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The purpose of this paper is to establish some properties of p-oid operators
and to extend the class of operators satisfying the growth condition-(G,) by
considering the growth condition upon the operator radius of the resolvent of
an operator.

For an operator (a bounded linear transformation) T on a camplex Hilbert
space H, let o(T), W(T), r(T) and |W(T)| denote respectively, the spectrum,
the closure of the numerical range W(T), the spectral radius and the numerical
radius of T. If S is a set of complex numbers then we write S and con(S) for
the boundary and the convex hull of S.

Let C,(0>0) be the class of operators T on H for which there exists a
Hilbert space K containing H as a subspace and a unitary operator U on K
satisfying the following relation:

Trg=pPU»s (n=1,2,8,:---), x€H.
The following theorem due to B. Sz. Nagy and Foias characterizes the class C,.

Theorem A. [8, Theorem I 11.1]. An operator T belongs to C, if and
only if

(p—2)l(I—2T)z|*+2Re(I—2T)z, 220 ,

Sor all z wn H, |2|<1.
Recently, Holbrook [4] has introduced the following concept of operator radii
@,(T) (0<p<0):
0,(T)=inf {u:u>0 and uTeC,}.

In particular, w:(T)=|T|| and w.(T)=|W(T)|. Furthermore, he has obtained
the following characterization of C, in terms of operator radii.

* This paper was first read at the 39th Conference of the Indian Mathematical Society
held at Jadavpur University, Calcutta in December, 1973.



118 S. M. PATEL

Theorem B. Te@C, if and only if w{T)<1.

In Section 1, some properties of p-oid operators are obtained. Section 2 is
devoted to the study of the classes of operators associated with operator radii
which are more general than the class of operators satisfying the growth con-
dition-(G,).

1. p-oid operators.

According to Furuta [2] an operator T is called p-0id if w,(T*)=(w,(T))*
(k=1,2,8,--+). Clearly 1-oid and 2-0id operators are normaloid and spectraloid.
Also for p>1, w,(T)=r(T) if and only if T is p-oid [2].

First we give an alternate but a simple proof of a result due to Eckstein
[1, Lemma] and use it to obtain some properties of p-oid operators.

Theorem 1. Let 2z be a mon-zero complex number such that |z]l=w,(T)
(0<p< ) and let {x,} be a bounded sequence of vectors. Then

I(T—2)x,| >0 implies [[(T*—2z*)x,[|—0

Proof. Setting Ty=2z"'T, we see that w,(To)=1. Therefore by Theorem
B and Theorem A, we get (0—2)[(I—To)xll*+2 Re {(I— Tz, x>>0, for all x in
H, or Re {((o—2)(I—To)*x(I—To)+2(I—T¢))», 2>=0. '

This inequality shows that the operator Re S>0, where S=(p—2)(I—T,)
(I—To)*+2(I—T,). Since [[(I—To)x,]|—0, we have [|Sz,]|—0. This, in turn gives
[(Re S)2x,]|=<(Re S)%4, %.>= Re {Sx,, £,>—0; thus [|(Re S)x,[|—0. Since ||Sx,]—0,
we conclude that [S*w,|—0. Consequently, I(I—To)*x,[|—0, or [(T*—2*)z,]|—0.
This proves the result.

Corollary 1. (Furuta [8]). If T*=T, then T i8 a projection if either
(i) T is a p-oid, or (ii) w,(T)<L1.

Proof. Since T*=T, r(T)*=r(T). Therefore either 7(7)=0 or »(T)=1.
If »(T)=0, then T=0. If not, then Tx+0 for some x€ H and hence 1e€d(T)
a8 T'(Tx)=Twx, which is a contradiction. So T=0, obviously, a projection.
Assume then that »(T)=1. If (i) holds then w,(T)=1. Since T(Tz)=Tx for
all # in H, an application of gives T¥(Tx)=Tx« for all z in H or
T*T'=T. This shows that T is a projection. Lastly assume (ii). Then »(T)<
@o(T)<1=7r(T) or T is p-oid. Hence the result follows from (i).

The following corollary is easy to prove.

Corollary 2. Ewvery p-oid operator on a Hilbert space H with dim H<2
8 normal.
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Remark 1. The above result is not valid if dim H>2. To see this, con-

10
gider the operator T:[ 0 00 :| on a Hilbert space H with dim H=3. Clearly
0 01

T is normaloid and hence p-oid, but it is not normal.
Let L,(0>1) be the collection of p-oid operators. We know that L,= L, for
o’ >p [2, Theorem 8]. To sharpen this result, we establish.

Theorem 2. If dim H>2, the class L,(1<p<oo) increases with p that fis,
L,2 L, and Lp#*L, for 1<p<p’<co.

Proof. We construct for every p and o’ with 1<p<p’<o an operator
Te in Ly such that Ty & Lo.

