ON SOME CLASSES OF OPERATORS ASSOCIATED WITH OPERATOR RADII OF HOLBROOK*

By

S. M. PATEL

(Received November 27, 1973) (Revised April 1, 1975)

The purpose of this paper is to establish some properties of ρ -oid operators and to extend the class of operators satisfying the growth condition- (G_1) by considering the growth condition upon the operator radius of the resolvent of an operator.

For an operator (a bounded linear transformation) T on a camplex Hilbert space H, let $\sigma(T)$, $\overline{W(T)}$, r(T) and |W(T)| denote respectively, the spectrum, the closure of the numerical range W(T), the spectral radius and the numerical radius of T. If S is a set of complex numbers then we write ∂S and con(S) for the boundary and the convex hull of S.

Let $C_{\rho}(\rho > 0)$ be the class of operators T on H for which there exists a Hilbert space K containing H as a subspace and a unitary operator U on K satisfying the following relation:

$$T^{n}x = \rho P U^{n}x \ (n = 1, 2, 3, \cdots), x \in H.$$

The following theorem due to B. Sz. Nagy and Foias characterizes the class C_{ρ} .

Theorem A. [8, Theorem I 11.1]. An operator T belongs to C_{ρ} if and only if

 $(\rho-2) \| (I-zT)x \|^2 + 2Re \langle (I-zT)x, x \rangle \geq 0$,

for all x in H, $|z| \leq 1$.

Recently, Holbrook [4] has introduced the following concept of operator radii $\omega_{\rho}(T)$ (0< ρ < ∞):

$$\omega_{\rho}(T) = \inf \{u: u > 0 \text{ and } u^{-1}T \in C_{\rho}\}.$$

In particular, $\omega_1(T) = ||T||$ and $\omega_2(T) = |W(T)|$. Furthermore, he has obtained the following characterization of C_{ρ} in terms of operator radii.

^{*} This paper was first read at the 39th Conference of the Indian Mathematical Society held at Jadavpur University, Calcutta in December, 1973.

Theorem B. TeC, if and only if $\omega_{\rho}(T) \leq 1$.

In Section 1, some properties of ρ -oid operators are obtained. Section 2 is devoted to the study of the classes of operators associated with operator radii which are more general than the class of operators satisfying the growth condition- (G_1) .

1. ρ -oid operators.

According to Furuta [2] an operator T is called ρ -oid if $\omega_{\rho}(T^*) = (\omega_{\rho}(T))^*$ $(k=1,2,3,\cdots)$. Clearly 1-oid and 2-oid operators are normaloid and spectraloid. Also for $\rho \ge 1$, $\omega_{\rho}(T) = r(T)$ if and only if T is ρ -oid [2].

First we give an alternate but a simple proof of a result due to *Eckstein* [1, Lemma] and use it to obtain some properties of ρ -oid operators.

Theorem 1. Let z be a non-zero complex number such that $|z| = \omega_{\rho}(T)$ $(0 < \rho < \infty)$ and let $\{x_n\}$ be a bounded sequence of vectors. Then

 $||(T-z)x_n|| \rightarrow 0 \text{ implies } ||(T^*-z^*)x_n|| \rightarrow 0$

Proof. Setting $T_0 = z^{-1}T$, we see that $\omega_{\rho}(T_0) = 1$. Therefore by Theorem B and Theorem A, we get $(\rho-2) ||(I-T_0)x||^2 + 2 \operatorname{Re} \langle (I-T_0)x, x \rangle \geq 0$, for all x in H, or $\operatorname{Re} \langle ((\rho-2)(I-T_0)*(I-T_0)+2(I-T_0))x, x \rangle \geq 0$.

