ are $*$-primary ideals in $R$ such that $r^{*}(Q)=$

$r^{*}(Q^{\prime})$ , then $Q\cap Q^{\prime}$ is $*$-primary and $r^{*}(Q\cap Q^{\prime})=r^{*}(Q)=r^{*}(Q^{\prime})$ .
Proof. By Lemma 5.7, $r^{*}(Q\cap Q^{\prime})=\gamma^{*}(Q)\cap r^{*}(Q^{\prime})=r^{*}(Q)=r^{*}(Q^{\prime})$ . Suppose

$A*B\subseteq Q\cap Q^{\prime}$ for ideals $A,$ $B$ in $R$ . If $A\not\in Q\cap Q^{\prime}$ : say $A\not\in Q$ , then $B\subseteq r^{*}(Q)$ since
$A*B\subseteq Q$ . Hence $B\subseteq r^{*}(Q)=r^{*}(Q\cap Q^{\prime})$ and so $Q\cap Q^{\prime}$ is $*$-primary.

Definition 5.9. We say that an ideal $A$ of $R$ has an irredundant representa-
tion by the ideals $B_{1},$

$\cdots,$
$B_{k}$ of $R$ if $A=B_{1}\cap B_{2}\cap\cdots\cap B_{k}$ and no one of the $B_{\ell}’ s$

contains the intersection of the other ones. An irredundant representation $ B_{1}\cap$

$B_{2}\cap\cdots\cap B_{k}$ is called normal if $r^{*}(B_{\ell})\neq r^{*}(B_{j})$ for $i\neq j$ . If each $B$ is-primary,
the representation is called a normal $*$-primary representation.

Theorem 5.10. Let $A=Q_{1}\cap\cdots\cap Q_{k}$ be an irredundant representation by
$*$-primary ideals $Q_{1},$

$\cdots,$
$Q_{k}$ . Then $A$ is $*$-primary if and only if $r^{*}(Q)=$

$r^{*}(Q_{j})$ for $i,$ $j=1,$ $\cdots,$
$k$ .

Proof. If $r^{*}(Q_{\ell})=r^{*}(Q_{j})$ for $i,$ $j=1,$ $\cdots,$
$k$ , then by repeated application of

Lemma 5.8, we have that $A$ is $*$-primary. Conversely, suppose $A$ is $*$-primary.
Let $B=Q_{2}\cap\cdots\cap Q_{k}$ . Since $B*Q\subseteq Q_{1}\cap B=A$ and $B\not\in A$ , we have $Q_{1}\subseteq r^{*}(A)$ . By
Lemma 5.7, $r^{*}(Q_{1})\subseteq r^{*}(A)=r^{*}(Q_{1})\cap\cdots\cap r^{*}(Q_{k})$ and so $r^{*}(Q_{1})\subseteq r^{*}(Q_{f})$ for $j=1,$ $\cdots$ ,
$k$ . Repeating this implies that $r^{*}(Q_{\ell})\subseteq r^{*}(Q_{j})$ for $i,$ $j=1,$ $\cdots,$

$k$ and the proof is
complete.

As a corollary of Theorem 5.10 we have

Corollary 5.11. If an ideal $A$ in $R$ can be represented as a finite in-
tersection $of*$-primary ideals, then $A$ has a normal *-primary $repre\epsilon entation$ .

6. The Lasker-Noether Theorem.

Following [11], we give

Deflnition 6.1. Let $A$ be an ideal of $R$ . An ideal $P$ is called a minimal
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$*_{-prIme}$ ideal belonging to $A$ if $A\subseteq P$ and $c(P)$ is a maximal $*$-system in $R$ .
Lemma 6.2. Let $A$ be an ideal of $R$ and $M$ be a $*$-system not meeting $A$ .

Then there exists a minimal $*$-prime ideal $P$ belonging to $A$ such that $ P\cap$

$ M=\emptyset$ .
Proof. By Zorn’s lemma, we first find a maximal $*_{-system}M^{\prime}$ such that

$M^{\prime}\supseteq M$ and $ M^{\prime}\cap A=\emptyset$ . Next, by Zorn $s$ lemma again, we find a maximal ideal
$P$ such that $P\supseteq A$ but $ P\cap M^{\prime}=\emptyset$ . To show $P$ is $*$-prime, let $B,$ $C$ be ideals in
$R$ such that $ B\cap c(P)\neq\emptyset$ and $ C\cap c(P)\neq\emptyset$ . Let $xeB\cap c(P)$ and $yeC\cap c(P)$ .
Then by the maximality of $M^{\prime},$ $[(x)+P]\cap M^{\prime}\neq\emptyset$ and $[(y)+P]\cap M^{\prime}\neq\emptyset$ , and since
$M^{\prime}$ is $a^{*}$-system, $[(x)+P]*[(y)+P]\cap M^{\prime}\subseteq[(x)*(y)+P]\cap M^{\prime}\neq\emptyset$ (also see [12, Lemma
1.11). From this we get $(x)*(y)\cap(P+M^{\prime})\neq\emptyset$ and so $(x)*(y)\cap c(P)\neq\emptyset$ since $P+$

$M^{\prime}\subseteq c(P)$ . Thus $c(P)$ is a $*$-system and $P$ is $*$-prime. But then since $M^{\prime}$ is a
maximal $*$-system with re8pect to $ M^{\prime}\cap A=\emptyset$ , we must have $c(P)=M^{\prime}$ . Hence
$P$ is a minimal $*$-prime ideal belonging to $A$ .

