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The purpose of this paper is to establish some properties of $\rho$-oid operators

and to extend the class of operators satisfying the growth $condition-(G_{1})$ by

considering the growth condition upon the operator radius of the resolvent of

an operator.
For an operator (a bounded linear transformation) $T$ on a camplex Hilbert

space $H$, let $\sigma(T),$ $\overline{W(T)},$ $r(T)$ and $|W(T)|$ denote $re8pectively$ , the spectrum,

the closure of the numerical range $W(T)$ , the spectral radius and the numerical

radius of $T$. If $S$ is a set of complex numbers then we write $\partial S$ and $con(S)$ for

the boundary and the convex hull of $S$ .
Let $C_{\rho}(\rho>0)$ be the class of operators $T$ on $H$ for which there exists a

Hilbert space $K$ containing $H$ as a subspace and a unitary operator $U$ on $K$

8atisfying the following relation:

$T^{n}x=\rho PU^{n}x(n=1,2,3, \cdots)$ , $xeH$ .
The following theorem due to B. $Sz$ . Nagy and Foias characterizes the class $C_{\rho}$ .

Theorem A. [8, Theorem I 11.1]. An operator $T$ belongs to $C_{\rho}$ if and
only if

$(\rho-2)||(I-zT)x||^{2}+2Re\langle(I-zT)x, x\rangle\geq 0$ ,

for all $x$ in $H,$ $|z|\leq 1$ .
Recently, Holbrook [4] has introduced the following concept of operator radii

$\omega_{\rho}(T)(0<\rho<\infty)$ :
$\omega_{\rho}(T)=\inf$ {$u:u>0$ and $u^{-1}TeC_{\rho}$}.

In particular, $\omega_{1}(T)=||T||$ and $\omega_{2}(T)=|W(T)|$ . Furthermore, he has obtained
the following characterization of $C_{\rho}$ in terms of operator radii.

$\ovalbox{\tt\small REJECT}*This$paper $wa8$ first read at the39th Conference of the IndianMdianathematicalMathematical $S$ ciety
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Theorem B. $TeC$, if evnd only if $\omega,(T)\leq 1$ .
In Section 1, some properties of $\rho\cdot oid$ operators are obtained. Section 2 is

devoted to the study of the classes of operators associated with operator radii
which are more general than the cla8s of operators satisfying the growth con-
$dition-(G_{1})$ .

1. $\rho$-oid operators.

According to Furuta [2] an operator $T$ is called $\rho$-oid if $\omega_{p}(T^{k})=(\omega,(T))^{\iota}$

$(k=1,2,3, \cdots)$ . Clearly l-oid and 2-oid operators are normaloid and spectraloId.
Also for $\rho\geq 1,$ $w_{\rho}(T)=r(T)$ if and only if $T$ is $\rho oid[2]$ .

First we give an alternate but $\iota 8imple$ proof of a result due to Eckstein
[1, Lemma] and use it to obtain some Properties of $\rho\cdot 0$id operator8.

Theorem 1. Let $z$ be a non-zero complex number such that $|z|=\omega_{\rho}(T)$

$(0<\rho<\infty)$ and let $\{x_{n}\}$ be a bounded sequence of vectors. Then

$||(T-z)x_{n}||\rightarrow 0implie8||(T^{*}-z^{*})x_{n}||\rightarrow 0$

Proof. Setting $T_{0}=z^{-1}T$, we see that $w,(T)=1$ . Therefore by Theorem
$B$ and Theorem $A$ , we get $(\rho-2)[|(I-T_{0})x||+2{\rm Re}\langle(I-T_{0})x, x\rangle\geq 0$ , for all $x$ in
$H$, or ${\rm Re}$ $\langle((\rho 2)(I-T_{0})*(I-T_{0})+2(I-T_{0}))x, x\rangle\geq 0$ .