This inequality shows that the operator $\operatorname{Re} S \ge 0$, where $S = (\rho - 2)(I - T_0)$ $(I - T_0)^* + 2(I - T_0)$. Since $||(I - T_0)x_n|| \to 0$, we have $||Sx_n|| \to 0$. This, in turn gives $||(\operatorname{Re} S)^{1/2}x_n|| = \langle (\operatorname{Re} S)x_n, x_n \rangle = \operatorname{Re} \langle Sx_n, x_n \rangle \to 0$; thus $||(\operatorname{Re} S)x_n|| \to 0$. Since $||Sx_n|| \to 0$, we conclude that $||S^*x_n|| \to 0$. Consequently, $||(I - T_0)^*x_n|| \to 0$, or $||(T^* - z^*)x_n|| \to 0$. This proves the result.

Corollary 1. (Furuta [3]). If $T^2 = T$, then T is a projection if either (i) T is a p-oid, or (ii) $\omega_{\rho}(T) \leq 1$.

Proof. Since $T^2 = T$, $r(T)^2 = r(T)$. Therefore either r(T)=0 or r(T)=1. If r(T)=0, then T=0. If not, then $Tx \neq 0$ for some $x \in H$ and hence $1 \in \sigma(T)$ as T(Tx)=Tx, which is a contradiction. So T=0, obviously, a projection. Assume then that r(T)=1. If (i) holds then $\omega_{\rho}(T)=1$. Since T(Tx)=Tx for all x in H, an application of Theorem 1 gives $T^*(Tx)=Tx$ for all x in H or $T^*T=T$. This shows that T is a projection. Lastly assume (ii). Then $r(T) \leq \omega_{\rho}(T) \leq 1 = r(T)$ or T is ρ -oid. Hence the result follows from (i).

The following corollary is easy to prove.

Corollary 2. Every p-oid operator on a Hilbert space H with dim $H \leq 2$ is normal.

118

Remark 1. The above result is not valid if dim H>2. To see this, consider the operator $T=\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ on a Hilbert space H with dim H=3. Clearly

T is normaloid and hence ρ -oid, but it is not normal.

Let $L_{\rho}(\rho \ge 1)$ be the collection of ρ -oid operators. We know that $L_{\rho} \subseteq L_{\rho'}$ for $\rho' > \rho$ [2, Theorem 3]. To sharpen this result, we establish.

Theorem 2. If dim H>2, the class $L_{\rho}(1 \le \rho < \infty)$ increases with ρ that is, $L_{\rho} \le L_{\rho'}$ and $L_{\rho} \ne L_{\rho'}$ for $1 \le \rho < \rho' < \infty$.

Proof. We construct for every ρ and ρ' with $1 \le \rho < \rho' < \infty$ an operator $T_{\rho'}$ in $L_{\rho'}$ such that $T_{\rho'} \notin L_{\rho}$.

Let M be the two-dimensional subspace of H. Write $H=M\oplus M^{\perp}$. Let $A=\begin{bmatrix} 0 & \rho'\\ 0 & 0 \end{bmatrix}$ be the nilpotent operator on M and B, the identity operator on M^{\perp} . Let $T_{\rho'}=A\oplus B$. Clearly $r(T_{\rho'})=1$. Since $\|\rho'^{-1}A\|=1$ and $(\rho'^{-1}A)^2=0$, we have by [4, Theorem 4.5] $\omega_{\rho'}(\rho'^{-1}A)=\rho'^{-1}$ or $\omega_{\rho'}(A)=1$. Moreover, as B is the identity operator on M^{\perp} and $\rho'>1$, we have by [4, Theorem 4.3], $\omega_{\rho'}(B)=1$. An application of Theorem 4.1[5] gives $\omega_{\rho'}(T_{\rho'})=\max\{\omega_{\rho'}(A), \omega_{\rho'}(B)\}=\max\{1,1\}=1$. Thus $\omega_{\rho'}(T_{\rho'})=1=r(T_{\rho'})$, showing $T_{\rho'}\in L_{\rho'}$.