Corollary 6.3. Let $A$ be an ideal in $R$ and $P$ be a $*$-prime ideal of $R$

containing A. Then there exists a minimal $*$-prime ideal $P^{\prime}$ belonging to $A$

such that $P^{\prime}\subseteq P$.
Proof. Sinc$ec(P)$ is a $*$-system such that $ c(P)\cap A=\emptyset$ , by Lemma 6.2, there

exists a minimal $*$-prime ideal $P^{\prime}$ belonging to $A$ such that $ P^{\prime}\cap c(P)=\emptyset$ , so
$P^{\prime}\subseteq P$.

The following corollary is immediate from Corollary 6.3.

Corollary 6.4. For any ideal $A$ of $R$, the $*$-prime radical $r^{*}(A)$ is the
intersection of all minimal $*$-prime ideals belonging to $A$ .

Deflnition 6.5. An arbitrary algebra $R$ is called noetherian if $R$ satisfies the
maximal condition on ideals.

The proof of the following is similar to [201.

Theorem 6.6. Suppose $R$ is noetherian and $A$ is an ideal of R. Then
there exists only a finite number of minimal $*$-prime ideals belonging to $A$ .

Corollary 6.7. Suppose $R$ is noetherian and $A$ is an ideal of R. Let
$P_{1},$

$\cdots,$ $P_{m}$ be the minimal $*$-prime ideals belonging to $A$ such that $P_{1}\neq R$.
Then the following are equivalent.

(a) $A$ is $*$-primary;
(b) $A=A_{*}^{\epsilon(P_{\ell})},$ $i=1,2,$ $\cdots,$ $m$ ;
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(c) $A=A_{c(P\ell)}^{*},$ $i=1,2,$ $\cdots,$ $m$ .
Proof. The proof for $(a)\Rightarrow(b)\Rightarrow(c)$ is the same as in Theorem 5.6. To show

$(c)\Rightarrow(a)$ , suppose $A$ is not $*$-primary. Then by Theorem 5.6 there exists $a^{*}$-prime

ideal $P\supseteq A$ such that $A\neq A_{\iota(P)}^{*}$ (note always $A\subseteq A_{c(P)}^{*}$). By Corollary 6.3 there
exists a minimal $*$-prime ideal $P_{\ell}$ such that $P_{\ell}\supseteq A$ and $P_{\ell}\subseteq P$. But then, since
$c(P)\subseteq c(P_{\ell})$ , it follows from Theorem 5.5 that $A_{c(P_{i})}^{*}\supseteq A_{c(P)}^{*}$ and hence $A\neq A_{c(P\ell)}^{*}$ .

Theorem 6.8. Suppose $R$ is noetherian and $A$ is an ideal of R. Then
there exists a nonnegative integer $k=k(A)$ such that $D_{*}^{k}(r^{*}(A))\subseteq A$ .

Proof. If $A$ is $*$-prime, the result is obvious. We proceed as in [201. Sup-
pose the theorem is false and $A$ is a maximal element in the set of ideals for
which the result does not hold. Since $A$ is not $*$-prime, there exist ideals $B,$ $C$

in $R$ properly containing $A$ such that $B*C\subseteq A$ . Hence we have $D_{*}^{p}(r^{*}(B))\subseteq B$

and $D*(r^{*}(C))\subseteq C$ for some $p,$ $q$ . Setting $k=\max(p, q)$ implies that $ D_{*}^{k}(r^{*}(A))\subseteq$

$B\cap C$ since $r^{*}(A)\subseteq r^{*}(B)\cap r^{*}(C)$ . Hence $D_{*}^{k+1}(r^{*}(A))\subseteq(B\cap C)*(B\cap C)\subseteq B*C\subseteq A$ ,

a contradiction.
Recall that an ideal $A$ is called $*$-solvable if $D_{*}^{m}(A)=0$ for some $m$ and that

the $*$-prime radical $P^{*}(R)$ of $R$ contains all $*$-solvable ideals in $R$ (Corollary 3.10).

If $R$ is noetherian, we have the following stronger result.

Corollary 6.9. If $R$ is noetherian, the *-prime radical $P^{*}(R)$ is the unique
maximal $*$-solvable ideal of $R$ .

Using this, we prove the following characterization of $*$-primary ideals.

Corollary 6.10. Suppose $R$ is noetherian. An ideal $Q$ of $R$ is $*$-primary

if and only if $A*B\subseteq Q$ and $A\not\in Q$ for ideals $A,$ $B$ of $R$ imply that there exists
a positive integer $n$ such that $D_{*}^{n}(B)\subseteq Q$ .

