ON SOME CLASSES OF OPERATORS ASSOCIATED WITH OPERATOR RADII OF HOLBROOK*

By

S. M. Patel
(Received November 27, 1973)
(Revised April 1, 1975)

The purpose of this paper is to establish some properties of ρ-oid operators and to extend the class of operators satisfying the growth condition- $\left(G_{1}\right)$ by considering the growth condition upon the operator radius of the resolvent of an operator.

For an operator (a bounded linear transformation) T on a camplex Hilbert space H, let $\sigma(T), \overline{W(T)}, r(T)$ and $|W(T)|$ denote respectively, the spectrum, the closure of the numerical range $W(T)$, the spectral radius and the numerical radius of T. If S is a set of complex numbers then we write ∂S and con(S) for the boundary and the convex hull of S.

Let $C_{\rho}(\rho>0)$ be the class of operators T on H for which there exists a Hilbert space K containing H as a subspace and a unitary operator U on K satisfying the following relation:

$$
T^{n} x=\rho P U^{n} x \quad(n=1,2,3, \cdots), \quad x \in H .
$$

The following theorem due to $B . S z$. Nagy and Foias characterizes the class C_{ρ}.
Theorem A. [8, Theorem I 11.1]. An operator T belongs to C_{ρ} if and only if

$$
(\rho-2)\|(I-z T) x\|^{2}+2 \operatorname{Re}\langle(I-z T) x, x\rangle \geq 0,
$$

for all x in $H,|z| \leq 1$.
Recently, Holbrook [4] has introduced the following concept of operator radii $\omega_{\rho}(T)(0<\rho<\infty):$

$$
\omega_{\rho}(T)=\inf \left\{u: u>0 \text { and } u^{-1} T \in C_{\rho}\right\} .
$$

In particular, $\omega_{1}(T)=\|T\|$ and $\omega_{2}(T)=|W(T)|$. Furthermore, he has obtained the following characterization of C_{ρ} in terms of operator radii.

[^0]Theorem B. Te C_{ρ} if and only if $\omega_{\rho}(T) \leq 1$.
In Section 1, some properties of ρ-oid operators are obtained. Section 2 is devoted to the study of the classes of operators associated with operator radii which are more general than the class of operators satisfying the growth con-dition- $\left(G_{1}\right)$.

1. ρ-oid operators.

According to Furuta [2] an operator T is called ρ-oid if $\omega_{\rho}\left(T^{k}\right)=\left(\omega_{\rho}(T)\right)^{k}$ $(k=1,2,3, \cdots)$. Clearly 1 -oid and 2 -oid operators are normaloid and spectraloid. Also for $\rho \geq 1, \omega_{\rho}(T)=r(T)$ if and only if T is ρ-oid [2].

First we give an alternate but a simple proof of a result due to Eckstein [1, Lemma] and use it to obtain some properties of ρ-oid operators.

Theorem 1. Let z be a non-zero complex number such that $|z|=\omega_{\rho}(T)$ $(0<\rho<\infty)$ and let $\left\{x_{n}\right\}$ be a bounded sequence of vectors. Then

$$
\left\|(T-z) x_{n}\right\| \rightarrow 0 \text { implies }\left\|\left(T^{*}-z^{*}\right) x_{n}\right\| \rightarrow 0
$$

Proof. Setting $T_{0}=z^{-1} T$, we see that $\omega_{\rho}\left(T_{0}\right)=1$. Therefore by Theorem B and Theorem A, we get $(\rho-2)\left\|\left(I-T_{0}\right) x\right\|^{2}+2 \operatorname{Re}\left\langle\left(I-T_{0}\right) x, x\right\rangle \geq 0$, for all x in H, or $\operatorname{Re}\left\langle\left((\rho-2)\left(I-T_{0}\right) *\left(I-T_{0}\right)+2\left(I-T_{0}\right)\right) x, x\right\rangle \geq 0$.