Next we claim that $T_{\rho'} \notin L_{\rho}$. Since $r(T_{\rho'})=1$, it will suffice to show that $\omega_{\rho}(T_{\rho'})>1$. Now as argued before, we obtain $\omega_{\rho}(A)=\rho'/\rho$ and so, as $\rho'>\rho$, $\omega_{\rho}(A)>1$. Moreover, $\omega_{\rho}(B)=1$ as $\rho\geq 1$. Therefore, again using [5, Theorem 4.1], we get $\omega_{\rho}(T_{\rho'})>1$. This shows $\omega_{\rho}(T_{\rho'})>1=r(T_{\rho'})$.

2. Subclasses of convexoid operators.

An operator T is defined to be convexoid if $\operatorname{con}(\sigma(T)) = \overline{W(T)}$. If $z \notin \sigma(T)$, then $R(T, z) = (T-z)^{-1}$ exists and is called the resolvent of T. An operator Tis said to satisfy the growth condition- (G_1) if $||R(T,z)|| = 1/d(z,\sigma(T))$, for all $z \notin \sigma(T)$, where $d(z, \sigma(T))$ denotes the distance of z from $\sigma(T)$. Clearly, Tsatisfies the growth condition- (G_1) if and only if R(T,z) is normaloid for all $z \notin \sigma(T)$. For the various properties of such operators, we refer to [6], [10], [11], [12], [13], [14] and [15]. Since $\omega_{\rho}(T) \leq ||T||$ for $\rho \geq 1$, it is natural to introduce and study the following generalization of this class.

Let $\rho \ge 1$. Then an operator T is defined to be of class M_{ρ} if $\omega_{\rho}(R(T,z)) = 1/d(z, \sigma(T)), z \notin \sigma(T)$. Obviously $T \in M_{\rho}$ if and only if R(T,z) is ρ -oid for all $z \notin \sigma(T)$. Also for $\rho' > \rho$, $M_{\rho'} \supseteq M_{\rho}$ and so, in particular M_1 which is nothing but the class of operators satisfying the growth condition- (G_1) is contained in M_{ρ}

S. M. PATEL

for all $\rho \ge 1$.

Orland [9] established the following remarkable characterization of convexoid operators: An operator T is convexoid if and only if $||R(T,z)|| \le 1/d(z, \operatorname{con}(\sigma(T)))$ for all $z \notin \operatorname{con}(\sigma(T))$. From this it follows immediately that the operators of class M_1 [are convexoid. However, since this characterization fails to say whether operators of class M_{ρ} are convexoid for $\rho \ge 1$, we present the following general criterion of convexoid operators.

Theorem 3. Let $\rho \ge 1$. If X is a closed convex subset of the complex plane, then $X \supseteq \overline{W(T)}$ if and only if $\omega_{\rho}(R(T,z)) \le 1/d(z,X)$ for all $z \notin X$. In particular, T is convexoid if and only if $\omega_{\rho}(R(T,z)) \le 1/d(z, \operatorname{con}(\sigma(T)))$ for all $z \notin \operatorname{con}(\sigma(T))$.

Proof. If $X \supseteq \overline{W(T)}$, then as $||R(T,z)|| \le 1/d(z, \overline{W(T)})$ for all $z \notin \overline{W(T)}$, we have $\omega_{\rho}(R(T,z)) \le ||R(T,z)|| \le 1/d(z, \overline{W(T)}) \le 1/d(z, X)$, for all $z \notin X$.

Conversely, suppose that the resolvent of T satisfies the indicated growth condition. To prove $X \supseteq \overline{W(T)}$, it will suffice to show that every half-plane M containing X also contains $\overline{W(T)}$. By the suitable rotation and translation, we assume $M = \{z: \text{Re } z \ge 0\}$. Since $M \supseteq X$, we have for t > 0,

$$\omega_{
ho}(R(tT,-1))=t^{-1}\omega_{
ho}(R(T,-t^{-1}))\leq 1$$
.

