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1. Introduction.

A great deal of literature exists on the oscillation and nonoscillation of

(1) $y^{(n)}(t)+a(t)y(t)=0$ , ($n\geq 1$ an interger),

and

(2) $y^{(n)}(t)+a(t)y(g(t))=0$ ,

when $a(t)>0$ on some positive half line. For this, see [8, 9, 101 and the references
cited in them. However nothing much seems to be known about equations of
the type

(3) $y^{(\pi)}(t)+a(t)y(t)=f(t)$ ,

where $a(t)$ and $f(t)$ are continuous on $R$ (real line) and change sign arbitrarily
to the right of the origin. Asymptotic results in relation to boundedness and
approach to zero of the solutions of

(4) $y^{\prime\prime}(t)+a(t)y(t)=f(t)$

for nonnegative $a(t)$ can be found in [4, 5, 61. Hammett [6] recently studied the
equation

(5) $(p(t)x^{\prime}(t))^{\prime}+q(t)g(x(t))=f(t)$

and proved that if $p(t)$ and $q(t)$ are positive, continuous and bounded away from
zero; and, if $f(t)$ was integrable on the positive half real line, then all nonoscil-
latory solutions of equation (5) approach zero asymptotically. Hammett’s approach
is based upon a theorem of Bhatia [1] which does not apply to delay equations
of the type

(6) $y^{\prime\prime}(t)+a(t)y(t-\tau(t))=0$ .
In fact Travis [13] showed that the equation
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(7) $y^{\prime\prime}\langle t$) $+\frac{\epsilon int}{2-\epsilon int}y(t-\pi)=0$

has the nonoscillatory solution $2+\epsilon int$ even though

$\int^{\infty}(\sin t)/(2-\sin t)dt=\infty$ .
But according to Bhatia’s theorem all solutions of the equation

(8) $y^{\prime\prime}(t)+\frac{\sin t}{2-8int}y(t)=0$

are oscillatory.

This unusually different behavior between equations (6) and (7) motivates us
to study the general nth order equation

(9) $y^{(n)}(t)+a(t)y(g(t))=f(t)$

and extend Hammett’s type study. In what follows, conditions have been found
to ensure that bounded nonoseillatory and oscillatory solutions approach zero
asymptoticall $y$ . Examples have been given to show tbe applications of the theo-
rem8 proved.

In regard to equations (3) and (9), the following assumptions hold for the
rest of this paper;

(A) $a(t),$ $g(t),f(t):R\rightarrow R$ and continuous,
\langle $B$) $g(tl\leq f,$ $ g1t\lambda\rightarrow\infty$ as $ l\rightarrow\infty$ and has a beunded derivative on $R$ which is

monnegative $mR$ .
The results of this paper remain true if condition CB) on $g(t)$ is replaced by:

$g$ is absolutely $contInuou8$ and

$\lim_{b\rightarrow\infty}|_{\ell}^{\ell+1}|g^{\prime}(s)|ds<\infty$ .
We call a function on $C[\alpha, \infty]$ oscillatory if it has arbitrarily large zeros. $\alpha her\leftrightarrow$

wi8e we call it nonoscillatory. The term “solution” will henceforth apply to
continuously extendable solutions on some positive half line.

An interesting aspect of equations $’(3)$ and (9) being considered here is that
$a(t)$ and $f(f)$ have been allowed to change signs arbitrarily often.

2. Main results.

Lemma (2.1). $Suppo\epsilon e$

(i) there exists a $k>0$ such that

$\lim_{\ell\rightarrow\infty}\inf b^{\ell+k}a^{+}(t)dt\geq\epsilon>0$ ,
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(ii) $\int^{\infty}a^{-}(t)dt<\infty$

$\int^{\infty}|f(t)|dt<\infty$ .
Let $y(t)$ be a bounded nonoscillatory solution of equation (9). Then $y^{()}(t)\rightarrow 0$

as $t\rightarrow\infty,$ $i=1,2,$ $\cdots,$ $n-1$ .
Proof. We can assume, without any loss, that $y(t)>0$ eventually. The case

when $y(t)<0$ can be treated similarly. Let $T_{1}$ be sufficiently large so that both
$y(t)$ and $y(g\langle\$))$ are positive to the right of $T_{1}$ . Integrating equation (9) between
$T_{1}$ and $t$ we have