This inequality shows that the operator $\operatorname{Re} S \geq 0$, where $S=(\rho-2)\left(I-T_{0}\right)$ $\left(I-T_{0}\right)^{*}+2\left(I-T_{0}\right)$. Since $\left\|\left(I-T_{0}\right) x_{n}\right\| \rightarrow 0$, we have $\left\|S x_{n}\right\| \rightarrow 0$. This, in turn gives $\left\|(\operatorname{Re} S)^{1 / 2} x_{n}\right\|=\left\langle(\operatorname{Re} S) x_{n}, x_{n}\right\rangle=\operatorname{Re}\left\langle S x_{n}, x_{n}\right\rangle \rightarrow 0$; thus $\left\|(\operatorname{Re} S) x_{n}\right\| \rightarrow 0$. Since $\left\|S x_{n}\right\| \rightarrow 0$, we conclude that $\left\|S^{*} x_{n}\right\| \rightarrow 0$. Consequently, $\left\|\left(I-T_{0}\right)^{*} x_{n}\right\| \rightarrow 0$, or $\left\|\left(T^{*}-z^{*}\right) x_{n}\right\| \rightarrow 0$. This proves the result.

Corollary 1. (Furuta [3]). If $T^{2}=T$, then T is a projection if either (i) T is a ρ-oid, or (ii) $\omega_{\rho}(T) \leq 1$.

Proof. Since $T^{2}=T, r(T)^{2}=r(T)$. Therefore either $r(T)=0$ or $r(T)=1$. If $r(T)=0$, then $T=0$. If not, then $T x \neq 0$ for some $x \in H$ and hence $1 \in \sigma(T)$ as $T(T x)=T x$, which is a contradiction. So $T=0$, obviously, a projection. Assume then that $r(T)=1$. If (i) holds then $\omega_{\rho}(T)=1$. Since $T(T x)=T x$ for all x in H, an application of Theorem 1 gives $T *(T x)=T x$ for all x in H or $T^{*} T=T$. This shows that T is a projection. Lastly assume (ii). Then $r(T) \leq$ $\omega_{\rho}(T) \leq 1=r(T)$ or T is ρ-oid. Hence the result follows from (i).

The following corollary is easy to prove.
Corollary 2. Everv ρ-oid operator on a Hilbert space H with $\operatorname{dim} H \leq 2$ is normal.

Remark 1. The above result is not valid if $\operatorname{dim} H>2$. To see this, cansider the operator $T=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ on a Hilbert space H with $\operatorname{dim} H=3$. Clearly T is normaloid and hence ρ-oid, but it is not normal.

Let $L_{\rho}(\rho \geq 1)$ be the collection of ρ-oid operators. We know that $L_{\rho} \subseteq L_{\rho^{\prime}}$ for $\rho^{\prime}>\rho$ [2, Theorem 3]. To sharpen this result, we establish.

Theorem 2. If $\operatorname{dim} H>2$, the class $L_{\rho}(1 \leq \rho<\infty)$ increases with ρ that is, $L_{\rho} \subseteq L_{\rho^{\prime}}$ and $L_{\rho} \neq L_{\rho^{\prime}}$ for $1 \leq \rho<\rho^{\prime}<\infty$.

Proof. We construct for every ρ and ρ^{\prime} with $1 \leq \rho<\rho^{\prime}<\infty$ an operator $T_{\rho^{\prime}}$ in $L_{\rho^{\prime}}$ such that $T_{\rho^{\prime}} \notin L_{\rho}$.

Let M be the two-dimensional subspace of H. Write $H=M \oplus M^{\perp}$. Let $A=\left[\begin{array}{ll}0 & \rho^{\prime} \\ 0 & 0\end{array}\right]$ be the nilpotent operator on M and B, the identity operator on M^{\perp}. Let $T_{\rho^{\prime}}=A \oplus B$. Clearly $r\left(T_{\rho^{\prime}}\right)=1$. Since $\left\|\rho^{\prime-1} A\right\|=1$ and $\left(\rho^{\prime-1} A\right)^{2}=0$, we have by [4, Theorem 4.5] $\omega_{\rho^{\prime}}\left(\rho^{\prime-1} A\right)=\rho^{\prime-1}$ or $\omega_{\rho^{\prime}}(A)=1$. Moreover, as B is the identity operator on M^{1} and $\rho^{\prime}>1$, we have by [4, Theorem 4.3], $\omega_{\rho^{\prime}}(B)=1$. An application of Theorem 4.1[5] gives $\omega_{\rho^{\prime}}\left(T_{\rho^{\prime}}\right)=\max \left\{\omega_{\rho^{\prime}}(A), \omega_{\rho^{\prime}}(B)\right\}=\max \{1,1\}=1$. Thus $\omega_{\rho^{\prime}}\left(T_{\rho^{\prime}}\right)=1=r\left(T_{\rho^{\prime}}\right)$, showing $T_{\rho^{\prime}} \in L_{\rho^{\prime}}$.