This inequality shows that the operator ${\rm Re} S\geq 0$, where $S=(\rho-2)(I-T_{0})$

$(I-T_{0})^{*}+2(l-T_{0})$ . Since $||(I-T_{0})x_{n}\Vert\rightarrow 0$ , we have $||Sx_{n}||\rightarrow 0$ . This, in turn gives
$||({\rm Re} S)^{1/2}x_{n}\Vert=\langle({\rm Re} S)x_{n},$ $x,>={\rm Re}\langle Sx_{n},$ $x,>\rightarrow 0$ ; thus $||({\rm Re} S)x_{n}||\rightarrow 0$ . Since $||Sx_{n}\Vert\rightarrow 0$ ,
we conclude that $||S^{*}x_{n}||\rightarrow 0$ . Consequently, $\Vert(I-T_{0})^{*}x_{n}\Vert\rightarrow 0$ , or $||(\Psi-z^{*})x_{n}\Vert\rightarrow 0$ .
This proves the result.

Corollary 1. (Furuta [8]). If $T^{2}=T$, then $T$ is a $projecti\sigma n$ if either
(i) $T$ is a $\rho\leftrightarrow oid$ , or (ii) $\omega_{\rho}(T)\leq 1$ .

Proof. ,Since $T^{2}=T,$ $r(T)^{2}=r(T)$ . Therefore either $r(T)=0$ or $r(T)=1$ .
If $r(T)=0$ , then $T=0$ . If not, then $Tx\neq 0$ for some $xeH$ and hence le $\sigma(T)$

as $T(Tx)=Tx$ , which is a contradiction. So $T=0$ , obviously, a Projection.
Assume then that $r(T)=1$ . If (i) holds then $\omega_{\rho}(T)=1$ . Since $T(Tx)=Tx$ for
all $x$ in $H$, an application of Theorem 1 gives $T^{*}(Tx)=Tx$ for all $x$ in $H$ or
$I^{W}T=T$. This shows that $T$ is a Projection. La8t1y assume (ii). Then $ r(T)\leq$

$\omega_{\rho}(T)\leq 1=r(T)$ or $T$ is $\rho$-oid. Hence the result follows from (i).

The following corollary is easy to prove.

Corollary 2. Every $\rho- 0\dot{j}d$ operator on a Hilbert sPace $H$ with dim $H\leq 2$

is normal.
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Remark 1. The above result is not valid if dim $H>2$ . To see $this_{*}$ can-

Sider the operator $T=\left\{\begin{array}{lll}Q & 1 & 0\\0 & 0 & 0\\0 & 0 & 1\end{array}\right\}$ on a Hilbert space $H$ with dim $H=3$ . Clearly

$T$ is normaloid and hence $\rho$-oid, but it is not normal.
Let $L_{\rho}(\rho\geq 1)$ be the collection of $\rho$-oid operators. We know that $L_{\rho}\subseteq L,$ , for

$\mu>\rho$ [$2$ , Theorem 3]. To sharpen this result, we establish.

Theorem 2. If dim $H>2$ , the class $L_{p}(1\leq\rho<\infty)$ increases with $\rho$ that is,
$L_{f}\subseteq L_{\rho^{\prime}}$ and $L_{\rho}\neq L_{\rho}$, for $ 1\leq\rho<\rho^{\prime}<\infty$ .

Proof. We construct far every $\rho$ and $\rho^{\prime}$ with $ 1\leq\rho<\rho^{\prime}<\infty$ an operator
$T_{\rho^{\prime}}$ in $L_{\rho^{\prime}}$ such that $T_{\rho^{\prime}}\not\in L_{\rho}$ .

