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1. Introduction. The measure of noncompactness which was introduced by
Kuratowski [8] (in 1930) has now become an important tool in nonlinear analysis
(although its value in that regard was not appreciated until much later).

Following Kuratowski we introduce a measure of nonconvexity which has many
properties in common with the measure of noncompactness and therefore we
may now have “ convex” where previously we had “ compact” in the statements
of some theorems.

For example, let $E$ be a Banach space and consider the differential equation

$x^{\prime}=f(t, x)$ , $x(t_{0})=x_{0}$ , (1.1)

where $f:R^{+}\times E\rightarrow E$. Let $x(t, t_{0}, x_{0})$ denote the solution of (1.1) and

$x(t, t_{0}, X)=\{x(t, t_{0}, x_{0}):x_{0}\in X\}$ , (1.2)

where $X$ is a subset of $E$. Let $\gamma(A)$ denote the measure of noncompactness of
A. Ambrosetti [1] and Szufla [10] used the condition that $f$ is a-Lipschitzian,
i.e., there is an $L>0$ such that

$\gamma(f(X))\leq L_{\gamma}(X)$ , (1.3)

to guarantee that

$\gamma(x(t, t_{0}, X))\leq e^{L(t-t_{0})}\gamma(X)$ , $t\geq t_{0}$ . (1.4)

More generally one introduces a function $g(t, u)$ , which may be nonlinear, and
replaces condition (1.3) by weaker condition [6]

$\gamma(f(t, A))\leq g(t, \gamma(A))$ , (1.5)

to guarantee that

$\gamma(x(t, t_{0}, X))\leq r(t, t_{0}, \gamma(X))$ (1.6)

Here $r(t, t_{0}, x_{0})$ is the maximal solution of the scalar differential equation
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$u^{\prime}=g(t, u)$ , $u(t_{0})=u_{0}\geq 0$ . (1.7)

Similarly, if $\alpha$ denotes the measure of nonconvexity then we may obtain
the analogous estimate

$\alpha(x(t, t_{0}, X))\leq r(t, t_{0}, \alpha(X))$ , $t\geq t_{0}$ . (1.8)

If the maximal solution of (1.7) is identically zero, when $u_{0}=0$ , then in view
of (1.8) $\langle(1.6)\rangle$ , the closure of $x(t, t, X)$ is convex $\langle compact\rangle$ for $t>t_{0}$ if it is
convex $\langle compact\rangle$ at $t=t_{0}$ .

The concept of a comparison map, such as $\psi$ , which bounds the mea8ure of
noncompactness has been used in fixed point theory in conection with the
contraction mapping and Schauder principles [41, [51 In Section 2 we make
some general remarks concerning comparison maps, the measures of non-com-
pactness and nonconvexity and fixed point theory. The role of the measure of
nonconvexity in differential equations is discussed in Section 3.

2. A measure of nonconvexity. Let $E$ be a Banach space (with norm
$\Vert\cdot||)$ and $A$ a subset in $E$. Denote by co $(A)$ the convex hull of $A$ . We say
that $A$ is $\alpha$-measurable with measure $\alpha(A)$ if

$\alpha(A)=\sup_{b\in c\circ)}\inf_{a\in A}\Vert b-a\Vert<\infty$ , (2.1)

Alternatively, if $H(X, Y)$ denotes the Hausdorff distance between two subsets
$X$ and $Y$,

$\alpha(A)=H$( $A$ , co $(A)$). (2.2)

Clearly, a bounded set is $\alpha$-measurable.
From the definition the following properties of $\alpha$ can be derived in a

straightforward manner.
$\alpha(A)=0$ iff $\overline{A}$ (the closure of $A$) is convex; (2.3)
$\alpha(\lambda A)=|\lambda|\alpha(A)$ for $\lambda\in R^{1}$ (where $\lambda A=\{\lambda a|a\in A\}$ ; (2.4)
$\alpha(A+B)\leq\alpha(A)+\alpha(B)$ ; (2.5)
$|\alpha(A)-\alpha(B)|\leq\alpha(A-B)$ ; (2.6)
$\alpha(\overline{A})=\alpha(A)$ ; (2.7)
$\alpha(A)\leq dIam(A)$ (the diameter of $A$); (2.8)
$|\alpha(A)-\alpha(B)|\leq 2H(A, B)$ . (2.9)