Next we claim that $T_{\rho^{\prime}} \notin L_{\rho}$. Since $r\left(T_{\rho^{\prime}}\right)=1$, it will suffice to show that $\omega_{\rho}\left(T_{\rho^{\prime}}\right)>1$. Now as argued before, we obtain $\omega_{\rho}(A)=\rho^{\prime} / \rho$ and so, as $\rho^{\prime}>\rho$, $\omega_{\rho}(A)>1$. Moreover, $\omega_{\rho}(B)=1$ as $\rho \geq 1$. Therefore, again using [5, Theorem 4.1], we get $\omega_{\rho}\left(T_{\rho^{\prime}}\right)>1$. This shows $\omega_{\rho}\left(T_{\rho^{\prime}}\right)>1=r\left(T_{\rho^{\prime}}\right)$.

2. Subclasses of convexoid operators.

An operator T is defined to be convexoid if $\operatorname{con}(\sigma(T))=\overline{W(T)}$. If $z \notin \sigma(T)$, then $R(T, z)=(T-z)^{-1}$ exists and is called the resolvent of T. An operator T is said to satisfy the growth condition- $\left(G_{1}\right)$ if $\|R(T, z)\|=1 / d(z, \sigma(T))$, for all $z \notin \sigma(T)$, where $d(z, o(T))$ denotes the distance of z from $\sigma(T)$. Clearly, T satisfies the growth condition- $\left(G_{1}\right)$ if and only if $R(T, z)$ is normaloid for all $z \notin \sigma(T)$. For the various properties of such operators, we refer to [6], [10], [11], [12], [13], [14] and [15]. Since $\omega_{\rho}(T) \leq\|T\|$ for $\rho \geq 1$, it is natural to introduce and study the following generalization of this class.

Let $\rho \geq 1$. Then an operator T is defined to be of class M_{ρ} if $\omega_{\rho}(R(T, z))=$ $1 / d(z, \sigma(T)), z \notin \sigma(T)$. Obviously $T \in M_{\rho}$ if and only if $R(T, z)$ is ρ-oid for all $z \notin \sigma(T)$. Also for $\rho^{\prime}>\rho, M_{\rho} \not \mathcal{Z}_{\rho}$ and so, in particular M_{1} which is nothing but the class of operators satisfying the growth condition $\left(G_{1}\right)$ is contained in M_{ρ}
for all $\rho \geq 1$.
Orland [9] established the following remarkable characterization of convexoid operators: An operator T is convexoid if and only if $\|R(T, z)\| \leq 1 / d(z, \operatorname{con}(\sigma(T))$ for all $z \notin \operatorname{con}(\sigma(T))$. From this it follows immediately that the operators of class M_{1} are convexoid. However, since this characterization fails to say whether operators of class M_{ρ} are convexoid for $\rho \geq 1$, we present the following general criterion of convexoid operators.

Theorem 3. Let $\rho \geq 1$. If X is a closed convex subset of the complex plane, then $X \supseteq \overline{W(T)}$ if and only if $\omega_{\rho}(R(T, z)) \leq 1 / d(z, X)$ for all $z \notin X$. In particular, T is convexoid if and only if $\omega_{\rho}(R(T, z)) \leq 1 / d(z, \operatorname{con}(\sigma(T)))$ for all $z \notin \operatorname{con}(\sigma(T))$.

Proof. If $X \supseteq \overline{W(T)}$, then as $\|R(T, z)\| \leq 1 / d(z, \overline{W(T))}$ for all $z \notin \overline{W(T)}$, we have $\omega_{\rho}(R(T, z)) \leq\|R(T, z)\| \leq 1 / d(z, \overline{W(T)}) \leq 1 / d(z, X)$, for all $z \notin X$.

