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1. Introduction. The measure of noncompactness which was introduced by
Kuratowsks (in 1930) has now become an important tool in nonlinear analysis
(although its value in that regard was not appreciated until much later).
Following Kuratowski we introduce a measure of nonconvexity which has many
properties in common with the measure of noncompactness and therefore we
may now have ‘‘ convex’’ where previously we had ‘‘ compact’” in the statements
of some theorems.

For example, let E be a Banach space and consider the differential equation
=ft,x), =)=, (L.1)

where fi:R*XE—E. Let x(t,t, x,) denote the solution of and
x(t, to, X)={x(t, to, xo):xo € X}, (1.2)

where X is a subset of E. Let y(A) denote the measure of noncompactness of

A. Ambrosetti and Szufla used the condition that f is a-Lipschitzian,
i.e., there is an L>0 such that

r(f(X)<L,(X), (1.3)
to guarantee that

(@@, t, X)) <e**0r(X), t=t . (1.4)

More generally one introduces a function g(f, ), which may be nonlinear, and
replaces condition by weaker condition

r(f(t, A)<g(t,7(A4)) , - @5
to guarantee that
T(w(t, tO’ X))Sr(t; t01 T(X)) (1.6)

Here r(t,t,, x,) is the maximal solution of the scalar differential equation
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w'=g@t,u), u(t)=u,=>0. ’ (1.7)

Similarly, if « denotes the measure of nonconvexity then we may obtain
the analogous estimate

a(@(t, o, X)) <r@t, to, (X)), t>8,. (1.8)

If the maximal solution of is identically zero, when w,=0, then in view
of [(1.8) <(1.6)>, the closure of x(t,t,X) is convex <{compact) for t>t, if it is
convex <{compact> at t=t,.

~ The concept of a comparison map, such as ¢, which bounds the measure of
noncompactness has been used in fixed point theory in conection with the
contraction mapping and Schauder principles [4], [6]. In Section 2 we make
some general remarks concerning comparison maps, the measures of non-com-
pactness and nonconvexity and fixed point theory. The role of the measure of
nonconvexity in differential equations is discussed in Section 3.

2. A measure of nonconvexity. Let E be a Banach space (with norm
[I-]) and A a subset in E. Denote by co(A) the convex hull of A. We say
that A is a-measurable with measure a(4) if

a(A)= sup inf [[b—a| <, 2.1)

b€co(4d) a€A

Alternatively, if H(X, Y) denotes the Hausdorff distance between two subsets
X and 7,

a(A)=H(A,co (4)) . (2.2)

Clearly, a bounded set is a-measurable.
From the definition the following properties of a can be derived in a
straightforward manner.

a(A)=0 iff A (the closure of A) is convex; (2.3)
a(AA)=|Ala(A) for 1€ R' (where 1A={Aala € A}; (2.4)
a(A+B)<a(A)+a(B); (2.5)
la(A)—a(B)|<a(A—B); (2.6)
a(A)=a(A); @.7)
a(A)< diam (A) (the diameter of A); (2.8) .
la(A)—a(B)|<2H (A, B). 2.9)

Note that all these properties are shared by the measure of noncompactness 7.
Recall y7(A)=inf{d>0|/A can be covered by a finite number of sets of diameter
<d}. a is not monotone in the sense that a(A)<a(B) if AcB. If it did, then
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every closed set would be convex which is not true. Unfortunately a(A4)
measures only the nonconvexity of A and not A itself if A is not closed.
As a consequence of and a similar inequality for 7, |[7(4)—r(B)|<

H(A, B), the measures a and 7 are continuous with respect to the Hausdorff
metric, that is,

Proposition 2.1. Let A, be a sequence of subsets of E such that A,

approaches a subset A, in the Hausdorff metric. Then (i) if A. are
a-measurable,

lim a(A,)=a(A.) . (2.10)
(ii) +f A, are bounded
lim 7(A4,)=r(4.) . (2.11)

Proposition 2.2 (Ku'r;atowski). Let (X, p) be a complete metric space and

let AyDA,D--- be a decreasing sequence of mnonempty, closed subsets of E.

Assume 7(A,)—0. Then if we write A= N A,, A_ is a nonempty compact
n20

set and A, approaches A_ in the Hausdorff metric.
Proposition 2.3. Let A, DA, D--- be a decreasing sequence of closed
bounded subsets of E. Let A.= N A,. Then A, i3 monempty, conver and

n20

compact and A, converges to A, in the Hausdorff metric iff a(A,)—0 and
7(A4,)—0.

Proof. Suppose r(4,)—0. It follows from [Proposition 2.2 that A, converges
to the nonempty compact set A, in the Hausdorff metric. If, in addition,
a(A,)—0 then in view of (2.10), a(A.)=0. Since A is also closed, 4, is convex
by (2.3).

Suppose A,—A, in the Hausdorff metric and a(A4.)=r(4.)=0. Then by
and [2.11), a(A,)—0 and 7(A,)—0.