Note that all these properties are shared by the measure of noncompactness $\gamma$ .
Recall $\gamma(A)=\inf\{d>0|A$ can be covered by a finite number of sets of diameter
$\leq d\}$ . $\alpha$ is not monotone in the sense that $\alpha(A)\leq\alpha(B)$ if $A\subset B$ . If it did, then
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every closed set would be convex which is not true. Unfortunately $\alpha(A)$

measures only the nonconvexity of $\overline{A}$ and not $A$ itself if $A$ is not closed.
As a consequence of (2.9) and a similar inequality for $\gamma,$ $|\gamma(A)-\gamma(B)|\leq$

$H(A, B)$ , the measures $\alpha$ and $\gamma$ are continuous with respect to the Hausdorff
metric, that is,

Proposition 2.1. Let $A_{n}$ be a sequence of subsets of $E$ such that $A_{n}$

approaches a subset $A_{\infty}$ in the Hausdorff metric. Then (i) if $A_{n}$ are
a-measurable,

$\lim_{n\rightarrow\infty}\alpha(A_{n})=\alpha(A_{\infty})$ . (2.10)

(ii) if $A_{n}$ are bounded

$\lim_{n\rightarrow\infty}\gamma(A_{n})=\gamma(A_{\infty})$ . (2.11)

Proposition 2.2 (Kuratowski). Let (X, $\rho$) be a complete metric space and
let $ A_{0}\supset A_{1}\supset\cdots$ be a decreasing sequence of nonempty, closed subsets of $E$.
Assume $\gamma(A_{n})\rightarrow 0$ . Then if we write $A_{\infty}=\bigcap_{n\geq 0}A_{n},$

$A_{\infty}$ is a nonempty compact

set and $A_{n}$ approaches $A_{\infty}$ in the Hausdorff metric.
Proposition 2.3. Let $ A_{0}\supset A_{1}\supset\cdots$ be a decreasing sequence of closed

bounded subsets of E. Let $A_{\infty}=\cap A_{n}$ . Then $A_{\infty}$ is nonempty, convex and
$n\geq 0$

compact and $A_{n}$ converges to $A_{\infty}$ in the Hausdorff metric iff $\alpha(A_{n})\rightarrow 0$ and
$\gamma(A_{n})\rightarrow 0$ .

Proof. Suppose $\gamma(A_{n})\rightarrow 0$ . It follows from Proposition 2.2 that $A_{n}$ converges
to the nonempty compact set $A_{\infty}$ in the Hausdorff metric. If, in addition,
$\alpha(A_{n})\rightarrow 0$ then in view of (2.10), $\alpha(A_{\infty})=0$ . Since $A$ is also closed, $A_{\infty}$ is convex
by (2.3).

Suppose $A_{n}\rightarrow A_{\infty}$ in the Hausdorff metric and $\alpha(A_{\infty})=\gamma(A_{\infty})=0$ . Then by
(2.10) and (2.11), $\alpha(A_{n})\rightarrow 0$ and $\gamma(A_{n})\rightarrow 0$ .

Proposition 2.4. Let $ A_{0}\supset A_{1}\supset\cdots$ be a decreasing sequence of closed,
bounded subsets of $E$ such that $\alpha(A_{n})\rightarrow 0$ and $7(A.)\rightarrow 0$ . Suppose $T\dot{j}S$ a con-
tinuous map of $A_{0}\rightarrow A_{0}$ such that

$Tx\in A_{n}$ if $x\in A_{n},$ $n=0,1,$ $\cdots$ (2.12)

Then there exists an $x\in A_{\infty}=\bigcap_{n\geq 0}A_{n}$ such that

$Tx=x$ , (2.13)

Proof. The result is a corollary of the Schauder principle ([7], p. 67) since,
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from Proposition 2.3, $A_{\infty}$ is nonempty, convex and compact and $T$ maps $A_{\infty}$

into itself.
Closely associated with the notion of measure of noncompactness is the

concept of k-set-contraction (also due to Kuratowski [8]). Let $(X_{1}, d_{1})$ and
$(X_{2}, d_{2})$ be metric spaces and suppose $T:X_{1}\rightarrow X_{2}$ is a continuous map. We say
$T$ is a k-set-contraction if given any bounded set $A$ in $X_{1},$ $T(A)$ is bounded
and $\uparrow,(T(A))\leq k\gamma_{1}(A)$ where $\gamma_{i}$ denotes the mea8ure of noncompactness in $X$ ,
$i=1,2$ .