Conversely, suppose that the resolvent of T satisfies the indicated growth condition. To prove $X \supseteq \overline{W(T)}$, it will suffice to show that every half-plane M containing X also contains $\overline{W(T)}$. By the suitable rotation and translation, we assume $M=\{z: \operatorname{Re} z \geq 0\}$. Since $M \supseteq X$, we have for $t>0$,

$$
\omega_{\rho}(R(t T,-1))=t^{-1} \omega_{\rho}\left(R\left(T,-t^{-1}\right)\right) \leq 1 .
$$

Therefore, by Theorem $\mathrm{B}, R(t T,-1) \in C_{\rho}$. Now applying Theorem A , we get

$$
(\rho-2) \|\left(I-R(t T,-1) x \|^{2}+2 \operatorname{Re}\langle(I-R(t T,-1)) x, x\rangle \geq 0,\right.
$$

or

$$
(\rho-2)\|t T R(t T,-1) x\|^{2}+2 \operatorname{Re}\langle t T R(t T,-1) x, x\rangle \geq 0,
$$

for all x in H.
Dividing this inequality by t and taking $t \rightarrow 0$, we get $\operatorname{Re}\langle T x, x\rangle \geq 0$ for all $x \in H$ and hence $\overline{W(T)} \subseteq X$.

The second assertion follows directly from the first one by taking $X=$ $\operatorname{con}(\sigma(T))$.

Remark 2. The above theorem is a more general form of Theorem 4(2) proved in [7].

As an immediate consequence of Theorem 3, one has
Corollary 3. $\overline{W(T)}=\bigcap_{k}\left\{\operatorname{con}\left(X_{k}\right): \omega_{\rho}(R(T, z)) \leq 1 / d\left(z, \operatorname{con}\left(X_{k}\right)\right)\right.$ for all $z \notin \operatorname{con}$ $\left(X_{k}\right)$, where X_{k} is a bounded closed set in the complex plane\}.

Corollary 4. If $R(T, z)$ is convexoid for all $z \notin \sigma(T)$, then T is convexoid.
Remark 3. It follows from this corollary that each condition in Column \mathbf{A} of Corollary 1 established in [13] can be omitted without affecting the conclusion.

In fact, Professor J.G. Stampfi provided us with an independent proof of Corollary 4 which led us to consider the more general situation when $R(T, z)$ is ρ-oid for all $z \notin \sigma(T)$. As his proof is interesting in itself, we are quoting here with his kind permission:

Assume $\|T\|=1$. It suffices to show that any support line to the set $\operatorname{con}(\sigma(T))$ is also support line for $\overline{W(T)}$. Let $Z_{x}=\{x+i y ;-\infty<y<\infty\}$. We may assume Re con $(\sigma(T)) \leq 0$ and hence Z_{0} is a support line for $\operatorname{con}(\sigma(T))$. Then Z_{s} is a support line for $\operatorname{con}(\sigma(T+s))$ when $s>0$. If $z \in \sigma(T+s)$, then $|z|=$ $\sqrt{s^{2}+1}=\delta$. Thus $\operatorname{Re}(R(T,-s)) \geq s \sigma^{-2}=\alpha$. Since Z_{α} is a support line for con $(\sigma(R(T,-s))$, it is a support line for $\overline{W(R(T,-s)})$ and hence $\operatorname{Re} z \geq \alpha$ is a spectral set for $R(T,-s)$. Thus the disc $\left\{z:\left|z-\alpha^{-1} / 2\right| \leq \alpha^{-1} / 2\right\}$ is a spectral set for $T+s$ and hence $\operatorname{Re} \overline{W(T+s)} \leq \alpha^{-1}=s+s^{-1}$. Thus $\operatorname{Re} \overline{W(T)} \leq s^{-1}$, and since s is arbitrary, we conclude that $\operatorname{Re} \overline{W(T)} \leq 0$. We have just checked the support line Z_{0}. The argument for other support lines is identical and hence we have

It is well-known that a semi-bare point of the spectrum of an operator of class M_{1} turns out to be a normal approximate eigenvalue of that operator (see [16]) (A complex number z is called a normal approximate eigenvalue of T if $\left\{\left\{x_{n}\right\}: x_{n} \in H,\left\|x_{n}\right\|=1,\left\|(T-z) x_{n}\right\| \rightarrow 0\right\}=\left\{\left\{x_{n}\right\}: x_{n} \in H,\left\|x_{n}\right\|=1,\left\|\left(T^{*}-z^{*}\right) x_{n}\right\| \rightarrow 0\right\}$. In Theorem 4, we extend this result for $T \in M_{\rho}$.

Theorem 4. Let $T \in M_{\rho}$. If z is a semi-bare point of $\sigma(T)$, then it is a normal approximate eigenvalue of T.