Therefore, by Theorem B, $R(tT, -1) \in C_{\rho}$. Now applying Theorem A, we get

$$(\rho-2) \| (I-R(tT,-1)x) \|^{2} + 2 \operatorname{Re} \langle (I-R(tT,-1))x,x \rangle \geq 0$$
,

or

$$(\rho-2) ||tTR(tT,-1)x||^2 + 2 \operatorname{Re} \langle tTR(tT,-1)x,x \rangle \geq 0$$
,

for all x in H.

Dividing this inequality by t and taking $t \rightarrow 0$, we get $\operatorname{Re} \langle Tx, x \rangle \geq 0$ for all $x \in H$ and hence $\overline{W(T)} \subseteq X$.

The second assertion follows directly from the first one by taking $X = con(\sigma(T))$.

Remark 2. The above theorem is a more general form of Theorem 4(2) proved in [7].

As an immediate consequence of Theorem 3, one has

Corollary 3. $\overline{W(T)} = \bigcap_{k} \{ \operatorname{con} (X_k) : \omega_{\rho}(R(T, z)) \leq 1/d(z, \operatorname{con} (X_k)) \text{ for all } z \notin \operatorname{con} (X_k), \text{ where } X_k \text{ is a bounded closed set in the complex plane} \}.$

120

Corollary 4. If R(T, z) is convexoid for all $z \notin \sigma(T)$, then T is convexoid.

Remark 3. It follows from this corollary that each condition in Column A of Corollary 1 established in [13] can be omitted without affecting the conclusion.

In fact, Professor J.G. Stampfli provided us with an independent proof of Corollary 4 which led us to consider the more general situation when R(T,z) is ρ -oid for all $z \notin \sigma(T)$. As his proof is interesting in itself, we are quoting here with his kind permission:

Assume ||T||=1. It suffices to show that any support line to the set $\operatorname{con}(\sigma(T))$ is also support line for $\overline{W(T)}$. Let $Z_x = \{x+iy; -\infty < y < \infty\}$. We may assume Re $\operatorname{con}(\sigma(T)) \leq 0$ and hence Z_0 is a support line for $\operatorname{con}(\sigma(T))$. Then Z_s is a support line for $\operatorname{con}(\sigma(T+s))$ when s>0. If $z \in \sigma(T+s)$, then $|z| = \sqrt{s^2+1}=\delta$. Thus $\operatorname{Re}(R(T,-s)) \geq s\sigma^{-2}=\alpha$. Since Z_{α} is a support line for $\operatorname{con}(\sigma(R(T,-s)))$, it is a support line for $\overline{W(R(T,-s))}$ and hence $\operatorname{Re} z \geq \alpha$ is a spectral set for R(T,-s). Thus the disc $\{z: |z-\alpha^{-1}/2| \leq \alpha^{-1}/2\}$ is a spectral set for T+s and hence $\operatorname{Re} \overline{W(T+s)} \leq \alpha^{-1} = s + s^{-1}$. Thus $\operatorname{Re} \overline{W(T)} \leq s^{-1}$, and since s is arbitrary, we conclude that $\operatorname{Re} \overline{W(T)} \leq 0$. We have just checked the support line Z_0 . The argument for other support lines is identical and hence we have shown that $\overline{W(T)} \subseteq \operatorname{con}(\sigma(T))$.

It is well-known that a semi-bare point of the spectrum of an operator of class M_1 turns out to be a normal approximate eigenvalue of that operator (see [16]) (A complex number z is called a normal approximate eigenvalue of T if $\{\{x_n\}: x_n \in H, \|x_n\|=1, \|(T-z)x_n\| \rightarrow 0\} = \{\{x_n\}: x_n \in H, \|x_n\|=1, \|(T^*-z^*)x_n\| \rightarrow 0\}$). In Theorem 4, we extend this result for $T \in M_{\rho}$.

Theorem 4. Let $T \in M_{\rho}$. If z is a semi-bare point of $\sigma(T)$, then it is a normal approximate eigenvalue of T.