Proposition 2.4. Let A;DA;D--- be a decreasing sequence of closed,
bounded subsets of E such that a(A,)—0 and 7(A,)—0. Suppose T is a con-
tinuous map of A,—A, such that

Txe A, of x€ A, n=0,1,---. (2.12)
Then there exists an xc€ A,= N A, such that
n20

Tex=x, (2.13)
Proof. The result is a corollary of the Schauder principle ([7], p. 67) since,
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from [Proposition 2.3, A, is nonempty, convex and compact and T maps A
into itself.

Closely associated with the notion of measure of noncompactness is the
concept of k-set-contraction (also due to Kuratowsk:i [8]). Let (X, d,) and
(X,, d;) be metric spaces and suppose T:X;—X, is a continuous map. We say

T is a k-set-contraction if given any bounded set A4 in X;, T(A) is bounded
and 7,(T(A))<kr.(A) where 7, denotes the measure of noncompactness in X,
=1, 2.

Proposition 2.5. (Darbo [3].) Let C be a closed, bounded, convex set and
T:C—C a k-set-contraction, k<l. Then T has a fized point, i.e., @ point x
satisfying (2.13).

The above generalization of the Schauder principle was further extended
[5] by introducing a comparison function ¢ which has the following properties:
(i) ¢ maps a conical segment of regular cone in a partially ordered space into
itself; (ii) ¢ is monotone; (iii) ¢ is upper semi-continuous from the right; (iv)
¢(x)=2 iff x=0 (the zero of the space). Then Darbo’s condition 7(T(A))<kr(A),
k<1, is replaced by the weaker condition

1(T(A)<¢(((A4)) . (2.14)

In [5] vector-valued measure of noncompactness was considered. Our present
discussion is limited to the cone of nonnegative numbers in R. In this context
it is more appropriate (see [Proposition 2.7, below) to use a comparison function
which was introduced by Boyd and Wong in their discussion of the contrac-
tion mapping principle.

Definition 2.1. A function ¢:[0, ©)—[0, ) is a comparison function if
(i) ¢(®)<t for t>0, (ii) ¢(0)=0, ¢ is upper semi-continuous from the right.

Proposition 2.6. Let ¢ be a comparison map and let S,, S;---be a sequence
of monnegative real mumbers such that S,<¢(S...), n=1,2,:---. Then the
sequence S, converges to zero.

Proof. Since S,<¢(S,-.)<S,-:;, the sequence S, converges monotonically.
Suppose S.=1im S,>0. Then ¢S <S.<8S,, n=1,2,---. But this contradicts the
upper semi-continuity from the right.

Proposition 2.7. Let ¢: [0, a)—[0, a] be nonincreasing, upper semicontinuous
Jrom the right, and ¢(t)=t iff t=0. Then ¢ has an extension to [0, ) which
18 a comparison function.
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Proof. Since the interval [0,a] is a segment of the regular cone (of nonne-
gative real numbers) it follows from in that if t<¢(t) then
t<t, where t, is the maximal solution of ¢(t)=t. By assumption ¢,=0. Thus
t<¢(t) iff t=0. If we define ¢(t)=¢(a), t>a then ¢ is a comparison function.

Definition 2.2. Let (X, |-]l;) and (X,, ||:]l:) be Banach spaces and suppose
T: X,—X, is a continuous map. We say that T is a ¢-set-contraction with
respect to convexity <{compactness> if given any a;-measurable <bounded)> set A
in X,, T(A) is a,-measurable <bounded> and

ay( T(A) < Has(4) (2.15)
Gl T(A) <P (AN @16

where a7 denotes the measure of nonconvexity <noncompactness) in X,
4=1,2. We say that T is a ¢-contraction if ||Tz—Ty|.<¢(lx—yl;) for every
z,y€X,. The following result is a generalization of a similar result due to
Darbo [3] in regard to relating the notion of k-contraction, i.e., a ¢-contraction
with ¢(t)=Fkt, to the notion of k-set-contraction.

Proposition 2.8. Let (X, |-|l,) and (X, ||-|l;) be Banach spaces. Let T be
a ¢-contraction, then (i) T 18 a ¢-set-contraction with respect to compactness;
(ii) H(TA, TB)<{(H(A, B)) whenever H(A, B)<oo; (iii) ¢f for every a-measura-
ble set A, co(TA)C 1_‘(c=0(74)) (where co(X) denotes the convex closure of X), then
T 18 ¢-set-contraction with respect to convexity.