Proposition 2.5. (Darbo [31.) Let $C$ be a closed, bounded, convex set and
$T:C\rightarrow C$ a k-set-contraction, $k<1$ . Then $T$ has a fixed point, i.e., a point $x$

satisfying (2.13).

The above generalization of the Schauder principle was further extended
[51 by introducing a comparison function $\psi$ which has the following properties:
(i) $\psi$ maps a conical segment of regular cone in a partially ordered space into
itself; (ii) $\phi$ is monotone; (iii) $\phi$ is upper semi-continuous from the right; (iv)
$\phi(x)=x$ iff $ x=\theta$ (the zero of the space). Then Darbo’s condition $\gamma(T(A))\leq k\gamma(A)$ ,
$k<1$ , is replaced by the weaker condition

$\gamma(T(A))\leq\phi(\gamma(A))$ . (2.14)

In [5] vector-valued measure of noncompactness was considered. Our present
discussion is limited to the cone of nonnegative numbers in $R$ . In this context
it is more appropriate (see Proposition 2.7, below) to use a comparison function
which was introduced by Boyd and Wong [2] in their discussion of the contrac-
tion mapping principle.

Definition 2.1. A function $\phi:[0, \infty$ ) $\rightarrow[0, \infty$ ) is a comparison function if
(i) $\phi(t)<t$ for $t>0$ , (ii) $\phi(0)=0,$ $\phi$ is upper semi-continuous from the right.

Proposition 2.6. Let $\phi$ be a comparison map and let $S_{0},$ $S_{1}\cdots be$ a sequence
of nonnegative real numbers such that $S_{n}\leq\phi(S_{n-1}),$ $n=1,2,$ $\cdots$ . Then the
sequence $S_{n}$ converges to zero.

Proof. Since $S_{n}\leq\phi(S_{n-1})\leq S_{n-1}$ , the sequence $S_{n}$ converges monotonically.
Suppose $S_{\infty}=\lim S_{n}>0$ . Then $\phi S_{\infty}<S_{\infty}\leq S_{n},$ $n=1,2,$ $\cdots$ . But this contradicts the
upper semi-continuity from the right.

Proposition 2.7. Let $\phi:[0, a$) $\rightarrow[0,$ $a1$ be nonincreasing, upper semicontinuous
from the right, and $\psi(t)=t$ iff $t=0$ . Then $\psi$ has an extension to $[0, \infty$ ) which
is a comparison function.
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Proof. Since the interval $[0, a]$ is a segment of the regular cone (of nonne-
gative real numbers) it follows from Theorem 3.1 in [4] that if $t\leq\phi(t)$ then
$t\leq t_{0}$ where $t_{0}$ is the maximal solution of $\phi(t)=t$ . By assumption $t_{0}=0$ . Thus
$t\leq\phi(t)$ iff $t=0$ . If we define $\phi(t)=\phi(a),$ $t\geq a$ then $\phi$ is a comparison function.

Definition 2.2. Let $(X_{1}, \Vert\cdot\Vert_{1})$ and $(X_{2}, \Vert\cdot\Vert_{2})$ be Banach spaces and suppose
$T:X_{1}\rightarrow X_{2}$ is a continuous map. We say that $T$ is a $\phi$-set-contraction with
respect to convexity $\langle compactness\rangle$ if given any $\alpha_{1}$-measurable $\langle bounded\rangle$ set $A$

in $X_{1},$ $T(A)$ is $\alpha_{2}$-measurable $\langle bounded\rangle$ and

$\alpha_{2}(T(A))\leq\phi(\alpha_{1}(A))$ (2.15)

$\langle\gamma_{2}(T(A))\leq\psi(\gamma_{1}(A))\rangle$ (2.16)

where $\alpha_{i}\langle\gamma_{\ell}\rangle$ denotes the measure of nonconvexity $\langle noncompactness\rangle$ in $X_{\ell}$ ,

$i=1,2$ . We say that $T$ is a $\phi$-contraction if $\Vert Tx-Ty\Vert_{2}\leq\phi(\Vert x-y\Vert_{1})$ for every
$x,$ $y\in X_{1}$ . The following result is a generalization of a similar result due to
Darbo [31 in regard to relating the notion of k-contraction, i.e., a $\phi$-contraction
with $\phi(t)=kt$ , to the notion of k-set-contraction.