Let M be the two-dimensional subspace of H. Write H=MPM*. Let

4
A=[ g g ] be the nilpotent operator on M and B, the identity operator on

M*. Let To=APB. Clearly r(Tw)=1., Since [|[¢'"*4|=1 and (" *A)=0, we
have by [4, Theorem 4.5] @, (o' *A)=p’"! or w,(A)=1. Maereover, as B is the
identity operator on M* and o’>1, we have by [4, Theorem 4.8], w,(B)=1. An
application of Theorem 4.1[5] gives wp'(Tw)=max {w,(4), we(R)}=max {1,1}=1,
Thus e (Te)=1=7(Tp'), showing To € Lo.

Next we claim that Tp ¢ Lo. Since r(Tp)=1, it will suffice to show that
wpo(T,)>1. Now as argued before, we obtain w.(A)=p’/p and so, as p’>p,
wA)>1. Moreover, wy(B)=1as p>1. Therefore, again using [5, Theorem 4.1],
we get wo(Ter)>1. This shows wp(Te)>1=r(Ty).

2. Subclasses of convexoid operators.

An operator T is defined to be convexoid if con (o(T)=W(T). If z¢o(T),
then R(T,z)=(T—z)"! exists and is called the resolvent of 7. An operator T
is said to satisfy the growth condition-(G,) if |R(T,z)||=1/d(z,0(T)), for all
2¢0(T), where d(z,0(T)) denotes the distance of z from ¢(T). Clearly, T
satisfies the growth condition-(G,) if and eomly if R(T,z) is normaloid for all
2€0(T). For the various properties of such operators, we refer to [6], [10],
[11], [12], [13], and [15]. Since w(T)<Z||T|| for p>1, it is natural to intro-
duce and study the following generalization of this class. '

Let p>1. Then an operator T is defined to be of class M, if w.(R(T,z))=
1/d(z,0(T)), z€o(T). Obviously Te M, if and only if R(T,z) is p-oid for all
2€0(T). Algo for p’>p, M2 M, and so, in particular M; which is nothing but
the class of operators satisfying the growth condition+(G,) is contained in M,
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for all p>1.

Orland [9] established the following remarkable characterization of convexoid
operators: An operator T is convexoid if and only if ||R(T,2)|<1/d(z, con(e(T))
for all z€con (o(T)). From this it follows immediately that the operators of
class M, ‘are convexoid. However, since this characterization fails to say whe-
ther operators of class M, are convexoid for p>1, we present the following

general criterion of convexoid operators.

Theorem 3. Let p>1. If X is a closed convexr subset of the complex
plane, then X2oW(T) if and only if w/R(T,2z)<1/d(z,X) for all z¢X. In
particular, T 1s convexoid if and only if ws(R(T,2z))<1/d(z,con (¢(T))) for all
z ¢ con (o(T)).

Proof. If X2 W (T), then as ||R(T,2)|<1/d(z, W(T)) for all z¢ W(T), we
have wo(R(T, 2))<||R(T, 2)|<1/d(z, W(T))<1/d(z, X), for all z¢ X.

Conversely, suppose that the resolvent of T satisfies the indicated growth
condition. To prove X2 W(T), it will suffice to show that every half-plane M
containing X also contains W(T). By the suitable rotation and translation, we
assume M={z: Rez>0}. Since M2X, we have for t>0,

0(R(tT, —1))=t"'wo(R(T, —t""))<1.
Therefore, by Theorem B, R(tT, —1)€ C,. Now applying Theorem A, we get
(0—2(I—R(tT, —1)=||*+2 Re {(I—R(tT, — 1))z, 2>>0,
or
(0—2)|tTR(ET, —Dx|*+2Re tTR(ET, — )z, 2>>0,

for all x in H.
Dividing this inequality by ¢ and taking t—0, we get Re<T%,2>>0 for all

2€ H and hence W(T)cX.
The second assertion follows directly from the first one by taking X=

con(a(T)).

Remark 2. The above theorem is a more general form of Theorem 4(2)
proved in [7].

As an immediate consequence of Theorem 3, one has

Corollary 3. W(T)=Q{con (X3): w(R(T, 2))<1/d(2, con (X)) for all z¢con
(X,), where X, is a bounded closed set in the complex plane}.
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Corollary 4. If R(T,z) 8 convexoid for all z¢o(T), then T 18 convexoid.

Remark 3. It follows from this corollary that each condition in Column A
of established in can be omitted without affecting the conclu-
sion.

In fact, Professor J.G. Stampfli provided us with an independent proof of
which led us to consider the more general situation when R(T,2) is
p-oid for all z¢o(T). As his proof is interesting in itself, we are quoting here
with his kind permission:

Assume |[|T||=1. It suffices to show that any support line to the set
con (¢(T')) is also support line for W(T). Let Z,={z+1iy; —co<y<oo}. We may
assume Re con (¢(T'))<0 and hence Z, is a support line for con(c(7')). Then
Z, is a support line for con (¢(T-+s)) when $>0. If zeo(T-+s), then |z|=
vVst+1=3. Thus Re(R(T,—8))>s80t=a. Since Z, is a support line for
con (¢(R(T, —s)), it is a support line for W(R(T, —s)) and hence Rez>a is a
spectral set for R(T, —s). Thus the dise {z: |z—a!/2|<a"1/2} is a spectral set for
T+s8 and hence Re W(T+s)<a‘=s+s!. Thus Re W(7T')<s™!, and since s is
arbitrary, we conclude that Re W(T)<0. We have just checked the support
line Z,. The argument for other support lines is identical and hence we have
shown that W(T)< con (a(T)).