Proof. Since $T - \lambda I \in M_{\rho}$ whenever $T \in M_{\rho}$, we can assume z=0. Let $z_0 \neq 0$ be a complex number such that $\{\alpha: |\alpha-z_0| \leq |z_0|\} \cap \sigma(T) = \{0\}$. Then $d(z_0, \sigma(T)) = |z_0|$ and $\omega_{\rho}(R(T, z_0)) = 1/|z_0|$. If $S = -z_0 R(T, z_0)$, then $\omega_{\rho}(S) = 1$. Since $0 \in \partial \sigma(T)$, 0 is an approximate eigenvalue of T. If $\{x_n\}$ is a sequence of unit vectors such that $||Tx_n|| \to 0$, then $||Sx_n - x_n|| \to 0$. Therefore, as $\omega_{\rho}(S) = 1$, we conclude by Theorem 1 that $||S^*x_n - x_n|| \to 0$, or $||T^*x_n|| \to 0$ as $||S^*x_n - x_n|| = ||-z^*R(T^*, z^*)x_n - x_n|| = ||R(T^*, z^*)T^*x_n||$.

Corollary 5. Let dim $H < \infty$. Then the classes M_{ρ} coincide with the class of normal operators.

S. M. PATEL

As a particular case, the preceding theorem asserts that an isolated point in $\sigma(T)$ is a normal approximate eigenvalue, whenever $T \in M_{\rho}$. However, one cannot say from this result whether this isolated point is actually a normal eigenvalue of T. For operators of class M_1 , the result is well-known (see [12, Theorem C]). Here, we show this property being retained by operators of class M_{ρ} , when $1 \leq \rho \leq 2$.

Theorem 5. Let $T \in M_{\rho}(1 \le \rho \le 2)$. If z_0 is an isolated point in $\sigma(T)$, then it is a normal eigenvalue of T, that is, $N(T-zI)=N(T^*-z^*I)(N(\cdot)=null$ space).

Proof. Assume $z_0=0$. Choose r>0 sufficiently small so that 0 is the only point of $\sigma(T)$ contained in the disc $\{z: |z| \le r\}$ and $d(\{z: |z|=r\}, \sigma(T))=r$. Define

$$P = -(2\pi i)^{-1} \int_{|z|=r} R(T,z) dz$$

Then $P^2 = P$. Since, for $\rho \leq 2$, the function $\omega_{\rho}(\cdot)$ is a norm on the space of operators [5, Theorem 3.2] and $T \in M_{\rho}(1 \leq \rho \leq 2)$, we have

$$\omega_{\rho}(P) \leq (2\pi)^{-1} \int_{|z|=r} \omega_{\rho}(R(T,z)) dz \leq (2\pi)^{-1} 2\pi r r^{-1} = 1.$$

Then Corollary 1 (ii) assures us that P is a projection. If x is in the range of P, then $||Tx|| \le r$. Since r is arbitrary, Tx=0. Moreover, as 0 is a semi-bare point of $\sigma(T)$, the desired conclusion follows from Theorem 4.

Corollary 6. Operators of class $M_{\rho}(1 \le \rho \le 2)$ with finite spectra are normal.

Our next theorem shows the existence of operators in M_{ρ} with some interesting properties not possessed by all members of M_{ρ} .

Theorem 6. There exists a non-singular operator T in M_{ρ} such that (i) $T^2 \notin M_{\rho}$ for any $\rho \ge 1$,

and

(ii) $T^{-1} \notin M_{\rho}$ for any $\rho \geq 1$.

Proof. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and N be a normal operator with $\sigma(N) = W(A)$. If $T = A \oplus N$, then as shown in [6, Theorem 1.3], $T \in M_1$, $0 \notin \operatorname{con}(\sigma(T^2)) = \operatorname{con}(\sigma(T^2))$ and $0 \in W(A^2) \subseteq W(T^2)$. Thus $\overline{W(T^2)} \neq \operatorname{con} \sigma(T^2)$ or T^2 is not convexoid. Consequently, $T \in M_\rho$ for all $\rho \ge 1$ but $T^2 \notin M_\rho$ for any $\rho \le 1$. This proves (i).