Proof. Since $T-\lambda I \in M_{\rho}$ whenever $T \in M_{\rho}$, we can assume $z=0$. Let $z_{0} \neq 0$ be a complex number such that $\left\{\alpha:\left|\alpha-z_{0}\right| \leq\left|z_{0}\right|\right\} \cap \sigma(T)=\{0\}$. Then $d\left(z_{0}, \sigma(T)\right)=$ $\left|z_{0}\right|$ and $\omega_{\rho}\left(R\left(T, z_{0}\right)\right)=1 /\left|z_{0}\right|$. If $S=-z_{0} R\left(T, z_{0}\right)$, then $\omega_{\rho}(S)=1$. Since $0 \in \partial \sigma(T)$, 0 is an approximate eigenvalue of T. If $\left\{x_{n}\right\}$ is a sequence of unit vectors such that $\left\|T x_{n}\right\| \rightarrow 0$, then $\left\|S x_{n}-x_{n}\right\| \rightarrow 0$. Therefore, as $\omega_{\rho}(S)=1$, we conclude by Theorem 1 that $\left\|S^{*} x_{n}-x_{n}\right\| \rightarrow 0$, or $\left\|T^{*} x_{n}\right\| \rightarrow 0$ as $\left\|S^{*} x_{n}-x_{n}\right\|=\|-z^{*} R\left(T^{*}, z^{*}\right) x_{n}$ $x_{n}\|=\| R\left(T^{*}, z^{*}\right) T^{*} x_{n} \|$.

Corollary 5. Let $\operatorname{dim} H<\infty$. Then the classes M_{ρ} coincide with the class of normal operators.

As a particular case, the preceding theorem asserts that an isolated point in $\sigma(T)$ is a normal approximate eigenvalue, whenever $T \in M_{\rho}$. However, one cannot say from this result whether this isolated point is actually a normal eigenvalue of T. For operators of class M_{1}, the result is well-known (see [12, Theorem C]). Here, we show this property being retained by operators of class M_{ρ}, when $1 \leq \rho \leq 2$.

Theorem 5. Let $T \in M_{\rho}(1 \leq \rho \leq 2)$. If z_{0} is an isolated point in $\sigma(T)$, then it is a normal eigenvalue of T, that is, $N(T-z I)=N\left(T^{*}-z^{*} I\right)(N(\cdot)=$ null space).

Proof. Assume $z_{0}=0$. Choose $r>0$ sufficiently small so that 0 is the only point of $\sigma(T)$ contained in the disc $\{z:|z| \leq r\}$ and $d(\{z:|z|=r\}, \sigma(T))=r$. Define

$$
P=-(2 \pi i)^{-1} \int_{|z|=r} R(T, z) d z
$$

Then $P^{2}=P$. Since, for $\rho \leq 2$, the function $\omega_{\rho}(\cdot)$ is a norm on the space of operators [5, Theorem 3.2] and $T \in M_{\rho}(1 \leq \rho \leq 2)$, we have

$$
\omega_{\rho}(P) \leq(2 \pi)^{-1} \int_{|z|=r} \omega_{\rho}(R(T, z)) d z \leq(2 \pi)^{-1} 2 \pi r r^{-1}=1 .
$$

Then Corollary 1 (ii) assures us that P is a projection. If x is in the range of P, then $\|T x\| \leq r$. Since r is arbitrary, $T x=0$. Moreover, as 0 is a semi-bare point of $\sigma(T)$, the desired conclusion follows from Theorem 4.

Corollary 6. Operators of class $M_{\rho}(1 \leq \rho \leq 2)$ with finite spectra are normal.
Our next theorem shows the existence of operators in M_{ρ} with some interesting properties not possessed by all members of M_{ρ}.

Theorem 6. There exists a non-singular operator T in M_{ρ} such that
(i) $T^{2} \notin M_{\rho}$ for any $\rho \geq 1$, and
(ii) $T^{-1} \notin M_{\rho}$ for any $\rho \geq 1$.