Let $M$ be the two-dimensional subspace of $H$. Write $H=M\oplus M^{\perp}$ . Let

$A=\left\{\begin{array}{ll}0 & \rho^{\prime}\\0 & 0\end{array}\right\}$ be the nilpotent operator on $M$ and $B,$ the identity operator on
$M^{\downarrow}$ . Let $T,’=A\oplus B$ . Clearly $r(T_{\rho^{\prime}})=1$ . Since $||\rho^{\prime-1}A||=1$ and $(\rho^{l-1}4)=0$, we
hsve by [4, Theorem 4.5] $v,’(\rho^{\prime-1}A)=\rho^{\prime-1}$ er $\omega_{\rho^{\prime}}(A)=1$ . Mareover, as $B$ is the
identity operator on $M^{\perp}$ and $\rho^{\prime}>1$ , we have by [4, Theorern 4.8], $\omega,’(B)=1$ . An
application of Theorem 4.1[5] gives $\omega_{\rho^{\prime}}(T_{\rho^{\prime}})=\max\{\omega,’(A), \omega_{\rho^{\prime}}(B)\}=\max\{1,1\}=1$ .
Thus $\omega_{\rho^{\prime}}(T_{\rho^{\prime}})=1=r(T,’)$ , showing $T_{f^{\prime}}eL_{\rho^{\prime}}$ .

Next we claim that $T_{\rho^{\prime}}\not\in L_{\rho}$ . Since $r(T_{\rho^{\prime}})=1$ , it will suffice to show that
$\omega_{\rho}(T_{\rho^{\prime}})>1$ . Now as argued before, we obtain $\omega_{\rho}(A)=\rho^{l}/\rho$ and 80, as $\rho^{\prime}>\rho$,
$\omega_{\rho}(A)>1$ . Moreover, $\omega,(B)=1$ as $\rho\geq 1$ . Therefore, again using [5, Theorem 4.11,
we get $\omega_{\rho}(T_{\rho^{\prime}})>1$ . This shows $\omega_{\rho}(T_{\rho^{\prime}})>1=r(T_{\rho^{\prime}})$ .

2. Subclasses of convexoid operators.

An operator $T$ is defined to be convexoid if con $(\sigma(T))=\overline{W(T})$ . If $z\not\in\sigma(T)$ ,
then $R(T, z)=(T-z)^{-1}$ exists and is called the resolvent of $T$. An operator $f$

is said to satisfy the growth $condition-(G_{1})$ if $\Vert R(T, z)||=1/d(z, \sigma(T))$ , for all
$z\not\in\sigma(T)$ , where $d(z, o(T))$ denotes the distance of $z$ trom $\sigma(T)$ . Clearly, $T$

satisfies the growth $condition-(G_{1})$ if and only if $R(T.g)i\mathfrak{g}$ normaloid fOr all
$z\not\in\sigma(T)$ . For the various properties of such operators, we refer to [6], $[lO1$ .
[11], [12], [13], [14] and [15]. Since $\omega_{\rho}(T)\leq\Vert T||$ for $\rho\geq 1$ , it is natural to intro-
duce and study the following generalization of this class.

Let $\rho\geq 1$ . Then an operator $T$ is defined to be of cla8s $M$, if $\omega_{\rho}(R(T, z))=$

$1/d(z, \sigma(T)),$ $z\not\in\sigma(T)$ . Obviously $TeM_{\rho}$ if and only if $R(T, z)$ is $\rho$-oid for all
$z\not\in\sigma(T)$ . Alse for $f>\rho,$ $M_{\rho^{\prime}}\supsetneq M_{\rho}$ and so, in partioular $M_{1}$ which i8 nothing but
the class of operators satisfying the growth $condition,(G_{\iota})$ i8 Qontained in $\kappa$,
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for all $\rho\geq 1$ .
Orland [9] established the following remarkable characterization of convexoid

operators: An operator $T$ is convexoid if and only if $||R(T, z)\Vert\leq 1/d(z, con(\sigma(T))$

for all $z\not\in con(\sigma(T))$ . From this it follows immediately that the operators of
class $M_{1}$ care convexoid. However, since this characterization fails to say whe-
ther operators of class $M_{\rho}$ are convexoid for $\rho\geq 1$ , we present the following
general criterion of convexoid operators.