(10) $y^{(n-1)}(t)-y^{(n-1)}(T_{1})+[\ell T_{1}a^{+}(s)y(g(s))d\epsilon-1_{T_{1}}^{t}a^{-}(s)y(g(s))d\epsilon=i_{r_{1}}^{f(s)h}$

from which

(11) $y^{(n-1)}(t)-y^{(n-1)}(T_{1})+\int_{\tau_{1}}^{\ell}a^{+}(\epsilon)y(g(\epsilon)\mathcal{W}$

$\leq\int_{\tau_{1}}^{t}a^{-}(\epsilon)y(\prime g(s))ds+j_{\tau_{1}}^{t}|f(\epsilon)|d\epsilon\leq M|_{\tau_{1}}^{t}\alpha^{-}(\epsilon)ds+\int_{\tau_{1}}^{t}|f(s)|d\epsilon$

where $y(g(t))\leq M$ in $[T_{1}, \infty]$ . Now as $ t\rightarrow\infty$ , the right hand 8ide of (11) is finite.
We will show that

(12) $|_{T_{1}}^{\infty}\alpha^{+}(\epsilon)ytgs))d\epsilon<\infty$ .
To see this if

$\mathfrak{y}_{\tau_{1}}^{\infty}a^{+}(s)y(g(s))ds=\infty$

is true, then $y^{\langle n-1)}$’($ t\rangle\rightarrow-\infty$ as $ t\rightarrow\infty$ on the $kR$ side of \langle 11). But this will foree
$y(t)$ to be negative which is a $\omega ntrudiction$ . Henee (12) lkrUlds. From inequality
(12) we get

(13) $ 1\dot{m}\grave{a}My(b)=1\dot{u}m\dot{i}nfy(g(f))=0\ell\rightarrow\infty t\rightarrow\infty$

Now $y^{(n-1)}(t)$ must be oscillatory because otherwise from (13) we mu8t have
$\lim y(t)=0$ and also $\lim y^{(\ell)}(t)=0,$ $i=1,2,$ $\cdots,$ $n-2$ . Taking $T_{1}$ as a large zero of
$ t\infty$ $t-$
$y^{(-1)}\$k$ from (11) afl $(,1 2$) me see $tMty^{(*-1)}(t)\rightarrow 0$ as $ t\rightarrow\infty$ . Now we invoke an
exten8ion of Kelmagorov’s theerem for bcranded $\&\dot{m}vaWve\rightarrow ae$ Sheenberg $[n]$ .
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There exist constants $M,$ $N$ and $C$ such that

(14) $|y(t)|\leq M$ on $(0, \infty)$

(15) $|y^{(n-1)}(t)|\leq N$ on $(0, \infty)$ .
These imply

(16) $|y^{()}(t)|\leq CM^{1-\prime(n-1)}N^{/(*-1)}$ ,

where
$i=1,2,$ $\cdots,$ $n-2$ .

Hence if $y^{(n-1)}(t)\rightarrow 0$ as $ t\rightarrow\infty$ , so does $y^{(\ell)}(t),$ $i=1,2,$ $\cdots,$ $n-2$ . This completes

the proof of the lemma.

Theorem (2.1). Suppose the conditions of Lemma (2.1) hold. Then bounded
nonoscillatory solutions of equation (9) approach zero as $ t\rightarrow\infty$ .

Proof. From the proof of lemma (2.1), we have conclusion (13) namely

(13) $\lim_{\ell\rightarrow\infty}\inf y(g(t))=0$

where $y(t)$ is nonoscillatory, bounded and (without any loss) non-negative solution
of equation (9).

Suppose

(17) $\lim_{\ell\rightarrow}\sup_{\infty}y(g(t))>r>0$ .
In view of (12) and (17), there exists a sequence $\{\beta_{n}\},$ $n\geq 0$ with the following

properties–See Hammett [61.

(D) $\lim_{\hslash\rightarrow\infty}\beta_{n}=\infty,$
$\beta_{\hslash}\geq T_{1}$ for all $n,$ $T_{1}$ is the same as in lemma (2.1).