Proposition 2.8. Let $(X_{1}, \Vert\cdot\Vert_{1})$ and $(X_{2}, \Vert\cdot\Vert_{2})$ be Banach spaces. Let $T$ be
a $\phi$-contraction, then (i) $T$ is a $\phi$-set-contraction with respect to compactness;
(ii) $H(TA, TB)\leq\psi(H(A, B))$ whenever $ H(A, B)<\infty$ ; (iii) if for every a-measura-
ble set $A,$ $co(TA)\subset\overline{T\overline{(co}(A}))$ (where $\overline{co}(X)$ denotes the convex closure of $X$ ), then
$T$ is $\phi$-set-contraction with respect to convexity.

Proof. (i) Let $A$ be a bounded 8et in $X_{1}$ and suppose $\gamma_{1}(A)=d$ . Then

given $\epsilon>0$ , we can write $A=\bigcup_{j=1}^{n*}S_{j}$ , diam $(S_{j})\leq d+\epsilon$ . Thus $T(A)=\bigcup_{j=1}^{m}T(S_{j})$ and

since $T$ is a $\phi$-contraction, diam $(T(S_{f}))\leq\phi(d+\epsilon)$ . Let $\epsilon$ be a 8equence of
positive numbers converging to zero such that $\phi(d+\epsilon_{\ell})$ converges and let
$b=\lim\phi(d+\text{\’{e}}_{\ell})$ . Then by upper semi-continuity from the right, $b\leq\phi(d)$ . Hence
$\gamma_{2}(TA)\leq\psi(d)$ . (ii) Let $A$ and $B$ be sets such that $ H(A, B)=d<\infty$ . Let $b\in B$ .
Then $inf\{\Vert Tb-Ta\Vert_{2}, a\in A\}\leq\inf\{\phi(||b-a\Vert_{1}), a\in A\}\leq\phi d$ by the upper semi-con-
tinuity from the right of the function $\phi$ . Similarly $inf\{||Ta-Tb\Vert_{2}, b\in B\}\leq\psi d$ .
Thus $H(TA, TB)\leq d$ . (iii) Let $A$ be an a-measurable set in $X_{1}$ . Then from
(ii), $\alpha(TA)=H(TA,\overline{co}(TA))=H(TA,\overline{co}(TA))\leq H(TA, T\overline{\overline{(co}(A)})=H(TA, T\overline{(co}(A)))\leq$

$\psi(H(A\overline{co},A))=\phi\alpha(A)$ .
Theorem 2.9. Let $A$ be a closed subset of a Banach space and $T$ a map

from $A$ onto itself. If $T$ is set contractive with respect to convexity
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$\langle compactness\rangle$ then $A$ is convex $\langle compact\rangle$ . In particular, the set of fixed
points of a set contractive with respect to convexity $\langle compactness\rangle$ map of a
closed subset of a Banach space $\mathcal{B}$ into va $ i\epsilon$ convex $\langle compact\rangle$ .

Proof. Set $m=\alpha(T(A))=\alpha(A)(m=\gamma(T(A))=\gamma(A))$ . Then $m\leq\phi(m)$ . If $m>0$

then $\phi(m)<m$ . But this is impossible. Clearly $m=0$ .
Theorem 2.10. Let $C$ be a closed, bounded set and $T:C\rightarrow C$ a $\psi_{1^{-}}set$-cont-

raction with respect to eonvexity and a $\phi_{2^{-}}set$-contraction with respect to
compactness. The set of fixed points of $T$ is nonempty, convex, and compact.

Proof. Let $C_{0}=C$, and $C_{n+1}=\overline{T(C_{n}}$). Then $C_{n+1}\subset C_{n}$ . Let $\epsilon_{n}=\gamma(C_{n})$ ,
$t_{n}=\alpha(C_{n})$ , then it follows from Proposition 2.6 that $s_{n}\rightarrow 0$ and $t_{n}\rightarrow 0$ . By Proposi-
tion 2.4, the set $F(T)$ of fixed points of $T$ is nonempty and, by Theorem 2.9, it
is also convex and compact.

3. Convexity of solutions of differential equations.

Let $E$ be a real Banach space and let $\Vert\cdot\Vert$ denote the norm in $E$. We let
$B=\{x\in E|\Vert x\Vert\leq b\}$ denote the ball of radius $b$ and let $R_{0}=[t_{0}, t_{0}+a]\times B$ where
$t_{0}\geq 0,$ $a>t_{0}$ .