It is well-known that a semi-bare point of the spectrum of an operator of
class M, turns out to be a normal approximate eigenvalue of that operator
(see (A complex number 2z is called a normal approximate eigenvalue of
T if {{z.}: xn€ H, [2,]l=1, (T—2)x,]| 20l={{x.}: z. € H, |l2.]|=1, [(T*—2*)2,[—0}).
In we extend this result for 7€ M,.

Theorem 4. Let TeM,. If z is a semi-bare point of o(T), then it is a
normal approximate eigenvalue of T.

Proof. Since T—2Ie€ M, whenever Te€ M,, we can assume z=0. Let 2,#0
be a complex number such that {a:|la—2,1<12,]}Ne(T)={0}. Then d(z,,d(T))=
120l and @ (R(T, 2,))=1/|2,]. If S=—2z,R(T,z,), then w,(S)=1. Since 0€do(T),
0 is an approximate eigenvalue of 7. If {x,} is a sequence of unit vectors such
that || T#,]|—0, then [|Sx,—=x,]|—0. Therefore, as ,(S)=1, we conclude by
that ||S*x,—x,/[|—0, or [T*z,]—0 as [|S*w,—z.[=[—2*R(T*, 2*)w,—
Ta[|=[ R(T*, 2%) T*a,|.

Corollary 5. Let dim H<co. Then the classes M, coincide with the
class of mormal operators.
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As a particular cagse, the preceding theorem asgerts that an isolated point
in o(T') is a normal approximate eigenvalue, whenever T € M,. However, one
cannot say from this result whether this isolated point is actually a normsl
eigenvalue of T. For operators of class M,, the result is well-known (see [12,
Theorem C]). Here, we show this property being retained by operatoi-s of class
M,, when 1<p<2,

Theorem 5. Let Te€ M, (1<p<2). If 2z, i3 an isolated point in o(T), then
it 18 a mormal etgenvalue of T, that is, N(T—zI)=N(T*—z*I)(N( - )=nwull
space).

Proof. Assume z,=0. Choose >0 sufficiently small so that 0 is the only
point of o(T) contained in the disc {z: |2|<r} and d({z: |z|=7}, o(T))=r. Define

P= —(21:73)‘1S R(T, 2)dz

|z|=r

Then P?=P, Since, for p<2, the function w,(:) i8 a norm on the space of
operators [5, Theorem 3.2] and T € M, (1<p<2), we have

wp(P) _<_(27z')‘1S wi(R(T, 2))dz< (2n)~ 2xrr-i=1.

|z]|=r

Then (ii) assures us that P is a projection. If # is in the range of
P, then ||Tx||<r. Since r is arbitrary, Twx=0. Moreover, as 0 is a semi-bare
point of o(T), the desired conclusion follows from [Theorem 4.

Corollary 6. Operators of class M,(1<p<2) with finite spectra are normal.
Our next theorem shows the existence of operators in M, with some inte-
resting properties not possessed by all members of M,. '

Theorem 6. There exists a non-singular operator T in M, such that
(i) T*¢ M, for any p>1,

and
(i) T ¢ M, for any p=1.

Proof. Let A =[ (]; i ] and N be a normal operator with ¢(N)=W(A).

If T=A®N, then as shown in [6, Theorem 1.8], T e M,, 0¢con (¢(T)*)=con
(6(T%)) and 0 W(AY)c W(T?). Thus W({T®)+ con o(T?) or T*® is not convexoid.
Consequently, T'€ M, for all p>1 but T*¢ M, for any p<1. This proves (i).

To prove (ii) it suffices to exhibit that 7! is not convexoid. Since W(A)=
{z: 11—2|<1/2}, {W(A)*={z: [4/3—2|<2/3}. Now (T )=a(A™) Ue(N)={1} U
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(N )={1}Ua(N)*={1} U{W(A)}*. But 1 {W(A)}'. Therefore o(T")={W(A)}*.
Obviously con o(T~!)=con {W(A)} '={W(A)}~t. Next we see that as 1/2e€ W(A4™),
1/2€ con {(W(A YU {W(A)}}=con {W(A ) U W(N-)=W(T') and hence 1/2¢
W(T-7). However, as 1/2¢{W(A)}*=conds(T"'), we arrive at the conclusion
that cono(T-)=W(T ). This proves the desired assertion.

The author wishes to thank Dr. B. S. Yadav for his help during the pre-
paration of this paper.
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