(E) For each $n\geq 1,$ $y(g(\beta_{n}))>r$ and there exists a $\beta_{n}^{\prime}$ such that $\beta_{n-1}<\beta_{n}^{\prime}<\beta_{n}$

and $y(g(\beta_{n}^{\prime}))<r/2$ .
Let $\alpha_{n}$ be the largest number less than $\beta_{n}$ such that $y(g(\alpha_{n}))=r/2$ and $\delta_{*}$ be the
smallest number greater than $\beta_{n}$ such that $y(g(\delta.))=r/2$ for $n\geq 1$ . Now in the
interval $(\alpha_{n}, \beta_{n})$ , there exists a number $\xi_{n}$ such that

(18) $y^{\prime}(g(\xi_{n}))g^{\prime}(\xi_{n})=\frac{y(g(\beta_{n}))-y(g(\alpha_{n}))}{\beta_{n}-\alpha_{n}}$

$>\frac{r}{\mathfrak{U}\beta_{n}-\alpha_{n})}$

by mean value theorem. But by lemma (2.1), $y^{\prime}(g(\xi_{n}))\rightarrow 0$ as $ n\rightarrow\infty$ since $ g(\xi_{n})\rightarrow\infty$

ag $ n\rightarrow\infty$ . Also $g^{\prime}(\xi_{\hslash})$ remains bounded. Hence it follows from (18)
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(19) $\lim_{n\rightarrow\infty}(\delta_{n}-\alpha_{n})=\infty$ .
Also because of the way $\alpha_{n}$ and $\delta_{n}$ were chosen

$y(g(t))\geq r/2>0$

on $[\alpha_{n}, \delta_{n}]$ . Now from (12) in the proof of lemma (2.1), we have

$\infty>!_{T_{1}}^{\infty}a^{+}(t)y(g(t))dt\geq\sum_{\iota=1}^{\infty}\int_{\alpha_{n}}^{\delta_{n}}a^{+}(s)y(g(s))ds$

$\geq r/2\sum_{n=1}^{\infty}\int_{\alpha_{n}}^{\delta_{n}}a^{+}(s)ds=\infty$ ,

a contradiction, since from conditions of lemma (2.1), the last integral diverges

as a result of
$\lim_{n\rightarrow\infty}(\delta_{n}-\alpha_{n})=\infty$ .

The proof is now complete.

Example 1. To justify this theorem consider the equation

(20) $y^{\prime\prime\prime}(t)+e^{-\pi}y(t-\pi)=2e^{-\ell}$ cos $t+e^{-t}$ sin $t$ .
Here all the conditions of theorem (2.1) are satisfied. In fact it has

$y(t)=e^{-t}(2+8int)$

as a bounded nonoscillatory solution which approaches zero as $ t\rightarrow\infty$ .
Example 2. The equation

(21) $y^{\prime\prime}(t)+e^{-\pi}y(t-\pi)=4e^{-t}-2e^{-\ell}$ cos $t-e^{-\ell}$ sin $t$

also has
$y(t)=e^{-t}(2+\sin t)$

as the volution that satisfies our theorem.

3. On oscillation.

Theorem. (3.1). Suppose

$\int^{\infty}|a(t)|dt<\infty$

$\int^{\infty}|f(t)|dt<\infty$ .
Let $y(t)$ be a bounded oscillatory solution of equation (9). Then
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$y^{(\ell)}(t)\rightarrow 0$ as $ t\rightarrow\infty$

for $i=1,2,3,$ $\cdots,$ $n-1$ .
Proof. From equation (9) for $t\geq T_{1}$ we have

(21)
$|y^{(n-1)}(t)-y^{(n-1)}(T_{1})|\leq\int_{\tau_{1}}^{\ell}|a(s)||y(g(s))|ds+\int_{\tau_{1}}^{t}|f(s)|ds$

Since $y^{(n-1)}(t)$ must be oscillatory, let $y^{(2n-1)}(T_{1})=0$ . Here again we see that
$y^{(n-1)}(t)\rightarrow 0$ as $ t\rightarrow\infty$ ,

since the right hand side of (21) can be made as small as we please by choosing
$T_{1}$ a sufficiently large zero of $y^{(n-1)}(t)$ .

From here the proof is the same as that of lemma (2.1) from inequality (14)
and (15) onward. The proof is now complete.

In order to justify this theorem consider the following example.

Example 3. The equation

(22) $y^{(\ell v)}(t)+e^{-\ell-\pi}y(t-\pi)=-4e^{-\ell}\sin t-e^{-2t}$ sin t

has $y(t)=e^{-\ell}$ sin $t$ as the bounded oscillatory solution such that $y^{\prime}(t),$ $y^{\prime\prime}(t)$ and
$y^{\prime\prime\prime}(t)$ all tend to zero as $ t\rightarrow\infty$ . Here $y(t)\rightarrow 0$ as $ t\rightarrow\infty$ also.