Proof. Suppose $Q$ is $*$-primary and $A*B\subseteq Q$ and $A\not\in Q$ for ideals $A,$ $B$ .
Then $B\subseteq r^{*}(Q)$ and by Theorem 6.8 we have $D_{*}^{n}(B)\subseteq Q$ for some $n$ . Conversely,
$suPposeQ$ is not $*$-primary. Then there exist ideals $A,$ $B$ in $R$ such that $ A*B\subseteq$

$Q$ but $A\not\in Q$ and $B\not\in r^{*}(Q)$ . Setting $\overline{R}=R/Q$ implies $\overline{A}\neq\overline{0}$ and $\overline{B}\not\in\overline{r^{*}(Q)}=r^{*}(\overline{0})=$

$P^{*}(\overline{R})$ by Lemma 3.11. Suppose $D_{*}^{n}(B)\subseteq Q$ for some $n>0$ . Then $D_{*}^{n}(\overline{B})=\overline{Q}=\overline{0}$ ;

that is, $\overline{B}$ is $*$-solvable, and hence $\overline{B}\subseteq P^{*}(\overline{R})$ . This implies $B\subseteq r^{*}(Q)$ , a con-
tradiction. Hence $D_{*}^{n}(B)\not\in Q$ for all $n$ .

Definition 6.11. (a) An ideal $A$ of $R$ is said to be meet irreducible if $A=$

$B\cap C$ for ideals $B,$ $C$ always implies $A=B$ or $A=C$ .
(b) An arbitrary algebra $R$ equipped with a strong left-additive $*$-operation



PRIME AND PRIMARY IDEAL THEORIES 161

is said to satisfy the right $*_{-Artin}$-Rees property on ideals if, for every ideals
$A,$ $B$ in $R$ , there exists a nonnegative integer $n=n(A, B)$ such that $ A\cap D_{*}^{n}(B)\subseteq$

$A*B$ .
This definition is a $*_{- operation}$-analog of the Artin-Rees property for as-

sociative algebras or quadratic Jordan algebras [201. The proof of the following

lemma is well known and easy.

Lemma 6.12. (a) An ideal $A$ of $R$ is meet irreducible if and only if (0)

is meet irreducible in $R/A$ .
(b) If $R$ is noetherian then every ideal of $R$ is an intersection of a

finite number of ideals in $R$ .
Lemma 6.13. If $R$ satisfies the right $*_{- Artin}$-Rees property, then every

meet irreducible ideal of $R$ is $*$-primary.

Proof. Let $S$ be a meet irreducible ideal of $R$ . By Theorem 5.2 and
Lemma 6.12 we may assume $S=(O)$ . Let $A,$ $B$ be ideals in $R$ such that $A*B=0$ .
By tne right $*_{- Artin}$-Rees property there exists an $n$ such that $A\cap D_{*}^{n}(B)=0$

and hence $A=0$ or $D_{*}^{n}(B)=0$ . If $A\neq 0,$ $D_{*}^{n}(B)=(0)\subseteq r^{*}(0)(=P^{*}(R))$ . By Corol-
lary 6.9, since $r^{*}(O)$ is $*$-solvable, $D_{*}^{m}(D_{*}^{n}(B))=D_{*}^{m+n}(B)=0$ . Thus $B$ is $*$-solvable
and is contained in $r^{*}(O)$ ; that is, (0) is $*$-primary.

We now state the main theorem.

Theorem 6.14 (Lasker-Noether Theorem) SuPpose $R$ is noetherian. Then

a necessary and sufficient condition that every ideal of $R$ has a normal $*_{-}$

primary representation is that $R$ satisfies the right $*_{- Artin}$-Rees property

on ideals.
The proof is based on an argument using Theorem 6.8, Corollary 5.11, and

Lemmas 6.12, 6.13, and so the same as in [20].

7. Tertiary ideals and decompositions.

Throughout we let $R$ be an arbitrary algebra equipped with a strong left-
additive $*$-operation. In this section we introduce a definition of tertiary ideal
and radical for $R$ by using a $*$-operation. Our definition is similar to that given

by Kurata [7] and that more recently given by Tsai and Foster [20] for quad-

ratic Jordan algebras. Also, the present one is a best generalization of $*$-primary

decomposition sinc$e$ we can show that any ideal in a noetherian algebra possesses

a normal *-tertiary decomposition without any additional condition. We begin with

Definition 7.1. Let $A,$ $B$ be ideals of $R$ . Then the set $[B:A]^{*}=\{xeR|(x)*A\subseteq B\}$
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is called the (left) $*$-quotient of $A$ in $B$ .
A notion 8imilar to this was defined in Myung [13]. From the definition

one can easily show that $[B:A]^{*}$ Is an ideal in $R$ containing $B$ .
Lemma 7.2. Let $A$ be an ideal of R. Then the following sets are equal

to each other.
(a) $T_{1}=$ {$a\in R|[A:(a)]^{*}\cap(c)\subseteq A$ implies $c\in A$};

(b) $T_{2}=$ {$a\in R|$ for any $b\in c(A)$ , there exists $c\in(b)\cap c(A)$ such that $(c)*(a)\subseteq A$};
(c) $T_{3}=$ {$a\in R|[A:(a)]^{*}\cap B\subseteq A$ for any ideal $B$ in $R$ implies $B\subseteq A$}.