Proof. Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and N be a normal operator with $\sigma(N)=W(A)$. If $T=A \oplus N$, then as shown in [6, Theorem 1.3], $T \in M_{1}, 0 \notin \operatorname{con}\left(\sigma(T)^{2}\right)=$ con $\left(\sigma\left(T^{2}\right)\right)$ and $0 \in W\left(A^{2}\right) \subseteq W\left(T^{2}\right)$. Thus $\overline{W\left(T^{2}\right)} \neq \operatorname{con} \sigma\left(T^{2}\right)$ or T^{2} is not convexoid. Consequently, $T \in M_{\rho}$ for all $\rho \geq 1$ but $T^{2} \notin M_{\rho}$ for any $\rho \leq 1$. This proves (i).

To prove (ii) it suffices to exhibit that T^{-1} is not convexoid. Since $W(A)=$ $\{z:|1-z| \leq 1 / 2\}, \quad\{W(A)\}^{-1}=\{z:|4 / 3-z| \leq 2 / 3\}$. Now $\sigma\left(T^{-1}\right)=\sigma\left(A^{-1}\right) \cup \sigma\left(N^{-1}\right)=\{1\} \cup$
$\sigma\left(N^{-1}\right)=\{1\} \cup \sigma(N)^{-1}=\{1\} \cup\{W(A)\}^{-1}$. But $1 \in\{W(A)\}^{-1}$. Therefore $\sigma\left(T^{-1}\right)=\{W(A)\}^{-1}$. Obviously con $\sigma\left(T^{-1}\right)=$ con $\{W(A)\}^{-1}=\{W(A)\}^{-1}$. Next we see that as $1 / 2 \in W\left(A^{-1}\right)$, $1 / 2 \in \operatorname{con}\left\{W\left(A^{-1}\right) \cup\{W(A)\}^{-1}\right\}=\operatorname{con}\left\{W\left(A^{-1}\right) \cup W\left(N^{-1}\right)\right\}=W\left(T^{-1}\right)$ and hence $1 / 2 \in$ $\overline{W\left(T^{-1}\right)}$. However, as $1 / 2 \notin\{W(A)\}^{-1}=\operatorname{con} \sigma\left(T^{-1}\right)$, we arrive at the conclusion that $\operatorname{con} \sigma\left(T^{-1}\right) \neq \overline{W\left(T^{-1}\right)}$. This proves the desired assertion.

The author wishes to thank Dr. B. S. Yadav for his help during the preparation of this paper.

REFERENCES

[1] G. Eckstein, Sur les operateurs de class C_{ρ}, Acta Sci. Math., 33 (1972), 349-352.
[2] T. Furuta, A note on two inequalities correlated to unitary ρ-dilation, Proc. Japan Acad., 45 (1969), 561-564.
[3] T. Furuta, Some theorems on unitary ρ-dilations of Sz. Nagy and Foias, Acta Sci. Math., (1972), 119-122.
[4] J. A. R. Holbrook, On the power-bounded operators of Sz-Nagy and Foias, Acta Sci. Math., 29 (1968), 299-310.
[5] J. A. R. Holbrook, Inequalities governing the operator radii associated with unitary ρ-dialations, Michigan Math. J., 18 (1971), 149-159.
[6] G. R. Luecke, Topological properties of paranormal operators on Hilbert Space, Trans. Amer. Math. Soc., 172 (1972), 35-43.
[7] C. S. Lin, On a family of generalized numerical ranges, Can. J. Math., XXVI (1974), 678-685.
[8] B. Sz. Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, (North Holland, 1970).
[9] G. H. Orland, On a class of operators, Proc. Amer. Math. Soc., 15 (1964), 75-80.
[10] C. R. Putnam, Eigenvalues and boundry spectra, Illinois J. Math., 12 (1968), 278288.
[11] C.R. Putnam, The spectra of operators having resolvents of first-order growth, Trans. Amer. Math. Soc., 133 (1968), 505-510.
[12] C. R. Pu, J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117 (1965), 469-476.
[13] J. G. Stampfili, Minimal range theorem for operators with thin spectra, Pacific J. Math., 23 (1967), 601-612.
[14] J. G. Stampfli, A local spectral theory for operators, J. Functional Analysis, 4(1969), 1-10.
[15] J. G. Stampfli, On hyponormal and Toeplitz operators, Math. Ann., 183 (1969). 328-336.
[16] T. Saito, A theorem on boundary spectra, Acta Sci. Math., 33 (1972) 101-104.
Faculty of Mathematics, University of Delhi, Delhi-110007, India

[^0]: * This paper was first read at the 39th Conference of the Indian Mathematical Society held at Jadavpur University, Calcutta in December, 1973.