Theorem 3. Let $\rho\geq 1$ . If $X$ is a closed convex subset of the complex
plane, then $X\supseteq\overline{W(T)}$ if and only $\dot{j}f\omega_{\rho}(R(T, z))\leq 1/d(z, X)$ for all $z\not\in X$. In
particular, $T$ is convexoid if and only if $\omega_{\rho}(R(T, z))\leq 1/d$($z$ , con $(\sigma(T))$ ) for all
$ z\not\in$ con $(\sigma(T))$ .

Proof. If $X\supseteq\overline{W(T}$), then as $\Vert R(T, z)\Vert\leq 1/d(z,$ $\overline{W(T))}$ for all $z\not\in\overline{W(T),}$ we
have $\omega_{\rho}(R(T, z))\leq\Vert R(T, z)\Vert\leq 1/d(z,\overline{W(T)})\leq 1/d(z, X)$ , for all $z\not\in X$.

Conversely, suppose that the resolvent of $T$ satisfies the indicated growth

condition. To prove $X\supseteq\overline{W(T)}$, it will suffice to show that every half-plane $M$

containing $X$ also contains $\overline{W(T)}$ . By the suitable rotation and translation, we
assume $M=$ {$z$ : Re z $\geq 0$}. Since $M\supseteq X$, we have for $t>0$ ,

$\omega_{\rho}(R(tT, -1))=t^{-1}\omega_{\rho}(R(T, -t^{-1}))\leq 1$ .
Therefore, by Theorem $B,$ $R(tT, -1)\in C_{\rho}$ . Now aPplying Theorem $A$ , we get

$(\rho-2)\Vert(I-R(tT, -1)x\Vert^{2}+2{\rm Re}\langle(I-R(tT, -1))x, x\rangle\geq 0$ ,

or
$(\rho-2)\Vert tTR(tT, -1)x\Vert^{2}+2{\rm Re}\langle tTR(tT, -1)x, x\rangle\geq 0$ ,

for all $x$ in $H$.
Dividing this inequality by $t$ and taking $t\rightarrow 0$ , we get ${\rm Re}\langle Tx, x\rangle\geq 0$ for all

$xeH$ and hence $\overline{W(T)}\subseteq X$.
The second assertion follows directly from the first one by taking $X=$

$con(\sigma(T))$ .
Remark 2. The above theorem is a more general fom of Theorem 4(2)

proved in [7].

As an immediate consequence of Theorem 3, one has

Corollary 3. $\overline{W(T)}=\bigcap_{k}$ {con $(X_{k});\omega_{\rho}(R(T, z))\leq 1/d$($z$, con $(X_{k})$) for all $z\not\in con$

$(X_{l})$ , where $X_{k}$ is a bounded closed set in the complex plane}.
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Corollary 4. If $R(T, z)$ is convexoid for all $z\not\in\sigma(T)$ , then $T$ is convexoid.

Remark 3. It follows from this corollary that each condition in Column A
of Corollary 1 established in [13] can be omitted without affecting the conclu-
sion.

In fact, Professor J.G. Stampfli provided us with an independent $pr\ovalbox{\tt\small REJECT} f$ of
Corollary 4 which led us to consider the more general situation when $R(T, z)$ is
-oid for all $z\not\in\sigma(T)$ . As his proof is interesting in itself, we are quoting here

with his kind permission:

Assume $\Vert T||=1$ . It suffices to show that any suPport line to the set
con $(\sigma(T))$ is also support line for $\overline{W(T).}$ Let $Z_{x}=\{x+iy;-\infty<y<\infty\}$ . We may
assume ${\rm Re}$ con $(\sigma(T))\leq 0$ and hence $Z_{0}$ is a support line for con $(\sigma(T))$ . Then
$Z_{l}$ is a support line for con $(\sigma(T+s))$ when $s>0$ . If $ze\sigma(T+s)$ , then $|z|=$