Proof. To show $T_{2}\subseteq T_{1}$ , let $aeT_{1}$ . Then there is a $bec(A)$ such that
[ $A:(a)1^{*}\cap(b)\subseteq A$ . Now, choose any $c\in(b)\cap c(A)$ and $supp_{08}e(c)*(a)\subseteq A$ . Then
$ce[A:(a)]^{*}$ and so ce $[A:(a)]^{*}\cap(b)\subseteq A$ , a contradiction. Hence $(c)*(a)\not\in A$ and
so $a\not\in T_{2}$ , or $T_{2}\subseteq T_{1}$ . To see $T_{1}\subseteq T_{2}$ , let $a\not\in T_{2}$ . Then there is a $b\in c(A)$ such
that, for all ce $(b)\cap c(A)$ , we have $(c)*(a)\not\in A$ . It is enough to show $[A:(a)]^{*}\cap$

$(b)\subseteq A$ . For this, let $x\not\in A$ . If $x\in(b)\cap c(A)$ , then $(x)*(a)\not\in A$ and so $x\not\in[A:(a)]^{*}$ .
Thus $[A:(a)]^{*}\cap(b)\subseteq A$ and $a\not\in T_{1}$ . That $T_{1}=T_{8}$ is immediate.

Deflnition 7.3. Let $A$ be an ideal of $R$ . Any one of the sets in Lemma
7.2 is called the $*$-tertiary radical of $A$ and is denoted by $t^{*}(A)$ . An ideal $T$ is
called $*$-tertiary if $A*B\subseteq T$ for ideals $A,$ $B$ in $R$ implies $A\subseteq T$ or $B\subseteq t^{*}(T)$ .

For any ideal $A$ , we note from the definition that $A\subseteq t^{*}(A)$ and if $A\neq R$

then $A\subsetneqq[A:(b)]^{*}$ for all $b\in t^{*}(A)$ .
Lemma 7.4. Every meet irreducible ideal $A$ in $R$ is $*$-tertiary.

Proof. Suppos$e$ $A$ is not $*$-tertiary. Then there exist ideals $B,$ $C$ such that
$B\not\in A$ and $C\not\in t^{*}(A)$ but $B*C\subseteq A$ . Choose an element beC with $b\not\in t^{*}(A)$ . By
Lemma 7.2(a) there exists $c\not\in A$ such that

$[A:(b)]^{*}\cap(c)\subseteq A$ .
Hence $A\subseteq[A:(b)]^{*}\cap[(c)+A]$ . Now, let $x\in[A:(b)]^{*}\cap[(c)+A]$ . Then $x=y=c_{0}+a$

for $c_{0}\in(c),$ $y\in[A:(b)]^{*}$ , a $e$ $A$ and so $c_{0}=y-ae[A:(b)]^{*}$ . Thus $c_{0}\in A$ and $x=c_{0}+$

$a\in A$ , which implies $A=[A:(b)]^{*}\cap[(c)+A]$ . Choosing a $u\in B$ with $u\not\in A$ gives
$u\in[A:(b)]^{*}$ since $(u)*(b)\subseteq B*C\subseteq A$ . Hence $A\subsetneqq[A:(b)]^{*}$ and since $c\not\in A$ , we have
that $A$ is not meet irreducible.

For another characterization of $*$-tertiary radical we put

Deflnition 7.5. Let $R$ be an arbitrary algebra. An ideal $A$ in $R$ is called
essential in $R$ if for any nonzero ideal $B$ of $R$ we have $A\cap B\neq 0$ .

An example of an algebra $R$ where every nonzero ideal is essential in $R$ is
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a subdirectly irreducible algebra. By definition, $R$ is called subdirectly irreduci-
ble if the intersection of all nonzero ideals in $R$ is not zero.

Lemma 7.6. Let $A$ be an ideal of $R$ and let $\overline{R}=R/A$ . Then

$t^{*}(A)=$ { $beR|[\overline{0}:(\overline{b})]^{*}$ is essential in $\overline{R}$}.

Proof. For any ideals $A,$ $B,$ $C$ in $R$ , by the same argument as in Lemma
7.4 we see that [ $A:B|^{*}\cap C\subseteq A$ if and only if $[A;B]^{*}\cap(C+A)=A$ . From this
and Lemma 7.2 it follows that

$t^{*}(A)=\{b\in R|B\not\in A$ for any ideal $B$ implies $[A;(b)1^{*}\cap BfA1$

$=$ {$b\in R|B\not\in A$ implies $[A:(b)]^{*}\cap(B+A)\supsetneqq A$}
$=$ {$b\in R|\overline{B}\neq\overline{0}$ implies $[\overline{0}:(\overline{b})]^{*}\cap\overline{B}\neq\overline{0}$}
$=$ {$b\in R|[\overline{0}:(\overline{b})]^{*}$ is essential in $\overline{R}$}.