To prove (ii) it suffices to exhibit that T^{-1} is not convexoid. Since $W(A) = \{z: |1-z| \le 1/2\}, \{W(A)\}^{-1} = \{z: |4/3-z| \le 2/3\}.$ Now $\sigma(T^{-1}) = \sigma(A^{-1}) \cup \sigma(N^{-1}) = \{1\} \cup \{1, 2\}, \{W(A)\}^{-1} = \{z: |4/3-z| \le 2/3\}.$

122

$$\begin{split} \sigma(N^{-1}) &= \{1\} \cup \sigma(N)^{-1} = \{1\} \cup \{W(A)\}^{-1}. \text{ But } 1 \in \{W(A)\}^{-1}. \text{ Therefore } \sigma(T^{-1}) = \{W(A)\}^{-1}. \\ \text{Obviously con } \sigma(T^{-1}) &= \text{con } \{W(A)\}^{-1} = \{W(A)\}^{-1}. \text{ Next we see that as } 1/2 \in W(A^{-1}), \\ 1/2 \in \text{ con } \{W(A^{-1}) \cup \{W(A)\}^{-1}\} &= \text{con } \{W(A^{-1}) \cup W(N^{-1})\} = W(T^{-1}) \text{ and hence } 1/2 \in \overline{W(T^{-1})}. \\ \text{However, as } 1/2 \notin \{W(A)\}^{-1} &= \text{con } \sigma(T^{-1}), \text{ we arrive at the conclusion } \\ \text{that con } \sigma(T^{-1}) \neq \overline{W(T^{-1})}. \\ \text{This proves the desired assertion.} \end{split}$$

The author wishes to thank Dr. B. S. Yadav for his help during the preparation of this paper.

REFERENCES

- [1] G. Eckstein, Sur les operateurs de class C_{ρ} , Acta Sci. Math., 33 (1972), 349-352.
- [2] T. Furuta, A note on two inequalities correlated to unitary p-dilation, Proc. Japan Acad., 45 (1969), 561-564.
- [3] T. Furuta, Some theorems on unitary p-dilations of Sz. Nagy and Foias, Acta Sci. Math., (1972), 119-122.
- [4] J. A. R. Holbrook, On the power-bounded operators of Sz-Nagy and Foias, Acta Sci. Math., 29 (1968), 299-310.
- [5] J. A. R. Holbrook, Inequalities governing the operator radii associated with unitary o-dialations, Michigan Math. J., 18 (1971), 149-159.
- [6] G. R. Luecke, Topological properties of paranormal operators on Hilbert Space, Trans. Amer. Math. Soc., 172 (1972), 35-43.
- [7] C. S. Lin, On a family of generalized numerical ranges, Can. J. Math., XXVI (1974), 678-685.
- [8] B. Sz. Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, (North Holland, 1970).
- [9] G. H. Orland, On a class of operators, Proc. Amer. Math. Soc., 15 (1964), 75-80.
- [10] C. R. Putnam, Eigenvalues and boundry spectra, Illinois J. Math., 12 (1968), 278-288.
- [11] C.R. Putnam, The spectra of operators having resolvents of first-order growth, Trans. Amer. Math. Soc., 133 (1968), 505-510.
- [12] C. R. Pu, J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117 (1965), 469-476.
- [13] J. G. Stampfili, Minimal range theorem for operators with thin spectra, Pacific J. Math., 23 (1967), 601-612.
- [14] J. G. Stampfli, A local spectral theory for operators, J. Functional Analysis, 4(1969), 1-10.
- [15] J. G. Stampfli, On hyponormal and Toeplitz operators, Math. Ann., 183 (1969). 328-336.
- [16] T. Saito, A theorem on boundary spectra, Acta Sci. Math., 33 (1972) 101-104.

Faculty of Mathematics, University of Delhi, Delhi-110007, India