Consider the differential equation

$x^{\prime}=f(t, x)$ , $x(t_{0})=x_{0}$ , (3.1)

where $f\in C[R_{0}, E]$ . There are several known results which guarantee the
existence of solutions to (3.1). We mention in particular those given in [61. One
of the conditions given there is:

(I) $f$ is uniformly continuous in $R_{0}$ .
Another is a compactness condition which is similar to the convexity condition
II stated below.

For any subset $A\subset B$ and for small $h>0$ set

$A_{h}(f)=\{y|y=x+hf(t, x):x\in A\}$ .
We introduce a (comparison) scalar differential equation

$u^{\prime}=g(t, u)$ , $u(t_{0})=0$ (3.2)

where $g\in C[[t_{0}, t_{0}+a]\times R^{+},$ $R$]. Assume that $u\equiv 0$ is the unique solution of (3.2).

Then the convexity condition on $f$ is

(II) $1{\rm Im}\inf_{h\rightarrow 0+}\{h^{-1}[\alpha(A_{h}(f))-\alpha(A)]\}\leq g(t, \alpha(A))$
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for any subset $A\subset B$ .
We also require the following condition on a set $A\subset B$ :

(III) The set of solutions $x(t, x_{0}),$ $x_{0}\in A$ of (3.1) exists and is equicontinuous.

Condition III is satisfied under the conditions given in [6] when $A$ is Pre-compact.

Theorem 3.1. Let $A\subset B$ have convex closure and let condition $I,$ $\Pi$, and
III be satisfied for (3.1). Then the set

$x(t, t_{0}, A)=\{x(t, t_{0}, x_{0})|x_{0}\in A\}$

has convex closure for $t\in[t_{0}, t_{0}+a]$ .
Proof. Set $m(t)=\alpha(x(t, A))$ where $\alpha$ is the measure of nonconvexity and

$x(t, A)=x(t, t_{0}, A)$ . Our claim is then $m(t)=0$ . Now $m(t+h)-m(t)=\alpha(x(t+h, A))-$

$\alpha(x(t, A))=[\alpha(x(t+h), A)-\alpha(A_{h}(f))]+[\alpha(A_{h}(f))-\alpha(x(t, A))]$ . If we know that

$\lim_{h\rightarrow}\inf_{0+}h^{-1}[\alpha(x(t+h, A))-\alpha(A_{h}(f))]\leq 0$ (3.3)

then it follows from condition II that $D_{+}m(t)\leq g(t, m(t))$ where $D_{+}$ denotes a
Dini derivative. It follows further from the theory of differential inequalities
[9] that $m(t)\equiv 0$ . Thus it remains to verify (3.3).

By properties (2.4), (2.6) and (2.9)

$h^{-1}[\alpha(x(t+h, A))-\alpha(A_{h}(f))]\leq\alpha[h^{-1}(x(t+h, A)-A_{h}(f))]$

$\leq 2\sup_{x_{0}\in A}|h^{-1}[x(t+h, x_{0})-x(t, x_{0})]-f(t, x(t, x_{0}))|$ .

Hence it suffices to show that

$h^{-1}(x(t+h, x_{0})-x(t, x_{0}))\rightarrow f(t, x(t, x_{0}))$

uniformly in $x_{0}$ . Now

$\Vert h^{-1}(x(t+h, x_{0})-x(t, x_{0}))-f(t, x(t, x_{0}))\Vert$

$\leq h^{-1}\int_{t}^{t+h}\Vert f(t+s, x(t+s, x_{0}))-f(t, x(t, x_{0}))||ds$ .

By the uniform continuity of $f$ and by the equicontinuity of $x(t, x_{0})$ this last
expression can be made arbitrarily small, independent of $x_{0}$ , by taking $h$

sufficiently small. This concludes the argument.

Remark. Suppose further that $A$ is compact and that the semi-group map
$x_{0}\rightarrow x(t, x_{0})$ is continuous for each $t\in[t_{0}, t+a]$ . Then $x(t, A)$ is closed and hence,

by Theorem 3.1, also convex. In particular, if $y_{0},$ $z_{0}\in A$ , set $y=x(\overline{t}, y_{0}),$ $z=x(\overline{t}, z_{0})$

for some $\overline{t}\in[t_{0}, t_{0}+a]$ . Then we know that if $w$ lies on the line segment con-
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necting $y$ and $z$ there exists $w_{0}$ on the line segment connecting $y_{0}$ to $z_{0}$ such
that $x(t, w_{0})=w$ , i.e., $w$ is an attainable target.
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