Theorem 7.7. Let $A$ be an ideal of R. $If^{*}is$ both left- and right-additive,

then $t^{*}(A)$ is an ideal in $R$ .
Proof. Let $r\in R,$ $b\in t^{*}(A)$ and let $\overline{R}=R/A$ . Since $(rb)\subseteq(b),$ $[\overline{0};(\overline{b})]^{*}\subseteq[\overline{0};(\overline{rb})]^{*}$ .

Hence by Lemma 7.6 $rb\in t^{*}(A)$ and similarly $\alpha b\in t^{*}(A)$ for $\alpha\in\Phi$ . Let $b,$ $c\in t^{*}(A)$ .
Since $(b-c)\subseteq(b)+(c)$ and *is right-additive, we have

$[\overline{0};(\overline{b}-\overline{c})]^{*}\supseteq[\overline{0}:(\overline{b})]\cap[\overline{0};(\overline{c})]^{*}$ .
If $K$ is any nonzero ideal in $\overline{R}$ , then since $[\overline{0}:(\overline{b})]^{*}$ and $[\overline{0}:(\overline{c})]^{*}$ are essential in
$\overline{R}$ , we get

$K\cap[\overline{0};(\overline{b}-\overline{c})]^{*}\supseteq\{K\cap[\overline{0}:(\overline{b})]^{*}\}\cap[\overline{0};(\overline{c})]^{*}$

and so $[\overline{0}:(\overline{b}-\overline{c})]^{*}$ is essential in $\overline{R}$ too. Thus by Lemma 7.6 $b-c\in t^{*}(A)$ and $t^{*}(A)$

is an ideal of $R$ .
If $R$ is an algebra where the set of all ideals in $R$ forms a chain by the

inclusion, then any $*$-operation in $R$ is left-and right-additive. A nontrivial
example of this algebra is given in [2, p. 2471.

Lemma 7.8. Let $A_{1},$
$\cdots,$

$A_{n}$ be ideals in R. Then
$t^{*}(A_{1}\cap A_{2}\cap\cdots\cap A_{n})\subseteq t^{*}(A_{1})\cap t^{*}(A_{2})\cap\cdots\cap t^{*}(A_{n})$ .

Proof. By induction it is enough to show the result for $n=2$ . For
$bet^{*}(A_{1}\cap A_{2})$ , let $ceR$ be such that $[A_{1}\cap A_{2}:(b)]^{*}\cap(c)\subseteq A_{1}\cap A_{2}$ . Then we
have $[A_{1}\cap A_{2}:(b)]^{*}\cap(c)=[A_{1}:(b)]^{*}\cap[A_{2}:(b)]^{*}\cap(c)\subseteq A_{2}$ . Since $b\in t^{*}(A_{2})$ , from this
and Lemma 7.2(c) it follows that $[A_{1}:(b)]^{*}\cap(c)\subseteq A_{2}\subseteq[A_{2}:(b)]^{*}$ . Hence $[A_{1}\cap A_{2}:(b)]^{*}$

$\cap(c)=[A_{2};(b)]^{*}\cap([A_{1};(b)]^{*}\cap(c))=[A_{1};(b)]^{*}\cap(c)\subseteq A_{1}$ and so $ceA_{1}$ since $b\in i^{*}(A_{1})$ .
Similarly we show $ceA_{2}$ and so $ceA_{1}\cap A_{2}$ ; that is, $b\in t^{*}(A_{1}\cap A_{2})$ .
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Furthermore, for irredundant representations we have

Lemma 7.9. Suppose an ideal $A$ of $R$ has an irredundant representation
by $*$-tertiary ideals $T_{1},$

$\cdots,$
$T_{n}$ . Then $t^{*}(A)=t^{*}(T_{1})\cap\cdots\cap t^{*}(T_{n})$ .

This follows from Lemma 7.8 and th $e$ same argument as in [20, Lemma 7.11.
As an immediate consequence of Lemma 7.9 we have

Corollary 7.10. Let $T_{1},$
$\cdots,$

$T_{n}$ be $*$-tertiary ideals of $R$ such that $t^{*}(T_{1})=$

. . $.=t^{*}(T_{n})$ . Then $T=T_{1}\cap\cdots\cap T_{n}$ is also $*$-tertiary and $t^{*}(T)=t^{*}(T_{1})$ .
Definition 7.11. An irredundant representation by-tertiary ideals $T_{1},$

$\cdots,$
$T_{n}$

is called a normal $*$-tertiary representation if $t^{*}(T_{\ell})\neq t^{*}(T_{J})$ for all $i\neq j$ .
From Corollary 7.10 we obtain

Corollary 7.12. Any ideal represented by a finite number of $*$-tertiary
ideals has a normal $*$-tertiary representation.