$\sqrt{s^{2}+1}=\delta$ . Thus ${\rm Re}(R(T, -s))\geq s\sigma^{-2}=\alpha$ . Since $Z_{\alpha}$ is a support line for
con $(\sigma(R(T, -s))$ , it is a support line for $\overline{W(R(T,-s)}$) and hence ${\rm Re} z\geq\alpha$ is a
spectral set for $R(T, -s)$ . Thus the disc $\{z;|z-\alpha^{-1}/2|\leq\alpha^{-1}/2\}$ is a spectral set for
$T+s$ and hence ${\rm Re}\overline{W(T+s)}\leq\alpha^{-1}=s+s^{-1}$ . Thus ${\rm Re}\overline{W(T}$ ) $\leq s^{-1}$ , and since $s$ is
arbitrary, we conclude that ${\rm Re}\overline{W(T)}\leq 0$ . We have iust checked the support
line $Z_{0}$ . The argument for other support lines is identical and hence we have
shown that $\overline{W(T)}\subseteq$ con $(\sigma(T))$ .

It is well-known that a semi-bare point of the spectrum of an operator of
cla8s $M_{1}$ turns out to be a normal approximate eigenvalue of that operator
(see [16]) (A complex number $z$ is called a normal approximate eigenvalue of
$T$ if $\{\{x_{n}\}:x_{n}eH, \Vert x_{n}\Vert=1, \Vert(T-z)x_{n}\Vert\rightarrow 0\}=\{\{x_{n}\}:x_{n}eH, \Vert x_{n}\Vert=1, \Vert(T^{*}-z^{*})x_{n}\Vert\rightarrow 0\})$ .
In Theorem 4, we extend this result for $TeM_{\rho}$ .

Theorem 4. Let $TeM_{\rho}$ . If $z$ is a semi-bare point of $\sigma(T)$ , then it is a
normal approximate eigenvalue of $T$.

Proof. Since $T-\lambda IeM_{\rho}$ whenever $TeM_{\rho}$ , we can assume $z=0$ . Let $z_{0}\neq 0$

be a complex number such that $\{\alpha:|\alpha-z_{0}|\leq|z_{0}|\}\cap\sigma(T)=\{0\}$ . Then $d(z_{0}, \sigma(T))=$

$|z_{0}|$ and $\omega_{\rho}(R(T, z_{0}))=1/|z_{0}|$ . If $S=-z_{0}R(T, z_{0})$ , then $\omega_{\rho}(S)=1$ . Since $0\in\partial\sigma(T)$ ,
$0$ is an approximate eigenvalue of $T$. If $\{x_{n}\}$ is a sequence of unit vectors such
that $||Tx_{n}||\rightarrow 0$ , then $\Vert Sx_{n}-x_{n}||\rightarrow 0$ . Therefore, as $\omega_{\rho}(S)=1$ , we conclude by
Theorem 1 that $||S^{*}x_{n}-x_{n}\Vert\rightarrow 0$ , or $||T^{*}x_{*}||\rightarrow 0$ as $\Vert S^{*}x_{n}-x_{n}\Vert=\Vert-z^{*}R(T^{*}, z^{*})x_{n}-$

$ x_{n}||=||R(T^{*}, z^{*})T^{*}x_{n}\Vert$ .
Corollary 5. Let dim H $<\infty$ . Then the classes $M_{\rho}$ coincide with the

class of normal operators.
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As a particular case, the preceding theorem asserts thst an isolated point
in $\sigma(T)$ is a normal approximate eigenvalue, whenever $T\in M_{\rho}$. However, one
cannot say from this result whether this isolated poInt is actually a normal
eigenvalue of $T$. For operators of class $M_{1}$ , the result is well-known (see [12,
Theorem $C$]). Here, we show this property being retained by operator8 of class
$M_{\rho}$ , when $1\leq\rho\leq 2$ .

Theorem 5. Let $T\in M_{\rho}(1\leq\rho\leq 2)$ . If $z_{0}$ is an $i\epsilon olai\ell d$ Point in $\sigma(T)$ , then
it is a normal eigenvalue of $T$, that is, $N(T-zI)=N(T^{*}-z^{*}I)(N(\cdot)=null$

space).