Proof. (i) Let A be a bounded set in X, and suppose 7,(A)=d. Then
given ¢>0, we can write A= ,-Ql S;, diam (S;)<d-+e. Thus T(A)= jL:le(S,) and
since T is a ¢-contraction, diam (7'(S;)<¢(d+¢). Let ¢ be a sequence of
positive numbers converging to zero such that ¢(d+e,) converges and let
b=lim ¢(d+e¢;). Then by upper semi-continuity from the right, b<¢(d). Hence
7o(TA)<¢(d). (i) Let A and B be sets such that H(A, B)=d<co. Let beB.
Then inf {||T6—Tal,, a € A}< inf {¢(]|Jb—all,), a € A}<¢d by the upper semi-con-
tinuity from the right of the function ¢. Similarly inf {||Ta—Tbl,, be B}<¢d.
Thus H(TA,TB)<d. (iii) Let A be an a-measurable set in X;. Then from
(il), «(TA)= H(TA, co(TA)) = H(T A, co(TA) < H(T A, T(co(A)) = H(T A, T(eo(4))) <
$(H(A, coA))=ga(A).

Theorem 2.9. Let A be a closed subset of a Banach space and T a map
Jrom A onto itself. If T 18 set contractive with respect to convexity
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{compactness) then A is convex <{compact). In particular, the set of fixed
points of a set contractive with respect to convexity {compactnessd> map of a
closed subset of a Banach space <& into & is convex {compact>.

Proof. Set m=a(T(4))=a(A) (m=y(T(A))=r(A)). Then m<P(m). If m>0
then ¢(m)<m. But this is impossible. Clearly m=0.

Theorem 2.10. Let C be a closed, bounded set and T:C—C a ¢;-set-cont-
raction with respect to convexity and a ¢.-set-contraction with respect to
compactness. The set of fized points of T is nonempty, convex, and compact.

Proof. Let C,=C, and C,.,=T(C,). Then C,,,cC,. Let 8,=y(C,),
t,=a(C,), then it follows from [Proposition 2.6 that s,—0 and {,—0. By Proposi-
tion 2.4, the set F(T) of fixed points of T is nonempty and, by Theorem 2.9, it
is also convex and compact.

3. Convexity of solutions of differential equations.

Let E be a real Banach space and let ||-| denote the norm in E. We let
B={zxe E| ||lz||<b} denote the ball of radius b and let R,=[t,, t,+a]x B where
t,=>0, a>t,.

Consider the differential equation

z'=f(t,x), x(t)=1x,, 3.1

where fe€C[R,, E]. There are several known results which guarantee the
existence of solutions to (3.1). We mention in particular those given in [6]. One
of the conditions given there is:

(I) f is uniformly continuous in R,.

Another is a compactness condition which is similar to the convexity condition
II stated below.
For any subset AC B and for small 2>0 set

A()={yly=x+hf(t, x):xec A} .
We introduce a (comparison) scalar differential equation
w'=g(t,u), u(t)=0 3.2)

where g € C[[¢,, t,+a] X R*, R]. Assume that #=0 is the unique solution of [3.2).
Then the convexity condition on f is

1) lim inf {A{a(Au(fN—a(AD}<g(t, a(A))
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for any subset AcC B.

We also require the following condition on a set AC B:
(ITII) The set of solutions «(t, x,), x,€ A of exists and is equicontinuous.
Condition III is satisfied under the conditions given in when A is pre-compact.

Theorem 3.1. Let Ac B have convex closure and let condition I, II, and
IIT be satisfied for (8.1). Then the set

x(t, £y, A)={x(2, Lo, xo)l2, € A}
has convex closure for tel[t, t,+al.

Proof. Set m(t)=a(x(t, A)) where a is the measure of nonconvexity and
x(t, A)=x(t, t,, A). Our claim is then m(t)=0. Now m(t+h)—m(t)=al(x(t+h, A))—
a(z(t, A)=[a(x(t+h), A)—a(A()]+[a(A(f))—alx(t, A))]. If we know that

lim inf A~ [a(x(t+h, A))—a(A(NI<O0 (3.3)

then it follows from condition II that D,m(t)<g(t, m(f)) where D, denotes a
Dini derivative. It follows further from the theory of differential inequalities
that m(f)=0. Thus it remains to verify [(3.3).
By properties (2.4), and
b ezt +h, A)—a(A (N <alh (@(t+h, A)—An(f))]
32;31613 |h=[a(t+ h, 3o)—2x(t, 20)]—f(E, 2(¢, ) -

Hence it suffices to show that

h_l(x(t—i_h’ xo)_"x(t! xo))“"f(t, x(t’ xo))
uniformly in x,. Now

A2 (t+h, Bo)—a(t, o)) —f (¢, 2(E, Tl

Sh‘lg TN (s, a(e-+3, m)—F(E 5, z)ds

t

By the uniform continuity of f and by the equicontinuity of x(f,x,) this last
expression can be made arbitrarily small, independent of x,, by taking A
sufficiently small. This concludes the argument.

Remark. Suppose further that A is compact and that the semi-group map
x,—x(t, 2,) is continuous for each te€([t,t+a]. Then x(¢, A) is closed and hence,
by [Theorem 3.1, also convex. In particular, if ¥, 2, € 4, set y=a(, o), 2=2(, 2,)
for some %€ty t,+a]. Then we know that if w lies on the line segment con-
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necting y and 2z there exists w, on the line segment connecting y, to 2z, such
that (¢, w,)=w, i.e., w is an attainable target.
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