We are now prepared to state the main result

Theorem 7.13. Suppose $R$ is noetherian. Then every ideal $A$ has a normal
$*$-tertiary representation, and if $A=T_{1}\cap\cdots\cap T_{m}=S_{1}\cap\cdots\cap S_{n}$ are two normal
$*$-tertiary representations for A then $m=n$ and $t^{*}(T_{\ell})=t^{*}(S_{\ell}),$ $i=1,2,$ $\cdots,$ $m$ ,

for a suitable ordering of the components.
The proof is essentially based on Lemmas 6.11(b), 7.4 and Corollary 7.12, and

henc $e$ standard (see, for example, [201 or [71). In a noetherian algebra, the right
$*_{- Artin}$-Rees property yields th $e$ following relation between $*$-tertiary and $*_{-}$

primary ideals.

Theorem 7.14. SuPpose $R$ is $noether\dot{j}an$ . Then the following are equiv-
alent.

(a) $R$ satisfies the right $*_{- Artin}$-Rees property;
(b) Every $*$-tertiary ideal of $R$ is $*_{- pr}$imary.
For the $prf$ , see [20] or [71

Finally we prove an analogous result of the Krull Intersection Theorem in
commutative, associative rings.

Theorem 7.15. Suppose $R$ is noetherian and satisfies the right $*_{- Artn}\dot{j}$.
Rees property. For any iaeal $A$ of $R$ , let $B=\cap D_{*}^{n}(A)$ . Then we have $B*A$

$n>0$

$=B$ . In particular, if $A\subseteq P^{*}(R)$ , then $\bigcap_{n>0}D_{*}^{n}(A)=0$ .

Proof. We first note that $B\cap D_{*}^{n}(A)\subseteq B*A$ for some $n$ . Since $B\subseteq D_{*}^{n}(A)$ ,
$B=B\cap D_{*}^{n}(A)\subseteq B*A\subseteq B$ and so $B*A=B$ . If $A\subseteq P^{*}(R)$ , then by Theorem 6.8
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$D_{*}^{n}(A)\subseteq D_{*}^{n}(P^{*}(R))=0$ for some $n$ and hence $B=0$ .

8. Applications

To apply the present theory to other systems which generalize “binary”

algebras, let $G$ be a unital module over a commutative associative ring $\Phi$ with
identity. Let $\Omega$ be a set of finitary operations defined on $G$ . Here, as usual,

an n-ary operation $\omega$ on $G$ is a function of $G\times\cdots\times G$ ($n$ times) into $G$ . We
denote by $\omega(a_{1}a_{2}\cdots a_{n})$ the image of $(a_{1}, a_{2}, \cdots, a_{n})$ by $\omega\in\Omega$ . Thus a $\Phi$-module
$G$ together with $\Omega$ is regarded as a universal algebra where the module opera-

tions in $G$ yield a set of unary operations and a binary operation. Following

Kurosh [8, p. 99], we will call such a $G$ a $\Phi$-module with a system $\Omega$ of multi-
operators, or simply call it an $(\Omega, \Phi)$-group if $G$ satisfies the condition

(17) $\omega(00\cdots 0)=0$ for all $\omega\in\Omega$ .
An $(\Omega, \Phi)$-group $G$ and $(\Omega^{\prime}, \Phi)$-group $G^{\prime}$ are said to be of the same type if $\Omega$ and
$\Omega^{\prime}$ are of the same type; that is, there exists a one-one correspondence $\omega\leftrightarrow\omega^{\prime}$

between $\Omega$ and $\Omega^{\prime}$ such that whenever $\omega$ is an n-ary operation on $G$ , so is $\omega^{\prime}$ on
$G^{\prime}$ . If $G$ and $G^{\prime}$ are of th $e$ same type, a mapping $h$ from $G$ into $G^{\prime}$ is called
a homomorphjsm if $h$ is a module homomorphism of $G$ into $G^{\prime}$ and in addition
satisfies

$h(\omega(a_{1}\cdots a_{n}))=\omega^{\prime}(h(a_{1})\cdots h(a_{n}))$

for all $a_{\ell}\in G$ and all $\omega e\Omega$ .
In order to introduce a notion of ideal in an $(\Omega, \Phi)$-group $G$ , we adopt the

definition given by Kurosh [8, p. 100].

Definition 8.1. Let $G$ be an $(\Omega, \Phi)$-group. A nonempty subset $A$ of $G$ is
called an ideal of $G$ if

(a) $A$ is a $\Phi$-submodul $e$ of $G$ ,
(b) for any n-ary operation $\omega e\Omega$ , any element $a\in A$ ,

any elements $x_{1},$ $\cdots,$ $x_{n}\in G$ , and for all $i=1,2,$ $\cdots,$ $n$ , the following holds:

(18) $\omega(x_{1}\cdots x_{-1}(a+x)x_{+1}\cdots x_{n})\in\omega(x_{1}x_{2}\cdots x_{n})+A$ .
If $\{A_{\ell}|i\in I\}$ is a family of ideals in $G$ , by (18) an easy induction shows that

the submodule $\sum_{ieI}A_{\ell}$ is also an ideal of $G$ . Let $A$ be an ideal of $G$ . If $\omega\in\Omega$

is an n-ary operation and we set

$\omega((x_{1}+A)\cdots(x_{n}+A))=\omega(x_{1}\cdots x_{n})+A$

for $x\in G$ , then $\omega$ is well defined on the quotient module $G/A$ and so $\Omega$ acts on
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$G/A$ . Thus $G/A$ is made into an $(\Omega, \Phi)$-group, called the $(\Omega, \Phi)$-quotient group
of $G$ . For the basic results regarding $(\Omega, \Phi)$-quotient groups, isomorphism theorems,
and etc., the reader is referred to Kurosh [8, Chapter III]. Let $G$ be an $(\Omega, \Phi)-$

group. If every element $\omega$ in $\Omega$ is multi-linear on the $\Phi$-module $G$ , then (18) is
reduced to

(19) $\omega(x_{1}\cdots x_{\ell-1}ax_{\ell+1}\cdots x_{n})\in A$ , $i=1,2,$ $\cdots,$ $n$

for all $\omega e\Omega$ , all $x_{1},$ $\cdots,$ $x_{n}\in G$ , and all $a\in A$ .
Definition 1.1 can now be carried out to any $(\Omega, \Phi)$-group $G$ to introduce a

$*$-operation in $G$ . All the previous results in terms of a $*_{- operation}$ remain to
hold for any $(\Omega, \Phi)$-group equipped with a (strong left-additive) $*$-operation.
Since $\Omega$ can arbitrarily act on $G$ , the concept of ideal in $G$ is usually much more
complicated than that in a binary algebra. Thus it is not a surprise that the
constructions of a strong left-additive $*$-operation in an $(\Omega, \Phi)$-grouP is somewhat
less natural than those in a binary algebra. Consider an $(\Omega, \Phi)$-group such that
an arbitrary n-ary operation $\omega\in\Omega$ has at least one argument with respect to
which $\omega$ is $\Phi$-linear. In this case, let $n(\omega)$ be th $e$ least index among such argu-
ments. We further assume that

$\omega(0\cdots 0x_{n(\omega)}0\cdots 0)=0$

for all $\omega\in\Omega$ and $x_{n(\omega)}\in G$ . It should be noted under this situation that Condi-
tion (17) is superfluous. For any ideals $A,$ $B$ in $G$ , let $A*B$ be the ideal in $G$

generated by the elements $\omega(x_{1}\cdots x_{n})$ with $x\in B$ for $i\neq n(\omega)$ and $x_{i}eA$ for $i=$

$n(\omega)$ where $\omega$ runs over all the n-ary operations in $\Omega$ . $Then*is$ clearly a strong

left-additive $*$-operation in $G$ . It is not difficult to form this kind of $(\Omega, \Phi)-$

groups. For this, let $G$ be a unital $\Phi$-module and $\Lambda$ be a set of mappings $\lambda$

from $G\times\cdots\times G$ ( $n$ times) into $Hom_{\phi}(G, G)$ such that

$\lambda(0,0, \cdots, 0)=0$ ,

where $n$ runs over a set of positive integers. Let $\Lambda_{0}$ be the set of finitary
operations $\lambda_{0}$ on $G$ such that

$\lambda_{0}(x_{1}, x_{2}, \cdots, x_{n+1})=x_{1}\lambda(x_{2}, \cdots, x_{n+1})$

for $\lambda\in\Lambda$ and for $x_{1},$ $x_{2},$ $\cdots,$ $x_{n+1}\in G$ . Then $G$ is regarded as a $(\Lambda_{0}, \Phi)$-group satisfy-

ing the condition above. We define the ideals in th $e$ module $G$ with $\Lambda$ to be
those in $G$ regarded as a $(\Lambda_{0}, \Phi)$-group. Thus, for any ideals $A,$ $B$ in $G$ , if we
set $A*B$ to be the ideal in $G$ generated by the elements $\lambda_{0}(ab_{1}b_{2}\cdots b_{n}),$ $\lambda_{0}\in\Lambda_{0}$ ,
$a\in A,$ $b_{\ell}\in B$ , we obtain a strong left-additive $*$-operation in the $(\Lambda_{0}, \Phi)$-group $G$ .



PRIME AND PRIMARY IDEAL THEORIES 167

This 8etting of a $\Phi$-module with multi-operators is more natural because of
its similarity with some well-known algebraic systems. Let $(J, U, 1)$ be a unital
quadratic Jordan algebra over $\Phi$ , where $J$ is a unital $\Phi$-module and $U$ is a quad-
ratic mapping from $J$ into $Hom_{\phi}(J, J)$ which satisfies the axioms of McCrimmon
(see, for example, [201). Here, a $\Phi$-submodule $A$ of $J$ is called an inner (outer)

ideal of $J$ if, for all xeJ and $a\in A,$ $xU_{a}eA(aU_{x}\in A)$ , and $A$ is called an ideal
of $J$ if $A$ is both inner and outer. Any unital quadratic Jordan algebra over
$\Phi$ is also regarded as an $(\Omega, \Phi)$-group in the above manner, where $\Omega$ consists of
the binary operation $\omega(xy)=xU_{v}$ . Thus we have two notions of ideal for $J$. We
however prove

Theorem 8.2. Let $(J, U, 1)$ be a unital quadratic Jordan over $\Phi$ . Then
the ideals of $J$ in the Jordan sense coincide with those of $J$ in the sense of
Definition 8.1 regarded $J$ as an $(\Omega, \Phi)$-group.