However, the next example tells a different story.

Example 4. Consider the equation

(23) $y^{\prime\prime\prime}(t)+e^{-\ell}y(t)=\frac{3\sin(\sqrt{t})\cos(\sqrt{t})}{t^{2}t^{s/2}}+\frac{3\cos(\sqrt{t})}{t^{\iota/2}}$

$+8e^{-t}$ sin (V $t$ ).

which has
$y(t)=8$ sin $(\sqrt{t})$

as a bounded oscillatory solution. All the conditions of theorem (3.1) are satisfied.
Although $y^{\prime}(t)\rightarrow 0$ and $y^{\prime\prime}(t)\rightarrow 0$ as the theorem claims, yet $y(t)$ itself does not
approach any limit.

This example suggests the following theorem.

Theorem (3.2). Suppose conditions of theorem (3.1) hold. Let $y(t)$ be a
bounded oscillatory solution of equation (9) with finitely spaced zeros i.e. to
say that if $\{t_{n}\}_{n=1}^{\infty}$ is a sequence of consecutive zeros of $y(t)$ then

$\lim_{n\rightarrow}\sup_{\infty}(t_{n+1}-t_{n})<\infty$ .
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Then $y(t)\rightarrow 0$ as $ t\rightarrow\infty$ .
Proof. From the proof of theorem (3.1), $y^{\prime}(t)\rightarrow 0$ as $ t\rightarrow\infty$ . Now

(24) $\lim_{t\rightarrow}\inf_{\infty}|y(g(t))|=0$

since $y(t)$ is oscillatory. Now suppose

(25) $\lim_{t\rightarrow}\sup_{\infty}|y(g(t))|>\gamma>0$ .

In a manner of the proof of theorem (2.1) we have a sequence $\{j_{n}\}$ such that
(F) $\lim_{n\rightarrow\infty}j_{n}=\infty,$

$j_{n}\geq T_{1}$ for all $n$ where $T_{1}$ is a conveniently large number.

(F) For each $n\geq 1,$ $|y(g(j_{n}))|>r$ .
(G) For each $n\geq 1$ , there exists a number $m_{n}$ such that $j_{n-1}<m_{n}<j_{n}$ and

$|y(g(m_{n}))|<r/2$ .
Let $p_{n}$ be the largest number less than $j_{n}$ such that

$|y(g(p_{n}))|=r/2$

and $q_{n}$ be the smallest number greater than $j_{n}$ such that

$|y(g(q_{n}))|=r/2$

for $n\geq 1$ . Now in the interval $(p_{n}, j_{n})$ , there exists a number $r_{n}$ such that

$y^{\prime}(g(r_{n}))g^{\prime}(r_{n})=\frac{y(g(j_{n}))-y(g(p_{n}))}{j_{n}-p_{n}}$

from where

(26) $|y^{\prime\prime}(g(r_{n}))|g^{\prime}(r_{n})>\frac{||y(g(j_{n}))|-|y(g(p_{n}))||}{j_{n}-p_{n}}$

$>\frac{r}{2(q_{n}-p_{n})}$ .

Since $y^{\prime}(g(r_{n}))\rightarrow 0$ as $\gamma_{n}\rightarrow\infty$ with $n$ and $g^{\prime}(r_{n})$ is bounded we obtain from (26)

(27) $\lim_{n\rightarrow\infty}(q_{n}-p_{n})=\infty$ .

Now because of the choice of $p_{n}$ and $q_{n}$ , the interval $[p_{n}, q_{n}]$ cannot include any

zero of $y(g(t))$ . Hence $p_{n}$ and $q_{n}$ are between two consecutive zeros of $y(g(t))$ .
But this contradicts the hypothesis of the theorem which essentially states that

consecutive zeros of $y(g(t))$ are finitely spaced. This contradiction proves the

theorem.

Remark. Coming back to example (4) we find that its solution
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$y=8$ sin $(\sqrt{t})$

has zeros at
$t_{n}=n^{2}\pi^{2}$

$t_{n+1}-t_{n}=[(n+1)^{2}-n^{2}]\pi^{2_{\rightarrow\infty}}$ as $ n\rightarrow\infty$ .
This justifies our last theorem.
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