Proof. Assume $z_{0}=0$ . Choose $r>0$ sufficiently small so that $0$ is the only
point of $\sigma(T)$ contained in the disc $\{z:|z|\leq r\}$ and $d(\{z:|z|=r\}, \sigma(T))=r$ . Deflne

$P=-(2\dot{m})^{-1}\int_{|z|=r}R(T, z)dz$

Then $P^{2}=P$. Since, for $\rho\leq 2$ , the function $\omega,(\cdot)$ is a norm on the space of
operators [5, Theorem 3.2] and $T\in M_{\rho}(1\leq\rho\leq 2)$ , we have

$\omega_{\rho}(P)\leq(2\pi)^{-1}\int_{|z|\Rightarrow r}\omega_{\rho}(R(T, z))dz\leq(2\pi)^{\leftrightarrow 1}2\pi rr^{-1}=1$ .

Then Corollary 1 (ii) assures us that $P$ is a projection. If $x$ is in the range of
$P$, then $\Vert Tx||\leq r$ . Since $r$ is arbitrary, $Tx=0$ . Moreover, as $0$ is a semi-bare
point of $\sigma(T)$ , the desired conclusion follows from Theorem 4.

Corollary 6. Operators of class $M_{\rho}(1\leq\rho\leq 2)$ with finite spectra are normal.
Our next theorem shows the existence of operators in $M_{\rho}$ with some inte-

resting properties not possessed by all members of $M_{\rho}$ .
Theorem 6. There exists a non-singular operator $T$ in $M_{\rho}$ such that
(i) $T^{2}\not\in M_{\rho}$ for any $\rho\geq 1$ ,

and
(ii) $T^{-1}\not\in M_{\rho}$ for any $\rho\geq 1$ .

Proof. Let $A=\left\{\begin{array}{ll}1 & 1\\0 & 1\end{array}\right\}$ and $N$ be a normal operator with $\sigma(N)=W(A)$ .
If $T=A\oplus N$, then as shown in [6, Theorem 1.31, $T\in M_{1},$ $O\not\in con(\sigma(T))=con$

$(\sigma(T^{\mathfrak{g}}))$ and $0\in W\langle A^{f}$ ) $\subseteq W(T^{2})$ . Thus $\overline{W(T^{1})}\neq con\sigma(T)$ or $T^{2}$ is not convexoid.
Consequently, $T\in M_{\rho}$ for all $\rho\geq 1$ but $T^{2}\not\in M_{\rho}$ for any $\rho\leq 1$ . This proves (i).

To prove (ii) it suffices to exhibit that $T^{-1}$ is not convexoid. Since $W(A)=$

$\{z;|1-z|\leq 1/2\},$ $\{W(A)\}^{-1}=\{z:|4/3-z|\leq 2/3\}$ . Now $\sigma(T^{-1})=\sigma(4^{-1})\cup\sigma(N^{-1})=\{1\}\cup$
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$\sigma(N^{-1})=\{1\}\cup\sigma(N)^{-1}=\{1\}\cup\{W(A)\}^{-1}$ . But $1\in\{W(A)\}^{-1}$ . Therefore $\sigma(T^{-1})=\{W(A)\}^{-1}$ .
Obviously con $\sigma(T^{-1})=con\{W(A)\}^{-1}=\{W(A)\}^{-1}$ . Next we see that as $1/2\in W(A^{-1})$ ,
$ 1/2\in$ con $\{W(A^{-1})\cup\{W(A)\}^{-1}\}=con\{W(A^{-1})\cup W(N^{-1})\}=W(T^{-1})$ and hence $ 1/2\in$

$\overline{W(T^{-1})}$. However, as $1/2\not\in\{W(A)\}^{-1}=con\sigma(T^{-1})$ , we arrive at the conclusion

that con $\sigma(T^{-1})\neq\overline{W(T^{-1}).}$ This proves the desired $a8sertion$ .
The author wishes to thank Dr. B. S. Yadav for his help during the pre-

paration of this paper.
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