Proof. We first recall that if $A$ is an outer ideal of $J$ then $xU_{a.y}\in A$ for
all $x,$ $y\in J$ and $a\in A$ , where $U_{a.y}=U_{a+y}-U_{a}-U_{\nu}$ (see [20, Proposition 1.11). Sup- ‘

pose now that $A$ is an ideal of $J$ in the Jordan sense. For $a\in A$ and $x\in J$, we
have $(x+a)U_{\nu}-xU_{y}=aU_{y}eA$ and $xU_{a+y}-xU_{\nu}=xU_{a.y}+xU_{a}\in A$ since $A$ is inner
and outer. Hence $A$ is an ideal of $J$ in the sense of Definition 8.1. Conversely,
let $A$ be an ideal of $J$ in the sense of Definition 8.1. Then, for $a\in A$ and
$x,$ $y\in J$, we have $(x+a)U_{y}-xU_{y}=aU_{\nu}\in A$ and so $A$ is an outer ideal of $J$. Using
this, we get $xU_{a}=xU_{a+y}-xU_{y}-xU_{a.y}eA$ since $A$ is outer. Hence $A$ is inner
too and is an ideal of $J$ in th $e$ Jordan sense.

If $J$ is a unital quadratic Jordan algebra then the submodule $AU_{B}$ for any
ideals $A,$ $B$ of $J$ is shown to be an ideal of $J$. Therefore, the present theory
applied to an $(\Omega, \Phi)$-group yields, as a special case, the primary ideal theory of
Tsai and Foster [201 for quadratic Jordan algebras.

We close this section with a special type of $\Phi$-module with multi-operators.

For a fixed positive integer $\nu\geq 2$ , a v-ary system $M$ is defined to be a unital
$\Phi$-module with a $\Phi$-multi-linear mapping $(a_{1}, a_{2}, \cdots, a_{\nu})\rightarrow\langle a_{1}, a_{2}, \cdots, a_{\nu}\rangle$ from $ M\times$

$\times M$ ( $v$ times) into $M$. The best known v-ary systems are the triple systems.
An ideal in a v-ary system i8 defined by Definition 8.1 or equivalently by (19).

This definition of ideal is what has been used for general triple systems (see

Meyberg [10]). A v-ary system can be easily formed from a nonassoeiative algebra
by $v$ times iteration of the binary product.

Let $M$ be a v-ary system. Then for a positive integer $n$ we set
$v(n)=v+(n-1)(\nu-1)$ .
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If $A_{1},$ $A_{2},$
$\cdots,$ $A_{\nu(n)}$ are submodules of $M$, denote by $\langle A_{1}A_{2}\cdots A_{\nu(n)}\rangle$ the submodule

generated by all products of any $v(n)$ elements $a_{1},$ $a_{2},$ $\cdots,$ $a_{\nu(n)}$ with $a_{\ell}\in A_{\ell}$ in all
possible $\langle$ $\rangle$-association. In particular, if $A_{\ell}=A$ for all $i=1\cdots,$ $v(n)$ , we denote
$\langle A_{1}A_{2}\cdots A_{\nu(n)}\rangle=\langle A^{\nu(n)}\rangle$ .

Definition 8.3. Let $M$ be a v-ary system. Then $M$ is called a $v(s)$-system if
there exists a positive integer $s$ such that $\langle A^{\nu(\cdot)}\rangle$ is always an ideal of $M$ for
any ideal $A$ of $M$. As in Zwier [211, if $M$ is a $v(s)$-system, then an ideal $P$ of
$M$ is called $\nu(s)$-prime if $\langle A_{1}A_{2}\cdots A_{\nu(\iota)}\rangle\subseteq P$ for ideals $A$ in $M$ implies $A_{\ell}\subseteq P$ for
som$ei=1,2,$ $\cdots,$ $v(s)$ . An ideal $A$ of $M$ is called nilpotent if there exists a
positive integer $m$ such that $\langle A^{\nu(m)}\rangle=0$ .

For a $v(s)$-system $M$, one can also develop the same prime ideal theory as
for s-algebras given by Zwier [21]. If $M$ is now an arbitrary v-ary system, one
can construct a strong left-additive $*$-operation in $M$ as for binary algebras
(Section 2). If $M$ is a $v(s)$-system and $A,$ $B$ are ideals of $M$, we set $A*B$ to be
the ideal in $M$ generated by the submodule $\langle AB_{2}\cdots B_{\nu(\cdot)}\rangle$ where $B_{\ell}=B$ for $i=$

$2,$
$\cdots,$ $v(s)$ . Then we obtain a strong left-additive $*$-operation in $M$ such that

$ A*A=\langle A^{\nu(e)}\rangle$ for any ideal $A$ of $M$. As in Section 4, those two notion of prime
ideal for a $v(s)$-system lead to the same prime radical.
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